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Nonlinear spin dynamics in superfluid He
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A previous approach to spin dynamics in superfluid 'He is generalized to the nonlinear regime, where the

direction of the order parameter has large deviations from its equilibrium position. The results are used to
study the hydrodynamic regime, to derive an equation for the nonlinear regime in the ringing experiments,

and to consider the nonlinear effects arising in spin-echo experiments for small tipping angles. The results for

the NMR linewidths (in the linear regime) are compared with a very recent work of Leggett and Takagi.
Finally, the behavior of these linewidths is investigated at low temperature, where the hydrodynamic

assumption cov & 1 is no longer valid.

I. INTRODUCTION

We have recently' set up a formalism enabling us
to study spin dynamics in superfluid 3He, in the
regime of frequencies & small compared to the gap
4(T) and for wavelengths long compared to the
coherence length. This theory is an extension of
the work of Betbeder-Matibet and Nozieres to the
case of triplet pairing and is essentially a general-
ization to the superfluid state of the Landau kinetic
equation for the normal state. This generalization
is obtained by treating the superfluid state within
the BCS weak-coupling theory. Therefore, strong-
coupling effects are ignored and can only be ac-
counted by a suitable renormalization of the gap
with respect to the BCS value. This theory has
been used to study spin waves in the collisionless'
and in the hydrodynamic regime. For the NMR
it reduces to Leggett's' theory in the hydrodynam-
ic regime and to the results of Maki and Ebisawa7'8
in the collisionless regime if we assume ~«~ in
their formulas; it has been used to study the NMR
linewidths in the hydrodynamic regime.

However, this theory has been developed so far
only in the linear regime, where the deviations
of the order parameter from its equilibrium posi-
tions are small. On the other hand, there is a
growing interest in the nonlinear regime, which is
more complex than the linear one, but can allow a
better check of the present belief on the nature of
He superfluid phases. Very interesting experi-

ments have already been performed, which are ex-
ploring this regime: ringing experiments and
NMR line-shift measurements in the A phase. '

Our main purpose in this paper is to generalize
our approach of spin dynamics to the nonlinear re-
gime. It happens that this generalization can be
achieved rather easily because, instead of lineariz-
ing around the equilibrium position of the order
parameter as has been done in the linear regime,
we can linearize around the instantaneous position
of the order parameter. In the low-frequency re-

gime « ~, the deviations from the loca, l equi-
librium defined by the instantaneous order pa-
rameter are still small, and the linearization can
be performed. In this way, after the motion of the
order parameter is taken into account by a con-
venient canonical transformation, the rest of the
theory is basically unchanged. In the hydrodynamic
regime, we rederive Leggett's equations and also
write an equation ruling the space variations of
the order parameter. "

In this paper, we include a magnetic field and
the dipole interaction. This allows us to rederive,
in the linear case, equations which have been used
in Refs. 3 and 4, but have not been derived in Ref.
1 (referred in this paper as I). For the NMR we

discuss the relaxation-time approximation intro-
duced in Ref. 4 in the light of a very recent work
of Leggett and Takagi. ' Then, we discuss the
linewidths at low temperature. Applying the
relaxation-time approximation to the ringing prob-
lem, we derive a differential equation ruling the
difference of phase between spin up and spin down.
We study this equation in the regime of high-fre-
quency ringing. Finally, we discuss some prob-
lems arising from nonlinearity in spin-echo experi-
ments for small tipping angle. Some of these re-
sults have already been briefly reported. 's

II. KINETIC EQUATION

Since the main features of the theory have been
described in detail in I and the generalization fol-
lows the same lines, we will be somewhat more
sketchy here. We start from the BCS Hamiltonian,
including a magnetic field with an arbitrary space
and time dependence (provided that the time scale
is large compared to S/6 and that the field is
varying slowly over the coherence length). The
magnetic energy is assumed to be small compared
to the gap. Here we do not take into account the
dipole interaction, which will be discussed later.
We have
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where w is the bare He mass and az (the Larmor
frequency) is related to the magnetic field H(r, I) by

&uz=yH(r, t), (2)

@being the nuc1.ear magnetic moment of He. In
Eq. (1), 8„, is the BCS interaction.

As in I, we perform a (time- and space-depen-
dent) spin rotation in order to follow the motion of
the order parameter: Kith respect to the moving
frame, the order parameter will be space and
time independent. But we will not assume, as in
I, that the deviations of the order parameter from
equilibrium are small. This spin rotation in the
nonlinear regime has also been used by Maki 4 in
studying spin waves in the B phase in the hydrody-
namic regime. In this spin rotation„ the old field
variables g(r, t) are related to the new ones y(r, t)
by

where a„, a, , and o, are the Pauli matrices.
After the transformation, the Hamiltonian be-

comes

spin down. Equation (6) is, in fact, similar to the
Josephson relation between chemical potential and
time derivative of the phase for ordinary super-
conductors. Equations (5) and (6) are the gen-
eralizations to the nonlinear regime of Eq. (4) in
I. Finally, there is no physical difference between
Q and w: ~ is essentially the magnetic field in
the fixed frame and 0 is the same field expressed
now in the moving frame. Equation ('7) is equiva-
lent to saying that 0 is deduced from ~1 by the spin
rotation.

Until now, we have not considered Fermi-liquid
effects. They could be introduced in a systematic
way, as done in I. But, as it seems to be a good
approximation and is much simpler, we will assume
that only the s-wave part Eo'=Nofo of the antisym
metric Fermi-liquid parameters is nonzero (for
spin dynamics we are not concerned with the sym-
metric one). In that case, all we have to do to
take into account Fermi-liquid effects is to replace
the bare mass m by the effective mass m~ and say
that there is a molecular field fO5p which must be
added to the magnetic field ~~; here 5p is the
"magnetization*' of the system (without multiplying
by the magnetic moment' ).

Now we can see that the new Hamiltonian [Eq.
(4)) is formally identical to the one obtained in the
linear regime [Eq. (3) in I]. But now A„ is defined
by Eq. (5) and V must be replaced by

1X= V ——,0+f0 p,

+ ~ d'~[ivy'„(r) A, q, (r) H+. c. ]

(&/&z) &-far 8 v(&i8.8)

&&-&s.8 (&iif'8)
Bt y

SH» 17)

o8 L

(6)

(6)

If we write (A z and V z are easily checked to be
traceless in spin space)

A 8=A), ~ o' ~, V 8= V), cr 8, 0 g
—Q), o'

(X=x, v, z),
A„which is a vector both in spin and orbital space,
must be considered as a spin superfluid velocity,
corresponding to the difference in superfluid veloc-
ity between, say, spin up and spin down. Note
that an equivalent definition of the spin superQuid
velocity is given by I.eggett. '6 In the same way
—V), can be interpreted as an effective field due to
the motion of the superfluid: It gives a difference
in chemical potential between, say, spin up and

with V and 0 defined by Eqs. (6) and (7).2 We can,
as in I, write a kinetic equation for the local dis-
tribution-function matrix. In I, we have linearized
this equation because the system was assumed to
have only small deviations from equilibrium. Here
this is no longer the case. But if we deal with
perturbations of long wavelengths and of frequency
small compared to the gap, the forces which drive
the system out of equilibrium and which are pro-
portional to A, , V„, and Q„are still small since
they are proportional to the wave vector or the
frequency. Therefore, in the moving frame, the
system will still have small departure from equi-
librium. However, this already implies a low-
frequency long-wavelength expansion which was
not the case in the linear regime.

Let us define the Fourier transform of the 4&4
matrix distribution function n„,&2 ~,&~ defined in I:

jqo P
k( & I) p e nk-e/2, k+q/3

For example, the part describing the space-time
dependence of the quasiparticle distribution
n, ,(r, t) is related to the Wigner distribution
function,
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[n„,(r, t)]ms= d'II e'"'

&((p (r+ sR)(ps(r ——,'R))

example, 5E, would be essentially the magnetic
field plus the molecular field. Here, 5E, is given
by

(nk) + —{[6nk, s „]

+ [n', , 6»,]+[6nk, 5ek]), (12)

where

and

f&»6.s ~k s
0

k s ~»6 sf

0 & 0 1 1
n q

= p+ E ~ &I,/'E~, p~ = —p tanhp PE~ . (14)

Finally

(Mk s„

where we have

0

—M-., sf

M» s(r, t) =kA s+ V s
—sA s+Es5p s . (16)

fq'ri t(sk »ts &-+k»»ss, s) '
a

The departure 6nk(r, t) of this distribution from
equilibrium obeys the following kinetic equation:

I

k

(19)
which is identical to the result for the linear
regime. In Eq. (19), the arrow describes a vec-
tor in spin space and, in A&, the index i (i =x, y, s)
refers to orbital space; in Eq. (8), we have used
the reverse notation. As usual, d, is defined from
the order-parameter matrix &k by &k= i(o ~ d, )o, .
Finally, let us note that the kinetic equation could
be derived in a more direct way by a semiclassical
expansion analogous to the one used by Silin' in
the normal state.

As in I, we will have to require the spin con-
servation law to be satisfied in order to determine
8: The kinetic equation (17) describes the evolu-
tion of the quasiparticles (the "normal fluid" ) with
respect to the superfluid, but we need an equation
to tell how the superfluid itself is evolving. This
equation is precisely provided by the conservation
law. (Actually, we know that the spin conservation
law is actually broken by the dipole interaction,
as we will see later. ) In order to use this "con-
servation law, "we need the kinematic expression
of the magnetization p and the spin current j,. in
terms of the quasiparticle distribution and the
super fluid.

These expressions are obtained from the defini-
tion of the magnetization and the spin current,

Equation (11) is essentially identical to Eq. (14)
of I, except for the term [ink, 5&k], which can no

longer be neglected.
Performing, in the same way as in I, a Bogoliu-

bov-Valatin transformation, we obtain the following
kinetic equation~a:

8
5vk(r, t)+ &»E»~ &Pk(r, t)

p(r) =P'.(r)o.s(}s(r),

(t'(r) (7 s(ts(r)

(20)

+25pk(r, t)&&BE»(r, t) =1(5vk), (17)

where we have added a collision term 1(5vk) on the
right-hand side. Here (5vk) s is the 2x2 matrix
distribution function for Bogolinbov quasiparticles
and we have written (5vk) s= 5vk ~ ~g; 5pk is the de-
parture of 5+~ from local equilibrium

&WI = &&u- & ~ &Ea (18)

where cp'» =a(pk/aE» is, in fact, the energy deriva-
tive of the Fermi distribution; 5E»(r, t) is the
change in the local energy of the quasiparticles due
to the perturbation, the magnetic field, and the
Fermi-liquid effects. We see, from the third term
of Eq. (17), that 5E»(r, t) acts as an effective field
on the quasiparticles: In the normal state, for

and performing first the spin rotation and then
the Bogoliubov-Valatin transformation. The spin
rotation has, on one hand, a trivial effect: Since

p and j, are vectors and we change the frame, they
will be changed (by vector 5p, we mean a set of
three components and not the mathematical object,
which is not changed by the rotation). This is ex-
actly the same as going from ~~ to Q. We get rid
of that by expressing p and j& in the moving refer-
ence frame, that is, taking their components along
the moving axis. In that way, the magnetization
is formally not affected by the rotation,

p(r) = q. (r }(T.sos(r), (21}

but, on the other hand, we obtain an additive gauge
term in the spin current,
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(22)

+g ~ d,x [X(r)xd*,],E

( )
1 gk 5 () 1 ~$ d~[d 5p(r)]ji g i k g (g (2

(23)

This is formally identical to what has been obtained
in I, and after the Bogoliubov transformation we
obtain as in I

«(
)
«+ $g «(

)
«~$ d)[dg Vk(

somewhat paradoxical that the dipole interaction
can be neglected in the kinetic equation and not in
the conservation law, since they both derive from
a single primitive kinetic equation before the low-
frequency expansion. This is due to strong can-
cellations which occur in the derivation of the
conservation law and leads to the factor I/Er
mentioned above. In the hydrodynamic regime,
neglecting the dipole interactionin the kinetic
equation is equivalent to neglecting it in the sec-
ond Leggett equation [Eq. (4. 13) of Ref. 6]. But
we have to keep it in the conservation law, in the
same way as Leggett does in his first equation
[Eq. (4. 12) of Ref. 6].

To derive the conservation law, we write

' d, [A (r) d, ] pA, (r) . (24)
—= —. [5p, H],ap 1

2
(25)

In each of these expressions, the first term can be
considered as the contribution of the normal fluid
and the second term the contribution of the super-
fluid. Now we have to consider the conservation
law itself and we need to include the dipole inter-
action.

III. CONSERVATION LAW AND DIPOLE INTERACTION

In principle, in order to include the dipole in-
teraction, we should add it to the original Hamil-
tonian and carry on the process of deriving the
kinetic equation. Fortunately, it is not necessary
to do so because of the weakness of the dipole in-
teraction. We know" that only the off-diagonal
part in the dipole energy is important. The char-
acteristic frequency which is introduced in the
kinetic equation is of the order of the average dipole
interaction between two 3He atoms, E~ ykr(4/-
E~); this corresponds to frequencies of order 10 '
to 1 Hz, far lower than the frequencies actually
considered. Therefore, the dipole interaction is
negligible in the kinetic equation.

On the other hand, we know that it is not negli-
gible in the conservation law. As we will see, this
conservation law is typically of the form

&
p/&t-D,

where D is a dipole term which has variations of
order of E„when the order parameter d~ is rotat-
ing. On the other hand, when d~ is rotating with
characteristic frequency (d, it produces an ef-
fective field of order &u from Eq. (6). The cor-
responding magnetization p is obtained, in order
of magnitude, from the susceptibility of the system.
But, because of the Pauli principle, this suscepti-
bility has a strongly reducing factor I/Ez. Finally,
p m/Er and Bp/Bt-D gives m-(En Er)~~~ (all the
energies are evaluated in frequency units); this
characteristic frequency (En Er)~t~ is precisely of
the order of the longitudinal NMR frequency and
naturally not negligible. Let us note that it is

where the Hamiltonian H includes the dipole in-
teraction, and calculate the commutator by using
the Hartree- Fock approximation. Except for the
dipole interaction, the interaction conserves the
spin and does not give rise to any contribution.
The kinetic-energy term gives a Sj, /Sx, term
as usual. After the spin rotation, the dipole in-
teraction leads to two terms. One is the same
as if the system would be in global equilibrium,
the order parameter having its local value. The
other is due to the disequilibrium of the quasi-
particle distribution with respect to this equilibrium.
But we have seen that this departure from equilib-
rium is small: The second term is of order ~/T,
compared to the first one, and we can neglect it.
Actually, this first term is exactly the one derived
by Leggett in his first equation. Finally, our con-
servation law is essentially the first Leggett equa-
tion, except that we have to take into account the
diffusion of the magnetization, which gives the

Bj, /Bx, term. We obtain

x[(Qxd~)(Q ~ dz)+ (k k')], (26)

where Q= (k —k')/Ik- k'
I and the summations over

k and k' also mean summations over spin up and
spin down.

Equation (26) is written in the fixed reference
frame. It may be more convenient to write it in
the moving frame. In that case, v~(r) must be
replaced by Qr, (r). But we must also take care in
using Eqs. (23) and (24) so that they give the com-
ponents of p and j, along moving axes. Therefore,
if we want to calculate 9p /St and Sj,. /Bx, , we can
take the derivative of Eqs. (23) and (24), but we
must add terms which are well known in classical
mechanics~a and account for the motion of the axes.
In our case, these terms are 2px V for Sp/St and
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2m*j, &A, for sj, /sx, . Finally, we can rewrite
the conservation law as

Qp Q],—+ —' + 2p x X+ 2~*].x A.
~t ~X~

+ g ' ' [(q&&d„)(q d„)+(k-k')]=0,
(2V)

where P and j, are now given by Eqs. (23) and (24).
Together with the kinetic equation (17), it gives a
closed set of equations allowing us to treat non-
linear spin dynamics for all frequencies small
compared to the gap. As long as the kinetic equa-
tion (1V) can be solved for 5v„ this set can be re-
duced to a single partial differential equation for
8.

Let us add an important remark in the case of
the axial (ABM) state which is believed to represent
the A phase. In that case, the direction of d, is
independent of k. We choose this direction to be
along the y axis in the moving frame. We also
note that the somewhat unpleasant formulas (23)
and (24) mean simply (we drop the k index for
cia,rity)

pa,rallel to d have no physical meaning and can be
chosen arbitrarily, which explains why the equation
which would determine them is disappearing.

We note also that we ean repeat the preceding
argument in the normal state and prove that the
conservation law is identically satisfied by the
kinetic equation. This is again expected since the
spin rotation f has no longer any physical meaning
in the normal state.

Finally, let us show how the equations used in
Hefs. 3 and 4 for the linear regime result fx om
the present equations. In these papers, a static
magnetic field was considered. Since we are in
the linear regime, the contributions to 5p„, 5E~,
p due to the fluctuations (let us call them 5v,',
5E,', p') are small compared to those (5v „
5E o„po) due to the magnetic field,

~&a= ~I'x+ ~~a ~ ~Ex= ~E a+ ~E a ~ p= p + p

More precisely, 5p 0„5E,, and p
0 correspond to

the magnetic field contribution to zero order in
the perturbation, the first order being included in

5p» 5E» p'. For example,

py= E5vy ~ px, s=Z 5vx. g++x, gZ
(28)

X = V —&~+fo v

Qe J ~ ~ ~p I ~ ~Q~ )+foP &~I.+foPI (34)

(j,),= ~~ —5v, —y' —k~(A~),

(j,)„,= ' 5v„,+ P(A;)„„.

In the same way, Eq. (19) reduces to

5E„=((/E)k (A ),+ X, , 5E„,= k (A )„,+ ($/E)X„, .
(30)

The y component of the kinetic equation (1V) can be
rewritten as

which gives [0 is obtained from Eq. (7) by expand-
ing for small 8; see Eq. (54)]

0 ' 0 I ff 0X=X +X, X = ——.4~+fop
88

X = —+(o~ x&+foP

5E,'=& X' ~ (1 —
g) ', (d, X'), 5v,'=rp 5E,'.

Finally, to first order in the perturbation, 5E„
can be replaced by 5K~0 in the third term of Eq.
(1V) and also we note that

Because the collisions conserve the total magnetiza-
tion, we expect Q„I,(5vo) =0. Summing Eq. (31)
over k and using Eqs. (28)-(30), we obtain

8 8

sf P, +
s (j~),+2(P.&. P.X.)-

Xg

+ 2~*[(i().(A(). —(A). (A&).]=0 . (32)

But if we take tbe y component of Eq. (27), we ob-
tain exactly the sa.me equation because the dipole
term does not contribute for this component.
Therefore, one of the three components of the
conservation law Eq. (27) is automatically satisfied.
This result is associated with the fact that spin
rotations along d~ do not physically change the order
parameter. Accordingly, spin rotations with 8

In this way, we have rederived the equations used
in Refs. 3 and 4. All the quantities which are
primed here (5po, 5E~, X ) correspond to the
same quantities unprimed in these papers (5v~,
5E~, X); p was called 5p in the moving frame
and 5p in the fixed frame. The conservation law
was written in the fixed frame.

IV. HYDRODYNAMIC REGIME

In the hydrodynamic regime, by definition, all
the frequencies involved are small, compared to
the inverse lifetime of the quasiparticles due to
collisions: (d v «1. Therefore, the quasiparticle
distribution has always enough time to relax to-
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and is related to the susceptibility X with Fermi-
liquid corrections by X '=x '+jo. Equation (39)
merely states that, in the hydrodynamic regime
&z «1, the magnetization p corresponding to the
effective field (- X) is given by the static sus-
ceptibility. Equation (39) can also be rewritten as

p=X (r'0 —V) . (42)

In the same way, the spin superfluid density ( p, ), &

gives the spin current j, corresponding to the spin
superfluid velocity A, , in the quasistatic regime

This relation is quite similar to the rela-
tion between particle current and ordinary super-
fluid velocity, but here we have no normal density
because there is no normal spin velocity. ' Ex-
plicitly' we have

Np + cfQ I
~1'

(Pq)aBfg y d$ & 5 E2J 7T

X p —— ~&8 (~k)e dp)g (43)

Equations (40) and (42), together with the conserva-
tion law Eq. (27), describe completely the spin
dynamics in the hydrodynamic region. Equation
(42) is, actually, identical to the second Leggett
equation. To see this, we note that for a vector
a, we have the following relation between its com-
ponents a in the moving frame and its components

a& in the fixed frame:

ay~ = e amo'e (44)

as in Eq. (7). Applying it to d, , and taking the
time derivative of Eq. (44), we obtain

—d =2d xVk (45)

ward local equilibrium. This local equilibrium is
the Fermi distribution corresponding to the local
energy of the quasiparticles. Since this energy is
changed by an amount 6E~ with respect to global
equilibrium, the local quasiparticle distribution is
different by an amount '

5v~=f 5@= @ 5E„ (38)

from the global equilibrium (f is the derivative
of the Fermi distribution). In other words, 5p~ = 0
is the solution of the kinetic equation (17) in the
hydrodynamic regime. Substituting Eq. (38) into
Eqs. (23) and (24), and taking Eq. (19) into ac-
count, we obtain exactly as in the linear regime

p =V(- x), (39)

I =&2;~A~ (40)

Here tc is the static susceptibility tensor without
Fermi-liquid corrections,

' ~([5.8 —(I+ v")(~~).(&a)8] ~ (41)4z

(where V is now expressed in the fixed frame).
Equation (45), together with Eq. (42) which gives

V= gfI —(X ) p (46)

is equivalent to the second Leggett equation. (The
factors 2 are only a matter of definition: The true
magnetization of the system is 2p. )

Let us note that, except for the factor 2 and the
sign, V is simply what is called in classical
mechanics the instantaneous velocity of the moving
frame; any vector a fixed in the moving frame
satisfies

—a=2axV .
ag

(47)

Equation (47) can be considered as an alternative
definition of V, instead of Eq. (6).

In the same way, the spatial derivatives of d~
obey

d~= 2d~~ A],
~X/

(48)

which again can be considered as an alternative
definition for the superfluid velocity A, (it is in
this way that it defined by Leggett"' ). Using
Fq. (40), we can write Eq. (48) formally as

a
d =2da'[(S. ) ]&)I&

t
(49)

Q p—+2pxX=O .
Bf (5o)

In the isotropic state, the susceptibility & is
isotropic and p and X are parallel. From Eq.
(50), p is constant in the moving frame. But since
it is also constant in the fixed frame, this means
merely that the moving frame (that is d~) is rotating
around p with an angular velocity p/X, according

which plays the same role for the space derivative
of the order parameter as the second Leggett
equation for the time derivative.

In the uniform regime (no space dependence), we
can make the following remark. If we neglect the
dipole interaction and have no magnetic field, the
problem is exactly identical to the top problem of
classical mechanics. The magnetization corre-
sponds to the angular momentum and is conserved
as it is for the angular momentum. As noted above,
V (in fact —2V) is the instantaneous velocity of the
top. Finally, the magnetization is related to the
top velocity by Eq. (42), which shows that X cor-
responds to the inertia tensor. The solutions of
this problem are well known. ~ Actually, they
are very simple in the case of the axial [Anderson-
Brinkman-Morel (ABM)] state and the isotropic
[Balian-Werthamer (BW)] state. In the present
case, Eq. (27) is simply
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to Eq. (42). In the axial state, we will see that
p is always perpendicular to d, so that p and X
are also parallel, according to Eq. (39) (the sus-
ceptibility g is isotropic for directions perpendicu-
lar to d). Again, d is rotating around p. Now,
if we have a static magnetic field, we can eliminate
it by performing a Larmor transformation: In a
frame rotating with angular velocity (- uz), we
have again a free-top problem, so that the total
motion is the superposition of the rotation around

p and of the precession of p around the magnetic field.
Coming back to the space-dependent case, we

can show that p is perpendicular to d in the A
phase, which generalizes a known result for the
space-independent case. This results directly
from the component of Eq. (27) parallel to d. In
this direction, the dipole term is zero and from
Eqs. (40) and (43) the spin current is also zero.
Finally, from Eqs. (41) and (43), x and (p, ),&

are
isotropic in the plane perpendicular to d, and

(p, ),~= (p, )~, , so that p&&X and j, &&A, have zero
contribution in this direction, according to Eqs.
(39) and (40). Thus, we have

—(p ~ d)=0 .
Bt

(51)

88 &8x„-(p);..Xf
(52)

where y and (p,),~
are the susceptibility and the

spin superfluid density perpendicular to d. There-
fore, the corresponding modes propagate exactly
as in the linear case, with the same (anisotropic)
velocity. If we now consider the dipole interac-
tion, we see that rotations around a fixed direction
are still solutions. The dipole term merely modi-
fies Eq. (52), which becomes

Equation (51) tells that, in the hydrodynamic re-
gime, p ~ d is fixed at some value, but it does not
tell which one. To find it, we must consider the
corrections due to the relaxation processes. From
Eq. (51), we see that there is no driving force on

p - d, which means that p ~ d will relax to some
equilibrium value. For this value, there will be
no relaxation at all. Accordingly, this value cor-
responds necessarily to the local equilibrium value

p ~ d =0, so that after some time corresponding to
the relaxation, p will be perpendicular to d.

We will now consider spin waves in the axial state
in the absence of a magnetic field. Let us first
neglect the dipole interaction. By direct in-
spection of the equations, we can see that, as in
the linear regime, rotations of the moving frame
around a direction fixed in space are still solu-
tions. To satisfy p - d = 0, this direction has to be
perpendicular to d, so that d is rotating around
this direction and perpendicular to it. From Eq.
(27), the angle of rotation g satisfies

s'g ( ) g'g
= —&Osin8 . (53)

This equation has been studied by Maki. ~ Let us
emphasize, however, that since the equations are,
in general, nonlinear, the linear combination of
two solutions is, in general, not a, solution, which
makes the study of particular solutions far less
useful than in the linear regime.

Finally, we derive for completeness the equa-
tion ruling 8 a,nd the spin-wave relation dispersion
in the linear regime. In this regime, we have from
Eqs. (5)-(7),

e
A;= 8,~* ax,

V= —8, 0 = ~q —2(d~x 8 .

co@ 8„=sw8, .

Using this result in the x and z components, we
find that the equations for these components are
decoupled, so that we have one mode correspond-
ing to an oscillation of the magnetization parallel
to the field, d oscillating perpendicular in the
field in the x-y plane. The relation dispersion of
this mode is

(o' = (so+ (I/m*y) (p, );,q; q, , (57)

where (p, ),&
is the spin superfluid density for di-

rections perpendicular to d. The other mode
corresponds to an oscillation of d in the y-z plane,
while the magnetization is precessing elliptically
around the field, exactly as in the transverse NMR,
d and p always being perpendicular. The cor-

(54)
In Fq. (27), j, &&A, is of second order in g and can
be neglected. On the other hand, as we have seen,
p and X are always parallel in the actual motion
so that p&X disappears. The dipole term in Eq.
(27) reduces to —P' 'g in the linear regime, where
p' ' has been defined by Leggett. With the help of
Eqs. (40) and (42), Eq. (27) becomes

s'g g g (p,)„g'g
+ (0&X —— + Q g = 0, (55)

ag ~ et m*g ex, ex,

where y is the susceptibility perpendicular to d
for the A phase. The tensor II~ = q "'/g gives the
longitudinal resonance frequencies; In the axial
state Q has a zero eigenvalue parallel to d, and
eigenvalue equal to the longitudinal NMR fre-
quency ~0 in the plane perpendicular to d; in the
isotropic state where d~= R(k), the eigenvalue for
a direction parallel to the axis of the rotation R
is equal to the longitudinal NMR frequency wo,
and the eigenvalues perpendicular to this axis are
zero.

Now we look for the relation dispersion of modes
with frequency & and wave vector q. In the axial
state, we take Z along the v axis and co+ along the
z axis. The v component of Eq. (55) gives



NONLINEAR SPIN DYNAMICS IN SUPERFLUID He 133

responding dispersion relation is

uP = @PE, + up + (1/m~ y) (p, ),&q, q& . (58)

V. RELAXATION EFFECTS

We will now consider some effects coming from
the fact that the quasiparticle distribution does not
relax in an infinitely short time toward the hy-
drodynamic equilibrium defined by Eq. (38). The
quasiparticle distribution is relaxing toward the
equilibrium defined by the superfluid, but at the
same time the superfluid is moving so that the
system is never in complete equilibrium. There-
fore, we will have dissipation processes caused
by this disequilibrium which give rise to NMR
linewidth, spin diffusion, etc.

To be able to treat these problems, we have to
handle the term I(5v,) in the kinetic equation which
arises essentially from collisions between quasi-
particles. This collision term is generally very
complicated and solutions of the kinetic equation
can only be found in some limiting cases. How-

ever, when it can be used, this approach is natural-
ly extremely fruitful. This kind of treatment has
been used recently to study the viscosity and the
thermal conductivity of superfluid He near T, and
at low temperature. ~3 An alternative method is to
make a relaxation-time approximation on the col-
lision term. This leads naturally to much simpler
calculations, and if the approximation satisfies the
conservation laws and more generally the physical
features of the collision term, we can expect at
least a semiquantitative agreement with experi-
ment. This is the solution that we have taken so
far. Since the collision term is zero at local
equilibrium when Eq. (38} is satisfied, we use the
following approximation:

I(5V,) = —(5v, —rP'5E, )/7(T) . (60)

Naturally, the main shortcoming of this approxi-
mation is that we do not know the temperature
dependence of the relaxation time r(T) and we need
the exact collision term to have a hint about it.
Alternatively, we can use one experiment to de-
termine it or compare different experiments to
eliminate 7(T}. We must take care also that w(T)

In the isotropic state, we have to solve

uPg+ i(u (uz& 8 —n e —(1/m*)() q, q~(p, )~~ 8=0 . (59)

Equation (59) is not simple in general since the
eigenvectors of q, q~(p', ), &

are parallel and per-
pendicular to R(q), those of 0 are parallel and per-
pendicular to the axis of R, and those of the operator
~~&& are parallel and perpendicular to ~1. Never-
theless, solving Fq. (59) amounts to solving a the
third-degree equation, which can always be done.
Naturally, in some particular cases, one has simple
solutions .

can depend on the process that we consider. It
should depend also, in general, on the spin po-
larization that we consider and 1/r(T) could be re-
placed by a tensor. Finally, let us stress that,
since the conservation law Eq. (27) is explicitly
required, the relaxation-time approximation Eq.
(60) satisfied it automatically. However, we will
see that this does not completely eliminate prob-
lems associated with spin conservation.

We will now consider the problem of NMR line-
widths and first rederive rapidly the results of
Ref. 4. The actual experiments are done in the
linear regime and satisfy the hydrodynamic condi-
tion z«1. Also, there is naturally no space
dependence. The kinetic equation (17) becomes
very simple since 5p, -o(&o~): The third term in
the left-hand side of Eq. (17) can be neglected and
we are left with

Bg'
5vy = (5v p

—0 5Ep)/&(T) (61)

If we consider a solution of frequency &o, Eq. (61)
has the solution

5v~ = [1+i&v v(T)] p' 5E~ . (62)

—X~0 8g, g=o ~ (63)

Let us take the magnetic field along the z axis.
From X„=O and the definition of X, Eq. (56) still
holds. From Eqs. (28) and (62),

p& g: —Np [1+ i(deaf(T)] X&

dQ
f(T) = —dt(- V')—

4g E

(64)

where Np is the density of states: Np = m~k~/w .
From Eqs. (9), (54), and (56),

X, = —inc„+i(mz /u&)g, +fp O„,
1Xs= s+8a 2mr8e+ fp pg (65)

The z component corresponds to the longitudinal
resonance and the x component to the transverse
resonance. From Eqs. (63)-(65) we have the
frequencies of these resonances. The real parts
naturally give the well-known results' that the
longitudinal resonance frequency is ~o and the
transverse one (u&pP+ &oPz)' '. We obtain the full

Let us first consider the axial state. From Eqs.
(28) and (30}, the projections of p and X perpendicu-
lar to d will be parallel, so that we have again
p, =0, from the component of Eq. (27) parallel to
the v axis. From Eq. (28) we have nothing to
determine X„since it is not entering explicitly the
expression for p, . This naturally is linked to the
indetermination noted at the end of Sec. II. So we
can set for convenience X, =O and, as for Eq. (55),
we obtain from Eq. (27),
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linewidth by taking twice the imaginary part of the
frequency. For the longitudinal and the transverse
linewidths, we have, respectively (with Fo = Nof0),

a(ul, = (o o(T}T (T) 1
f(T)

+ o

~0(T) T) f(T}

(66}

an -n' T T) (70)

where nl (T} is the longitudinal resonance fre-
quency. For a discussion of these results, we
refer to Ref. 4.

Leggett and Takagi' have very recently worked
out a phenomenological approach to relaxation
effects. We now want to compare our results with
theirs and give some comments induced by their
work. First, we believe that the physics which is
behind the two theories is the same: The relaxa-
tion mechanism considered is in both eases the
relaxation of the quasiparticles toward the local
equilibrium defined by the superfluid through
collisions between quasiparticles. Then we re-
mark that both theories actually agree for the NMR
linewidths provided that we make the following
identification between the relaxation time zcE in-
troduced in Ref. 4 [that is the one appearing in

Eqs. (66), (67), and (70)] and the relaxation time
y» of Leggett and Takagi. In the ABM or axial
state,

In the isotropic state, the transverse resonance
is not affected by the dipole interaction and we are
only concerned with the longitudinal resonance
where we can ignore the magnetic field. The
derivation follows exactly the same lines as for
the axial state. The only modification is that,
from Eq. (23), we now have

p3= 3N3([2+ Y(T)]+i(oT[2f(T)+ Y(T)])X3
(68)

where Y(T) is the Yoshida function; we recall that
the susceptibility of the isotropic state is

x(T) =No, , x(T) = —', [2+ Y(T)], (69)
x(T)

1+FOK T

and we obtain for the longitudinal linewidth in the
isotropic state

Let us also forget Fermi-liquid effects for sim-
plicity. In that case, Eqs. (28) and (30) give

5Eg= Vg y P~= Spy+ Vg 3

where, by integrating by parts over $,

(74)

de~ I~I'= —~, f~ —tml.
(»)

Taking the derivative of Eq. (74) and using Eq.
(73), we have

—f p+ N[o1-f(T)] V,)

1
(p, + No [1-f(T)] V3+ Nof(T) V,),

~CE

or, since p, is constant,

aV, V, +iVo V' at Tea[1-f(T)]

(76)

(77)

We see that the relaxation time for the difference
V, between the chemical potential of spin up and

spin down is Toe[1 -f(T)], which proves Eq. (71).
In exactly the same way, we can derive Eq. (72).
More generally, in the nonlinear regime, from
Eq. (8) of Leggett and Takagi, we can identify
their q by

3i= —[1-f(T)][No x(T) X+ p], (78)

(72) are not mere coincidence: We can derive them
by looking in our language to the process for which

y~~ is defined. Following Leggett and Takagi, let
us assume that there is no dipole interaction: The
total magnetization is conserved. The quasiparticles
relax toward the local equilibrium, but the super-
Quid is also moving in such a way that the total
magnetization is conserved. The relaxation time

yL~ is the relaxation time corresponding, for ex-
ample, to the relaxation of the superfluid toward
its equilibrium. To derive it, let us consider the
simple case of the longitudinal resonance. The
kinetic equation (61) is

ABM
ABM(T) T 3,T (T)
cE I f(T)

and in the BW or isotropic state,

(71)
where v(T) must be understood as equal to 1 in

the axial state.
If the kinetic equation has the simple form Eq.

(61}, we obtain in the axial state from Eq. (28},

BW 3 TLT (T)
Toe( ) = 3x( ) 1 f(T) . (72) —(o+ No [1 —f(T)]X)= — (p+ No X)

Bf ~CE
(79)

Since the relaxation times are not introduced in
the same way in the two theories, it is not astonish-
ing that they are not the same. Equations (71) and

for directions perpendicular to d, and in the iso-
tropic state from Eq. (23),
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p =Ra (81)

where —Rn is the dipole term in Eq. (27). Com-
bining Eq. (79) or (80) with Eq, (81), we obtain
Eq. (7) of Leggett and Takagi, which can be re-
written in the moving frame as

—= (1 —X)Rn ——
8t T~~

(82)

assuming again p and X parallel. We see that if
the kinetic equation has the form Eq. (61), one
can write directly a differential equation for X
[Eqs. (79) or (80)] which allows us to avoid the
kinetic equation. But if the kinetic equation does
not reduce to Eq. (61), it is not likely to be so.
The kinetic equation reduces to Eq. (61) in two
cases: In the regime wv «1, as we have seen, and
also in the longitudinal resonance, which is a one-
dimensional problem which again makes the third
term on the left hand side of Eq. (17) disappear.
In these two cases and if p and X are parallel
(which is automatically satisfied in the longitudinal
resonance), both theories agree. But otherwise,
they will probably disagree.

Let us come back to Eqs. (71) and (72). Since
f(T) is going rapidly to zero when the temperature
decreases, and x(T) is going to —, , q.«and 7„~ are
identical far from T, . On the other hand, for
T - T, , the ratio rcz /Y~r diverges since f(T,) =1.
The interesting question is to know what is the
behavior of the relaxation time near T, . We will
see, by looking at the processes which cause
the relaxation, that ~«must diverge at T, . This
question has also been discussed by Ambegaokar. ~~

As we have seen, the relaxation is due to collisions
between quasiparticles. When two normal quasi-
particles collide, their total spin is conserved.
On the other hand, we are interested for the kinetic
equation in the collisions between Bogoliubov quasi-
particles, not normal quasiparticles. But, from
Eq. (28), for example, we can see that the spin
carried by a Bogoliubov quasiparticle is $/E for
directions perpendicular to d: It depends on the
energy of the quasiparticle. Since this energy is
redistributed during the collision, the total spin
of the Bogoliubov quasiparticles is not conserved
during this process (since the total spin of the
system is conserved during the collision, the ex-
cess spin is transferred to the superfluid, as noted
by Leggett and Takagi~2). For this reason, we can
write a simple relaxation-time approximation Eq.
(60) for the Bogoliubov quasiparticles, which does

—{p+—,
' ND[1-f(T)]Xj=— [p+ N0w(T)X] .0

~CE
(8o)

On the other hand, if p and X are parallel, Eq.
(27) gives

not have to conserve the spin explicitly. The fact
that the total spin is conserved during the col-
lisions appears only in the conservation law.
However, when we approach T, , Bogoliubov
quasiparticles are more and more like normal
quasiparticles and Eq. (60) should have a more
and more spin-conserving structure. Now, in the
normal state the limit of the relaxation process
considered in the NMR is the relaxation of a dif-
ference in chemical potential between spin up and
spin down. But this is an equilibrium situation
since, because of the spin conservation, this
difference in chemical potential cannot change.
Therefore, the collision term is identically zero in
that case, which implies that the corresponding
relaxation time is infinite. This shows that ~«
must go to infinity for T- T, . Let us emphasize,
however, that in the normal state, whatever the
value of y«, the limit of our formalism auto-
matically conserves the spin, since we require
Eq. (26) to be satisfied and it reduces to the spin
conservation law in the normal state. But if we
want to know what the value of 7« is, we must
look in detail at the collision term.

The fact that z«diverges at T, does not tell in
principle what is the behavior of 7~~ at T, . How-
ever, comparison with experiment makes it rather
likely that z„~ has a finite limit at T, , which cor-
responds to rcs diverging like (1 —T/T, ) '~2. If
this is so, one can understand the rather good
agreement with experiment obtained in Ref. 4 by
tentatively taking 7«of the order of a typical
relaxation time in the normal state. In Eq. (67) for
the transverse linewidth, r(T) is multiplied by
a~0(T), which behaves like (1 —T/T, )2: The di-
vergence of r(T) appears near T, , in a region
where ~co~ is small anyway because of the over-
whelming factor m0(T). On the other hand, for the
longitudinal linewidth ha~ will behave like (1 —T/
T,) ~ instead of (1 —T/T, ) if 7„r is regular near
T, instead of vcE . This will be easier to verify ex-
perimentally, although the general behavior will
not be changed drastically. But we emphasize that
the regularity of z~~ at T, is still a matter of
likelihood and only a study of the collision term
can settle the problem on a theoretical point of
view. 2

We now turn toward the question of the NMR
linewidth at low temperature. If 7-(T) would have
an upper bound at low temperature, Eqs. (66),
(67), and (70) would settle the problem: u0(T) is
expected to be some constant at low temperature
and the linewidths would go to zero, since f(T),
for example, is going to zero for zero tempera-
ture. However, 7(T) is actually expected to grow
to infinity when the temperature is going to zero,
so that Eqs. (66), (67), and (70), which are derived
in the approximation ~7 «1, will no longer be
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valid. Let us consider for simplicity the longitu-
dinal linemidth: The kinetic equation is given by
Eq. (61), and with Eqs. (28), (30), and (27) [which

reduce to Eq. (81}],we can easily derive the dy-
namic susceptibility y„(&u) parallel to the field.
We obtain in the axial state

No (ar o 1 —i(or[1 -f(T)]
1+ Fo (~o —m ) —i(or((uo[f(T)/(1+ Fo)]+ [1-f(T)]((oo—(u )} (83)

which is valid at any frequency. The imaginary part g,",(u) is proportional to the measured absorption in
the NMR experiment,

(1+Fo) ((uo —ur ) + &@ r f(u o[f(T) /(1 +F('))]+ [1-f(T)]((uo—(o ))
(84)

The susceptibility y,",(m) may be easily checked
to satisfy the sum rules. ' At low temperature,
we have f(T) «1 (which is obtained far before
nor-l), and we have

r
2(1+Fo) ((o —(uo —&u)o)'+I' ' (85}

where Amo is a line shift (with respect to the usual
resonance frequency &o), which should be always
very small,

&u o f(T) ((so r)
2 1+ Fo 1+ ((oo r)'

and I" is half the full linewidth,

f(T) ~o r' 1+F; 1+

((d'or)' (86)

(87)

We see that at low temperature, even if (0p T is
going to infinity, the linewidth should go to zero,
because f(T) is going to zero and

&d'or/(1~

&d'or

) is
always less than &. This can be seen also directly
from Eq. (83), where }(„(&u)becomes real when

f(T) goes to zero, whatever ~r is. At high tem-
perature, when &oo r«1, Eq. (87) reduces natural-
ly to Eq. (66). This behavior of the linewidth at
low temperature is very similar to the behavior
of sound attenuation in normal 3He. First-sound
attenuation is proportional to ~ and increases
when the temperature decreases. But when ~y - 1,
first sound becomes zero sound with attenuation
proportional to 1/r, which decreases when tem-
perature decreases. Here the situation is very
similar except that superQuidity brings, in ad-
dition, the factor f(T), which goes to zero at zero
temperature. We can also say that, at zero
temperature, we have a pure superfluid regime:
There are no excited quasiparticles, no attenua-
tion, and no linewidth. From Eq. (87), we see
that the low-temperature regime appears for
copy -0.5. On the other hand, a longitudinal reso-
nance frequency of 100 MHz, which corresponds to
cop

-6 && 10', has already been obtained. The re-
laxation time should be at least rD(T, /T)o, where
yD is the spin-diffusion relaxation time at T, . For

4
a s a p

(d = COL + (dp+ ~ (g0)

and the corresponding linewidth is

~o4 ImA(ua)
co 1+ER p

(91)

where cu a= cooz+ coo. Equation (91) reduces to Eq.
(87) for &oz ——0. As we have said, we see that the

T/T, =0.2, which has almost been obtained ex-
perimentally already, this gives wp z-0. 5. So
it should be possible to see experimentalj, y the de-
crease of the longitudinal linewidth without any
problem. For the transverse resonance, we can
do a similar calculation. In the same way, the
effect of the growth of r(T) on the linewidth will
saturate for wR y-1 2nd the linewidth mill start to
decrease when the temperature goes below this
point. Here the frequency R, coming in ~R z, is
the resonance frequency: By going to higher fields,
one increases +R, which puts the onset of the low-
temperature regime at higher temperature. So
this onset should be easier to observe in the
transverse resonance.

More precisely, we can derive for the trans-
verse resonance the following result which holds
at any frequency (small compared to the gap):

o o o 1 —A[1+Fo+ (~z/~')]Fo/(1+Fo)'
1 —A(1 —[wz /(g)(1+ Fo)]

(88)
where A is given by

dO (&/E)'
4w 1 —[(oz /(u(1+ Fo)] ((/E)'+ i/(ur

(89)
In the hydrodynamic regime &z«1, A reduces to
—iurrf(T), so that Eq. (88) agrees with Eq. (67) in
that regime. In the collisionless regime, on the
other hand, ur»1 and Eq. (88) reduces to Maki
and Ebisawa's result. 7' In all practical cases, we
have A «1 because either ur «1 (temperature not
too low and moderate field), or (- y') «1. Only in
strong fields, near T„would A«1 not apply. For
A«1, Eq. (88) becomes
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effect of the growth of T(T) on A saturates for
(d„~-1. We note also that, for &~y»1, A be-
haves like I/u&„T if &o2«&os, but is independent

L (dR '
To derive Eq. (88}, we have used the fact that

the relaxation time, for the NMR, for spin po-
larization parallel to d should be infinite. This
happens for the same reason as in the normal
state: From Eq. (28), the superfluid does not
carry any magnetization for this polarization,
so that the collisions should conserve the spin of
the quasiparticles. This implies, as in the nor-
mal state, that the corresponding NMR relaxation
time should be infinite. This result was of no
importance for the study of the NMR linewidth in
the regime &z«1, since only the relaxation time
for directions perpendicular to d was coming in.
Note also that this results is only approximate:
If we use a relaxation-time approximation, we
must take it to be infinite in order to be consistent,
but in an improved calculation, some relaxation
will come in the direction parallel to d, modifying
the quasipa. rticle distribution (but conserving the
total spin parallel to d).

Let us come to the nonlinear regime and derive
the equation ruling the angle of rotation p of the d
vector in the longitudinal resonance. We consider
only the axial state, but in the isotropic state the
argument would follow exactly the same line.
Actually, we have already almost derived this
equation. We have to use Eq. (76), but V, must
be replaced by X,= V, +fo p, since we want to take
Fermi-liquid effects into account; also, p, is no
longer constant if we have nonzero dipole forces,
but from Eq. (27) it satisfies

c (t) = t~(t) i q(t) sin[t~(t)+ C (t)], (95)

where X(t), p, (t), and y(t) are functions varying on
a. time scale T-(g/cop)2(l/4&u2), that is, very
slow in comparison to n(t). Moreover, 2.(t) is
large compared to &up and p(t) is , small compared
to 1. We can verify that the solution, Eq. (95),
is correct by considering first a period of time
of order 1/g, where X(t), p(t), , and y(t) are
essentially constant. Putting Eq. (95) into Eq.
(93), we obtain

t) P 2
2 1. + [T ) (t)]2 1 /2

~(t) 1+ [T, ~(t)]'

~(t)(T, —T, )
(I+ [T, 2.(t)]2P "$1+ [T, 2.(t)]2}'"

(96)

where we see that p(t) is indeed small compared
to 1 if mp «X(t). Then multiplying Eq. (93) by o.

and averaging over a period 2v/X we get for X(t),

dX 2 2 2

CV

= —jl~ ((dp T2 cosp —p. 2. Tg)

(97)

which can easily be integrated. This equation shows
that X(t) is evolving on a time scale

1+ (+T,)
o ~+z,

6(d2 = (dp(T2 —Tg)
2

For t «T, we have

(98}

experiment with a large change in magnetic fieldP),
the solution of Eq. (93) is of the form

X(t) = g(1 —t/2T), (99)
8 p, Nocoo ,} sin(48) . (92)

~ ~ ~ ~ ~ 2 2
r& at + a.'+ coo y2a. cosa+ wosina. =0,

where a=2P and

(93)

(94}

The right-hand side is the well-known dipole term
in the axial state [from Eq. (45) our angle 8 is
related to Pby 6= —28]. Taking the derivative of
Eq. (76) we obtain

which shows that X(t) is decreasing linearly at the
beginning. But the solution, Eq. (93), is not re-
stricted to t «T, but to 2.(t}»&op, and in general,
one must integrate Eq. (97) and we will have devia-
tions from the linearity. We note that the time
T can easily be made fairly large: With coo-6~10,
switching off a field of 150 G produces +-10&o,
which gives T of the order of ~ sec. Now we have
from Eq. (92},

No eo +o
Ps=pp+1 Fa g(t) &sin[t2. (t)]

This equation has also been derived independently
by Ambegaokar and Leggett and Takagi. 2 Its
implication for the ringing experiment will be dis-
cussed elsewhere. Here, because of its implication
for spin-echo experiments, we want only to con-
sider the regime where the initial velocity a. = A

is high compared to the resonance frequency (do.
In this regime (which corresponds to a ringing

', [g —2.(t)] . (IOO)

We see that p, has a small-amplitude oscillation
of frequency 2.(t) around its average value and
that this average value is varying very slowly, on
a time scale T. A measurement of T itself would
be of some interest since it would provide an ex-
perimental value for z„and in this way all the
parameters coming in Eq. (93) would be known
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experimenta, lly through the measurement of (4)p,

4'» and T. To do that, one should have Qz,
& 1, which is available by a 180' pulse in a 1 kG
field near T, . The conclusion from Eq. (100) is
that the effect of the dipole interaction on p, is
fairly small and can be ignored in first approxima-
tion if g» wo. This is somewhat obvious since
the condition &() «g allows us to consider the dipole
interaction as a perturbation and to expect its ef-
fect to be small. What is less obvious is that the
relaxation time T could be very long compared to
1/h~z. One can understand this result by saying
that the rotation of d is so fast that the system
feels only the average of the dipole force, which
is zero. This averaging is actually not complete,
and the corrections bring a finite but large re-
laxation time T. At small frequencies, g p,
there is no averaging and the relaxation time
would be of the order of 1/4~+ .

Finally, we discuss some problems arising in
spin-echo experiments. It has recently been sug-
gested that spin-echo experiments for small tip-
ping angles would be of interest. 26 However, in the
standard spin-echo technique, one would apply a
small-angle pulse, then a series of 180' pulses.
One of these 180' pulses would bring the magnetiza-
tion almost opposite to the magnetic field; the next
one would bring it back almost in the direction of
the magnetic field. In Ref. 26, it was assumed
that the system had only a small departure from
equilibrium. But naturally a magnetization almost
opposite to the magnetic field does not satisfy this
condition. Here we want to investigate what is the
diffusion coefficient (measured in the spin-echo
experiment) in this goemetry (magnetization almost
opposite to the magnetic field).

As has been seen in Ref. 26, the dipole interac-
tion can perturb to a large extent the measurement
of the diffusion coefficient, unless rather high
magnetic fields (say, greater than 500 6) are used.
Under these conditions, the dipole interaction can
be neglected. As we have just seen, the relaxation
time T for the magnetization is very large and the
component of the magnetization parallel to the
field can be considered as constant for the free-
precession period t, between two pulses, which is
typically of order of 1 msec. We also note that
tp is very long compared to the relaxation time
so that the system can be considered to be in hydro-
dynamic equilibrium during the free-precession
periods. Therefore, in our situation in the axial
state, for example, the vector d will essentially
rotate in the plane perpendicular to the magnetic
field, with an angular velocity 2~~.

Now let us consider the effect of a small mag-
netic field gradient parallel to the direction of the
field. It brings spatial inhomogeneity which
creates spin current, resulting in a diffusion of

the magnetization. The main difference with the
linear regime (magnetization almost in the direc-
tion of the field) is that we have now an important
magnetization current with spin polarization parallel.
to the field (naturally, all the spin currents cor-
respond to transport of magnetization parallel to
the field). Indeed, we have V, =BB,/at= m~, which
gives A„= (t/m")(B&uz/Bz). Through Eq. (29) we
obtain the spin current, and the conservation law
Eq. (27) expressed in the fixed frame gives

2
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where (p,)„is the zz component of the spin super-
fluid density. If the gradient is homogeneous, we
have B &oz/Bzz=0 and the magnetization along 8,
will not decay because of this spin current. On
the other hand, if the gradient is not homogeneous,
B wz/Bz 2-~z/Lz, where L is the characteristic
length of the inhomogeneity. From Eq. (101) we
see that magnetization is decaying over a char-
acteristic time T~ -I./C, , where C, is the spin-
wave velocity. ' Clearly the process for this de-
cay is magnetization transport through spin-wave
propagation at the velocity C, , and not ordinary
spin diffusion. Since C, grows like (1 —T/T, )'~

near T, and tends to saturate at lower tempera-
ture, the behavior of T, as a function of tempera-
ture agrees qualitatively with the one observed
recently by Corruccini and Osheroff. 2 (Actually,
a wide range of tipping angles was used in their
experiments. ) Also in their experiment, L is of
the order of 1 cm (the magnetization would be
carried out of the NMR coil region). Since C,
should saturate around 10 m/sec, this gives a
saturation value of 10 sec for T, , which is also in
qualitative agreement with their results.

If we have Bz uz/Bz 2 =0 or, more generally, an

experimental situation where the decay of p, due
to the spin current is negligible, we can calculate
the relaxation of the transverse magnetization for
a tipping angle around 180'. Here we will not go
into the details of the calculation, which will be
reported elsewhere, but simply give the result in
the A phase: The decay rate of the transverse
magnetization is the same for a tipping angle
around 180 as for a small tipping angle. This
means that there should be no problem in using
the standard spin-echo techniques with small
tipping angles for measuring the effective diffusion
coefficient: The result of Ref. 26 is unaffected
by the 180' pulse. On the other hand, the way in
which the phase of the magnetization is evolving
is affected by the 180' pulse. In other words, the
coefficient D, of Ref. 26 is affected by the 180'
pulse, but not D~, which is the one which is re-
lated to the decay rate and the only one usually
measured.
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Finally, we note that the relaxation time used
in this spin-diffusion calculation should have no
singularity near T, and should go to the usual
spin-diffusion relaxation time when the system is
going to be normal.

VI. CONCLUSION

In this paper we have generalized to the non-
linear regime a method for treating spin dynamics,
which had been only used so far in the linear re-
gime. This generalization is rather easy and

rests on the fact that, even in the nonlinear re-
gime, one can write a semiclassical kinetic equa-
tion for the quasiparticle distribution in the low-
frequency long-wavelength regime. Therefore,
this formalism provides a general method for spin
dynamics in superfluid He. In the hydrodynamic
regime, one rederives from this formalism the
Leggett's equation and one obtains a third equa-
tion ruling the space dependence of the order pa-
rameter. We have also used this formalism to
derive a third-order equation ruling the phase in
the ringing experiments and have studied this
equation for high frequencies, with the conclusion
that the relaxation of the magnetization is very
slow in this regime. We have also sketched some

results which may be obtained for spin-echo ex-
periments with small tipping angles in the A
phase: The decay rate of the transverse magnetiza-
tion is not affected by the use of 180 pulses.

Coming back to the linear regime, we have dis-
cussed the NMR linewidths in view of the recent
work of Leggett and Takagi. ' We have shown
that the results of both theories agree, the ap-
parent discrepancy coming only from the fact that
the relaxation times are not defined in the same
way in both theories. We have discussed the
temperature behavior of these relaxation times.
Finally, we have investigated the low-temperature
behavior of the NMR linewidths with the general
conclusion that it goes to zero when the tempera-
ture is going to zero. The onset of this behavior
should not be difficult to observe experimentally.
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