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The amplitude, A(x, r), of the logarithmic specific-heat singularity of a square Ising lattice with bond defects

regularly spaced on an m X n grid (with x = ?/rnn and ~ = n/m) is calculated asymptotically with the result

A(x, r) = As —A, xlnx ' ~As(r)x —A, x'ln'x+ O(x'lnx), as x~O. The coefficient A, verifies the scaling

prediction A, = C„where C, is the amplitude of the (ln lt I) term in the incremental specific heat due to a

single, isolated defect.

I. INTRODUCTION

In the accompanying paper (part III of this
series)' we have shown that the specific heat
C(T, x, r) of a plane square Ising lattice with var-
ious point defects regularly distributed on an

m xn grid is logarithmically divergent, namely,

C(T, x; r)/kn = -A(x) ln~ T, (x, v) —T}

as T T, (x, r), (1.1)

where x = I/nm is the impurity concentration and
r =n/m specifies the "shape" of the defect distri-
bution. The shifted critical temperature T,(x, r)
was investigated in III and its behavior as x-0
related to a scaling theory. In this paper, we
calculate the amplitude A(x, r) of the logarithmic
singularity for the cases of modified single-bond
defects and bent-missing-double-bond defects.
[The nature of these defects is illustrated in Figs.
2(b) and 2(c) of III.] We find that the amplitude has
the form

hK'f (T) =f,( T)+(nm) ' ln ' —In~z,' —z, ~coshK,

1 "do, "do,
+

2
' 'lnD, (8„8,), (2.1)

2rnn 0 2m o 2'
where f,(T) is the free energy of the perfect Ising
lattice while D,(8„8,) is the 2&& 2 determinant

D,(8„8,) =i y, +G, i

[0, 0]nn

[o -Ilzs+(zi-zi) '
[0, 1]ni —(z,' —z, )

'

[0,0]„
(2 2)

1 -iP $1 -iq @""'8)=nm~ ~ ~(p q) ~

1) 2

in which, retaining the notation defined in detail
in III,

(2.3)

whose elements [l, k]„„aredouble sums depending
on 8, and 8, which are defined in Eq. (2.23) of III.
It is convenient to define the prototype sums

A(x, T) =A, -A,xlnx ' -A, (T)x

—A,x' ln'x + 0(x' lnx), (1.2)

&(P„Q,) = tr —2b cosP, —2c cosP, , (2.4)

a = (1 + zs)(1 + zss), b = zi(1 —zs), c = zs(I —zi)

in which A, is the amplitude of the logarithmic
specific-heat singularity for the pure Ising lattice
while A, satisfies the scaling relation'

A, =C, ) (1.3)

II. AMPLITUDE FOR SINGLE-BOND DEFECTS (b'j

where C, is the amplitude of the (ln~ t ~

)' term in
the incremental specific heat due to an isolated
defect. [As usual t- T —T,' measures the devia-
tion from T,'= T,(0, r). ] Note that the coefficients
A 1 and A, are independent of the distr ibution ratio
i.

(2.5)

while the sums run over the mn distinct values

4i, = (8, + 2 tt l)/m, I = 1, . . . , m;

4i, = (8, + 2ttk)/n, k = 1, . . . , n . (2.6)

[0 0]nn =-[0 0]~c =z.(R.. , -R.,i), (2.7)

and

[0, 1] = W(8„8,) ——(1 —z,')(R, -R, ), (2.8)

[0, -1]„=-W(8„8,) —-', (1-z', )(R, , -R, ,),

The tnatrix elements [I, k]~„canthen be expressed
in terms of the R~

„

in particular, we find

It is shown in Sec. IV of III that the free energy
of a system with a regular array of modified sin-
gle-bond defects (b) is where

(2.9)
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W(8„8,) = —,'(1 —z', )(R, ,+R, ,)

zl( + z2)R0, 0 1 2( 0 I 0 ~ 1}

and so we have

&w(e„e,) -=w(e„e,) —w(o, o) e,', e', . (2.12)

(2.10)

From the definition (2.3) of R2 „wefind that
R,2 „(0,0) =S2„where S2, was analyzed in detail
in III. Thus on using III(4.4), we obtain the rela-
tion

Likewise, R, , -R, , is even in 6), but odd in 6}„
and so we may write

(R, -R, ,)/2t= 8,U„+O(8'„8,'), (2.13)

in which Uyp is the first derivative of R y p Ry p

with respect to 8, . Similarly we may write
w(o, o) =[o, 1]„',. (2.11)

(R, , -R, ,)/2t= e,U„+o(e'„e',) . (2.14)
To extract the leading logarithmic singularity

from (2.1}it is essential to evaluate the determi-
nant D,(6„8,) correct to quadratic orders in 8,
and 8, before integrating. It is now clear from
(2.3) that W(6„8,) is an even function of 8, and 8„

The derivatives U» and U„will be evaluated be-
low.

Now we can write the 2 X 2 determinant of (2.2)
as

D (8 8 )
- I[0 1]o (z,' z,)-')2+2gw([0, I]' —(z,' —z, ) 'j+aw' —z,'(R0, -R0,)' —2(1 —z', )'(R, 0-R, 0)'

= (T —T', )' +4z', U'„8',+ (1 —z2)'U'1081 + O[811 (T —T', ) 81] 1 (2.15)

where we have put

[o I]RL —(zl —zl} '=T —T0 (2.16)

which will be seen to measure the deviation from the shifted critical point. On substituting this expres-
sion into (2.1), we find the leading singular term of the free energy to be given by

m n p 77 p 7T

= —[8vz2(1 —z,')U„U,0mn] '(T —T0)' lnI T —T0I + ~ (2.11)

(2.18)

where the amplitude is given explicitly by

This completes the first step of the argument since the specific heat of the system with single-bond de-
fects can now be seen to diverge as

C(T, x, r)/kz = -A0(x, T) ln ( T —T0(, as T —T0- 0,

) !(—, 2) ~(= 4 vz, (1 —z,')U, gj,mn
r=r'

p

(2.19)

in which P = I/kzT.
The derivative U„ofR, , -R, , with respect to O„evaluated at the origin, is easily found to be

2nk, 2@i 2' . , 2@k 2
2n'l 2@kU„=n 'nm) -'- cos -2C S1Q

n m ' n n m'n
l =x

(2.20)

It is shown in Appendix A that in the limit
t = (T —T,)/T, approaches zero while n, m —~
with n/m fixed, this double sum reduces to

mU„= — » —G —+ O(t'm'}1 1 m m
p mn abc'' n n

(2.23)
1 1 n n

] —
(b ) /. — —— +o( ')

mnt m(bc j m m

(2.21)

The result (2.16) together with (4.10) of III yields

1+z2c 1 dz,
T —T = '+B+ E+

tmn ' nm
where n and m are defined in (3.43) of 111, while

(2.22)

Likewise we find

+t(1+z„)A,[—,
' ln(mn)+P0(T)]+tB,'+O(t lnm).

(2.24)

Now the reduced shift in critical temperature t,



126S HE LEN AU- YANG

2(C'.)'
Vy = 2QyAc =

0

(2.26)

is evidently determined by the equation T —T0=0
and it has the form'

t, =-u, (nm) '

x[1+v, in(nm)/nm+cu, /nm+O(n-'m-2 Inon)),

(2.25)

in which the amplitudes were found in III to be

202(7) = — &' +R, /R,dg2

C

+[A,(1+z„)'&,(~) +a,'(I + z„)]/R2,

(2.27)

where r, =-p, (et/ep), andA, =r',A, is the bulk
specific-heat amplitude for the pure Ising lattice,
while C, is the amplitude of the incremental spe-
cific heat due to an isolated single-bond defect.
On differentiating T —T,' of (2.24) with respect to
t, we find

1 —2 t',mn —,'Ac ln nm +A,P, 7 + ' +-,'A', t'mn ' ln' nm +0 t' lnm
+22C-

(2.28)

From (2.21) and (2.23), one gets

(2.29)10 01 t4m 2~2 c c m m g g

where we have used the relation A(t) = I/2s(bc)'~2. The identity for G(r) presented in III(3.51) then yields

nmV„V„=.. .(I t',mnA, +-O(m-'n-')].10 01 t4m2~2

Next we make the expansion

z '(1 —z') '=z '(l. —z' } ' —f ' (I. —3z'„)z,'(1 —z' ) 2+O(f2)dg

(2.30)

(2.31}

On substituting (2.28), (2.30), and (2.31) into
(2.19}, and then using (2.25) for t„wefinally see
that the specific-heat amplitude is

A'(x, T}=A, -A,'x lnx ' -A'2(v)x

III. AMPLITUDE FOR BENT-BOND DEFECTS (c)

The free energy of a system with missing, bent-
bond defects has the singular term

-A,x' ln'x+0(x' lnx),

with x=1/nm, where

A, =r', /2z(bc)', ~2

(2.32)

where D,(8„8,) is the 2x2 determinant

D,(e„e,}=[y,+G, [

(3 1)

= r,'(1+z„)/4z(l —z„)z„
is the amplitude of the logarithmic specific-heat
singularity of the pure Ising lattice, while

A,'(7) =2C,'f20(r) —2C', +2u22A~,'(1+z„)'

-u, A, (1 —3z'„)z,,'(1 —z', ,) '
dt

= [o, o]„,[o,o]„-[o, o]„[o,o]„.
(3.2)

The elements [0,0]„„canagain be expressed in

terms of the double sums Ro, «(2.3) as

[0, 0]UU = -zl(R l, o -Rl, o»

[0, 0]U2 = W(8„82)—2z, (R, 0-Rl, o}

1 1
2z2(R0, 1 Ro, l) 2zlz2(R 1, 1 Rl, l) &

On using III(4.8} and III(3.68) we find that

A', =(C',)'=C', and A,'=-,'(C', )'/A, . (2.35) [O, O],„=-W(e„e,) ——,'z, (R, , -R, ,)

(3.4)

The first of these relations checks the general
scaling relation A, = C, derived earlier. '

1
2 2 Ro, 1 Ro, l) 2zlz2$ 1 1 Rl, l) 1

(3.5)
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where

W(61& Op) =Rp p &&I (R g p +Ra p) 2 2(Rp -j +Rp 1)

1I'(0, o}= [0, o];,= (T - T:) .

Hence we may write

(3.8)

2zlz2(R 1,-1+Rl,l} I (3.6) W(8„82)= (T —T0)+ O(8'„8,', 8,8, ) . (3.9)

while [0, 0]zz is given by (2.7}. It is easy to veri-
fy the relations

=0

In Appendix A we show that

(R, , -R, , )/2i= 8,U, 0+ 82U0, +O(8,', 8', ),
(3.10)

eI =ep =p ei =6~ =p

(3.7)
with U, 0 and U0, given by (2.23) and (2.21). Conse-
quently, we may write

D,(8„8,) =+z,z, w, , -R, ,)(R, , -R, ,)+W(8„8,)'

[2zlN 1,0 R1,0) + 2z2(RQ, -1 R0 1) + 2 1 2(R -1, -1 Rl 1})

= (T —T')' —4z,z,U0 U„8,8, +[z, (1 + z, )U, 08, + z, (1 + z, }U„8,]'+O[(T —T0)8„8',] . (3.11}

On diagonalizing the quadratic terms in 6, and 8, and integrating, the singular term of the free energy
(3.1) becomes

f;:,„„(T)= -[8vz, z2(z, +z, +z,z2)'t'U«U»mn] '(T —T',)' lni T —T0i,

and so the specific heat diverges logarithmically as

C'(T, x, r) = -A'(x, r) lni T —T0[),

with the amplitude

A'(x, g) =r', 0 4vz, z2(z, +z, +z,z, )' 'U0, U»mn
d(T —T )2,t2 [

T —T

From (3.9), III(4.34), and III(4.35), we deduce

~ ~

d(T T') '
»(1 —2(t',mn)[ —,'A, In(nm) +A, P, (7 ) + B,'] + 4(t',mn}'A', In'(mn)j,

t r r t'm'n'
p

where t, is determined by the equation T —T', =0. This yields the form

t, =-u, (nm)[1+v, 1 (nnm)/nm +lv, /nm+0(n 'm ' lnm)],

with the amplitudes given by

u, =1/B, , v, =-,'u', A, ,

E,(r) B,' A-,P0(7 )

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Finally, we make the expansion

-1/2 -1 -1 1 1 -1 2 (3.19)

These relations together with (2.30) imply the

final result

A;(r) = 2C;P0(7) —2C;+ 2u', A0B,'

where

-A;x' ln'x+O(x lnx),

A, =r', A, =r', /4vz„z„,

A (x& T) Ap Aj x lnx ' —A,'(w)x

(3.20)

(3.21)

(3.22)

c p

dg2+ d' (3-z„)z;,'
C

(3.23)
Again, it is trivial to check the scaling relation
A I:C I by utilizing (4 .33 ) of III . We may note that
the simple form of the coefficient A, = -', (C, )'/A01

fourid also for single-bond defects, has not been
interpreted.
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By differentiating both sides of equation (A3) with
respect to x, we find

n 2wl
n 'g x —ycos

/=1

2=xX l+ —+2nX F '+Y
Y

APPENDIX A: DOUBLE SUMS It is easy to verify the relation

We shall first calculate exactly the sum =—x —y cos

whose summand is

r(8) = cos 8(x —y cos8) '

—y sin'8(x —y cos 8) '

In Appendix 8 of III we found

n 2n l "-', 2
n 'g x —ycos =X' 1+—, (A3)

n Y

Y= —+ ——1 —1.

+—x- Ycos

Now, on using (A3) and (A5), the sum is found to
be

(2n/y)( Y+ 1)
P

Hence the double sum U„of(2.20) becomesn, ~ Y(2xl/m)+1
c ~ y'(2vl/m)

(A'I)

(AS)

where I'(8} is defined by III(BS}. The approxima-
tions Ill(B45) and III(B47) for the function y(8}
when 2wl, /m & 8& x and 0& 8&2vl, /m (with 1,«m),
respectively, yield the result

nU„= —,
' csc(h~2~t~)+ —g csch' +O(m, e e'

)
n. . . 1 ",n(Pm~+4w'12)'~'

'foal C 2-, — 2
(A 9}

n= /cn'~ 2m=m/5'~2

On expanding the first term in powers of n) t [ and the second term in powers of m ( f (, we find

cc„= ( Icl)-* —c's ~-g scs' +o( (', )) . (
n , 1 " , nial

l =I.

Since'

(All)

—,csch (sir) =—8 j.
(A12)

the results (B62) and (BV4) of III give

n l -G(7)—~ csch2 +—

Therefore

(All�

}becomes(,), (n/m)G(n/m)
( 2p)01 (5c)1/2

By interchanging m and n, b and c, we obtain

U („$,), ( / )("( / ) 0(l. .
)

77 C

Finally, from (2.3) we find

(A13)

(A15)
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=(nm) ' p g (sing, cosp, +cosp, sing, ) 6 '(p„p,) = V„g,+ V„g,+0(g', , g,'),
2i @1

where the derivatives Vyp and V» can be easily found; in particular,

ml 2zk . , 2wk (. , 2vf 2mk—V» + U„=n '(nm) ' P g 2 sin' — cos —2c sin'
1=1 &=1

On using (A4}, we have

sin'(~l/m )[I + V(2mf/m ) j

This term can be seen from (845) and (84'I} of III to be of the order m '. Similarly we find

Vo: U, ( + 0(m )

This leads to the result

(R, , -ft, ,)/2i = g,U„+g,U„+O(g',m-') .

(A16)

(A20)
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