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We calculate exactly the transition temperature for a rectangular lattice Ising model with various types of
point defects (including missing sites or vacancies) regularly distributed through the lattice on an m )( n grid.

We prove that for concentration x = 1/mn, the transition temperature is shifted to

T,(x) = T,(0)L1 —Q, x + Q, x lnx —Q3x
' —Q4x ln x + ...], where the constants Q„Q 2, Q~, and the func-

tion Q3(n/m) are explicitly derived. The incremental free energies per isolated defect are also calculated.

The various amplitudes obtained obey appropriate scaling relations.

I. INTRODUCTION

The critical behavior of magnetic systems with
defects and impurities has interested many authors
(see, e.g. , Refs. 1-8). However, most previous
studies entail approximations of various sorts
whose validity is hard to establish. In particular,
there are essential. ly no exact results available
concerning the effects of a finite density of point
defects on the critical behavior. In this paper,
we consider an infinite rectangular Ising lattice
with defects regularly distributed through the
lattice on a mx n grid as illustrated in Fig. 1,
and discuss the critical region by exact analysis.

When the system is dilute [i.e. , n, m»$(T),
where $(T) is the bulk correlation length mea-
sured in units of a lattice spacing] we find' that
the specific heat can be expressed as a, sum of
the bulk specific heat C'(T) and the incremental
specific heat C'(T) due to a single defect, in the
form

C(T, m, n) =C'(T)+(nm) 'C'(T)+O(e ' ~, e '" ~),

where 0 =2 for T& T, but 0 =1 for T&T, . The
bulk specific heat, as found by Onsager, ' diverges
at the bulk critical temperature T, according to

Co(T)/ka = -Ao in[ T/T~o—1[+Bo+

while the specific heat C'(T) is equal to that due
to a single isolated defect"'" which varies as

C (T)/ka = —Co/[(T/T, ) —1] —C~[ ln( T/To —1[]2

—C, in[ T/To -1( —C, + . . (1.3)

When n and:n are finite, we find for the various
types of defects shown in Fig. 2 that the critical
temperature for defect concentration x = 1/n m

is shifted to

T, (x; r) = T 0 [ 1 —Q,x —Q,x' lnx ' —Q, (r)x2

—Q,x ln'x+0(x' inx)], (1 4)

where r=n/m. The amplitudes Q„Q„and Q,
are found explicitly for the general ratio J,/J2
of horizontal to vertical interaction strengths, and

are seen to satisfy the relations

Co =AOQ~ and CIQi = 2 OQ2.

These relations have been shown" to follow from
a suitable scaling hypothesis. The function Q, (r),
which is also calculated exactly, depends upon
r =n/m, which specifies the "shape" of the de-
fect distribution. Moreover, we show that the
specific heat for a system with a finite concen-
tration of defects still diverges logarithmically
as it does in the perfect lattice; explicitly we find

C(n, m, T)/ka = -A(x) ln((T —T, (x; v)j/To [.
(1 8)

However, the amplitude A(x) is calculated ex-
plicitly [for defect types (b) and (c)] in a following
paper. " The behavior of A(x) as x-0 again veri-
fies the scaling hypothesis. " In the present paper
we calculate in Sec. II, the partition function for
the defects illustrated in Fig. 2. The results
[for defect types (a) and (c)] are brought into
tractable form using determinantal manipulations
presented in Appendix A. The incremental free
energy and specific heat due to a single hole
(missing sites) and the corresponding shift in the
critical temperature as x-0 are evaluated in Sec.
III. Some of the crucial but rather tricky asymp-
totic analysis of double sums over lattice Green's
functions is relegated to Appendix B. Using the
results obtained in Sec. III, we study the incre-
mental specific heat and temperature shifts for
smal. l & for other defects in Sec. IV. Finally, we
summarize our results and compare them briefly
with other work in Sec. V.
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FIG. 2. Four types of point defects considered ex-
plicitly: (a) hole or vacancy, (b) single (horizontal)
bond, (c) bent double bond, (d) straight double bond.

(2 2)

FIG. l. (a) Rectangular Ising lattice with point defects
on an. m x n grid; (b) single-point defect showing modi-
fied interaction bonds.

II. EVALUATION OF THE PARTITION FUNCTION

A. Pfaffian expression

Consider a Mm &Nn square lattice periodic
strip (Mm+1—=1) whose horizontal interactions
are J, = k~TK, and whose vertical interactions
are J, = kBT'K, with impurities on defects located
at the sites (fm, kn) for / =1, 2, . . . , Mand

As illustrated ln Flg. 1, the
horizontal bonds between an impurity (or defect
site) and its left and right neighbors are J,' and

J,", respectively, and the vertical bonds between
the impurity with its down and up neighbors are
J2 and 4,", respectively. In the thermodynamic
limit M, N-~, the partition function Z can be
written in terms of the Pfaffian of an antisym-
metric 4M&mnx4M+m+ matrix A, as

-1 0

for all i and j (1 « i ~ Mm and 1, 4 j &gn), where
A. , p. =A, I., U, D, and close-to-diagonal bl.oeks

A(i, j;i, j + 1) = Ar(i, j—+ 1;i, j )

= b+(b' —b)5(,„„5,~

+ (b" —b)~;.r. &J.a (2.4)

for all i, j and all /, 0, (1 ~ / - E, 1 ~ 0 ~ M). These
are the only nonvanishing blocks. In these ex-
pressions, a, and b are 4X 4 matrices, each of
which has only a single nonvanishing element,
namely,

(2.3)

where the superscript T denotes matrix trans-
position, and

A(i, j;+1,j)= -A (i+1,j; i, j)

Z= Pf[A] (2 coshK, coshK, )""

X
cosh%: coshK coshK: cosh':™~

cosh'K, cosh'K,

The matrix A has 4x 4 diagonal. blocks

(a, )DD =z„(a,'}DD = z,', (a,")~D = ~„",

(b)UD ~2& (b )UD ~2 s (b )UD 2

where the interactions enter through

z,. = tanhK, , z', = tanhK', , z", = tanhK", .

(2.5)

(2.6)

(2.7)
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It is obvious that the matrix elements of A form
a doubly periodic set satisfying

A(i, j; k, I) =A(i+n, j;k+n, I) =A(i, j+m; k, I +m).

(2.8)

This shows that the matrix A has a close-to-cyclic
structure consisting of nearly cyclic block ma-
trices of the size 4mnx4mns Consequently, in

the thermodynamic limit the reduced free energy
of the lattice with defects is

1 1 2" d0, "d6
f(T) = lim lnZ= in(2coshK, coshK~)+ ' ' ln DetU(8„82)

e, N~ MNmn 2nm p 277 p 2p

coshiol coo hK,' coshK," c shK,")+ nm 'ln
cosh'K, cosh K,

where U(8„82) is the 4mnx 4mn matrix

(2.9)

U(e„e,) =

Bp ~B

-BT B ~B

-B, Bp

B e1

(2.10)

B"eie2 B/T Bt
1

while B, is the 4m &4m close-to-cyclic matrix

n Xn

B =

Rp

T
~a Rp

T
~a Rp

-ae '~

(2.11)

Rp mxm

The elements of Bp are identical to that of B„
except for those on the last row and last column,
so that

and

(Bc )
e-i8h (Bc )T sich a

(Bo)m-h, ~- —(Bo) .m-h =W~ s

(B'), h =(Bo), h otherwise.

(2.12)

(2.13)

(B,') = b', (B,") = b". (2.15)

Finally, the 4m X4m matrices B„B,', and B,"
are diagonal, with diagonal. blocks

(B,)„=(B,) =(B',)» ——(Bh')„=b, for 1 ~ l~m —1,

(2.14)

a,nd

B. Nature of the transition

We note at this point that the basic 4&4 ma-
trices ap, a, and b, and hence the 4 m ~ 4 m ma-
trices Bp, B„B,', etc. , are analytic functions of
~„~„etc.and hence of the temperature T. It
follows that DetU(8„8, ), which appears in (2.9)
in the integrand giving the free energy, is an
analytic function of T, and indeed it is also an-
alytic in cos8, and cos8, . From this we conclude,
as in the case of the perfect Ising lattice, that
the only singularity of the free energy can occur
at a temperature Tp at which the determinant of
U(8„8,) vanishes. It is a reflection of the trans-
lational invariance of the lattice with regularly
spaced defects (as of the perfect lattice) that the
determinant can vanish only for 6), = 0, =0. In
the vicinity of such a temperature, the deter-
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minant must vary simply as [P,(T —T,)'+P, +
+p 82] for small 8, and small ez. From this it
follows by standard arguments that the specific
heat has a singularity of the form A ln ) T —To~,
so that Tp is evidently the critical temperature;
furthermore, the specific-heat anomaly has the
same singular character in the lattice with reg-
ularly spaced defects as it does in the perfect
lattice. None of this, of course, is surprising,
but it is worth stressing since it is widely pre-
sumed that in the case of randomly distributed
point defects the nature of the specific-heat sing-
ularity will be very significantly different. [In
principle one could ask whether there might be
more than one critical temperature; in some
Ising models this is certainly possible, but for
the present class of defect models it is clear
physically that there will be only a single critical
point. For small fixed m and &, this can be

checked by explicit calculation. For large m and
n we will also find a single (shifted) critical point.
However, we have not examined the general ques-
tion more rigorously. ]

Although the nature of the specific-heat singu-
larity is unchanged, its location, TO=T, (x), de-
pends on the defect concentration x = I/mn and
so does its amplitudes(x). In the remainder of
this paper we will calculate the variation of T, (x)
for small x correct to order x' ln'x, for various
types of defect. A following paper will address
the question of the variation of the amplitude
A (x).

C. Perfect lattice

For the perfect Ising lattice (with no defects),
we have ~a' =~a" =~a, b'=b" =b; hence the cor-
responding matrix U(8„82) becomes

U(e„e,) =

Bp B,

Bp

-Bi Bp

—BTe &eq
1

(2.16)

Bp

BpB,ere, BT
1

which is also nearly cyclic. From this observa-
tion, we obtain

n Xn

DetU(e„e, )=IIQDet(a, +a&'~ -a'& ' +be' '-b e ' )= II~(Q„Q,), (2.17)

where the products run over the values

Q, =(2vk+8, )/m, k=1, . . . , m, Pz=(2zl+ 8,)/n, I =I, . . . , n.

Evaluation of the 4X4 determinant yields

&(Q„Q2) = (1+zz)(1+ zz2) —2z, (1 —z22) cos P, —2z, (1 —z2) cosg2.

It then follows from (2.1) and (2.9) that the reduced free energy for the perfect Ising system is

(2.16)

(2.19)

1 ['" de, "de,f,(T) = ln(2 coshK, coshK, )+ I

' ' ln DetU, (8„8,)
2 nzn ~p 2m p

2n'

1 2 d6) 2 d6)
= ln(2 coshK, coshK2) + — ' ' ink(8„8, ),

p 1T p 7T

as found and analyzed' in detail by Onsager.

(2.20)

D. Green's-function transformation

We will now transform the expression (2.9) for the free energy to a more convenient form by writing

DetU(8„8, ) = Det[ U, ]Det[I + U, '(U —U, )] = Det[ U, ] Det[I+G(8„8,)y(8„8,)], (2.21)
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where y is the square submatrix of the difference matrix &U= U —Up, which consists only of the nonvan-

ishing rows and columns of &U, while I and the Green's-function matrix G are corresponding submatrices
of I and Go = Uo, respectively (i.e. , consisting of the same rows and columns as y). On comparing (2.16)
with (2.10) we find that the only nonvanishing elements of &U = U- Uo are

y z z =rkU(n, m —1,R;n, m, L) = —AU(n, m, L;n, m —1,R) = —yz s =zk —zk,

y () D = rKU(n —1, m, U; n, m, D) = —ik U(n, m, D; n - 1, m, U) = —ya () ——zk —zk,

y„z = &U(n, m, R; n, 1, L) = —b U*(n, 1, L; n, m, R) = —y*~ s ——(zkk —z()e'8k,
(2.22)

y() )) = AU(n, m, U; 1, m, D) = —aU*(l, m, D; n, m, U) = —y*n ~ = (z," zk)—e' k.

This shows that y and G are 8&(8 matrices [with rows and columns labeled [ -R, L, —U, D, R, —L, U, —D]
or [(n, m —1)R, (n, m)I, , (n —1, m)U, (n, m)D, (n, m)R, (n, 1)L, (n, m)U, (1,m)D]] . Since the matrix Uo is
nearly cyclic, its inverse" is easily evaluated, and we find that it is given by the matrix elements

[ll ~1k)i [Uo ](iJ)&;((+),j k)+P [UO )(O.O)&;(),k)k

1 Q Qe -ik4( i) 4k (A 1(() (i )[
PPg +

where Q, and Q2 run over the values defined by (2.18) and where

h -h* h+h*-ghh* 2

h + g M

—2+g *h

(2.23)

(2.24)

in which

g =1+x e'@j h =1+x e'@3
j. (2.25)

while the determinant &(@„Qk)was defined in (2.19). Finally, the matrix G is an 8x8 submatrix of

G, =U, ', whose elements are represented by [I, )t]),„.
On substituting (2.21) into (2.9), we find that the reduced free energy for the system with defects can

be expressed as

"de, "da, (-
) (, toahk", coahlfh",lfoocaoahlf,"',

)2i vlR Jp 2' p 2s cosh2E, cosh'E,

Thus the calculation of the free energy is reduced
to the calculation of a double integral over a log-
arithm of an 8x 8 determinant of elements defined
in terms of doubl. e sums.

(2.26)

d8~ d6I~
+ ' '

inly '+Gl.
2 m8 p 2' p 2 17

(3.1)

It turns out that the determinant of the 8&8 ma-
trix y '+6 can, in this case, be reduced to a
determinant of a 4x4 matrix, namely,

III. VACANCIES OR MISSING SITES

Consider now the case when the impurities or
defects are vacancies or holes formed of four
missing bonds [see Fig. 2(a)], so that z,' =z)'=z,'

=~," =0. The free energy of the system given by
(2.26) can be rewritten as

f(T) =f,(~) +
2

ln(z,'z,') — In(cosh'K, cosh'K, )
1 ~ ~ 1

ly '(()„().)+G(()„S,)l =(z,z, ) 'I [0,0]~„i, (3.2)

in which the elements [0, 0] ),„are defined by
(2.23). The derivation of this formula is presented
in Appendix A.

A. Free energy due to a single hole

%hen &, m -~, it is easily seen that the double
sum in (2.23) becomes a double integral. If we
thus define

do ) 2% dg'
J 'cosp4, cos~4. & '(4„4.),2r 2n
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with d (Q„Q,) given by (2.19}, it is not hard to

check the relations
where the superscript ~ denotes the condition
n m , and

[ 0 0]zs = [ 0 0)rD=, [ 0 0]vv = [ 0 0]DD = 0

[o, o]„",= -[o,o],"„

(3.4) [0, o]„",= -[o, o],",=[o, o)„",= —[o, o],"„

[0 0]DU=[0 0]DD= [0 0)7u, =[0 olvD

= (1 —z2)AM —zi(1+z2}Aio —2ziz2A» (3.5) App - z, Alp Z2A01 ~1~2A„. (3.7)

[01 0]UD [01 ] DU

= (1 —z', )A~ —z, (1+z,)A» —2z,z2A», (3.6)

It can be seen from these equations that the ma-
trix in (3.2) becomes antisymmetric when n,
m-~. Hence in this limit we have

)y '+G) =(z,z,)-'([0, o),,[o, o]„",—[o, o]„",[o, o],",+[o, o],",[o, 0],,j'
=(z,z ) ([0,0]" [0, 0]" —2([0, 0] ) j. (3.8)

Consequently the free energy of (3.1) can be written as the bulk free energy f, plus the free energy f,
due to a sing~e hole, namely,

f~f y (pg m) if + 0(e am/ii e -0 n/t2)' (3.9}

where

f,(T) = ln[(1 —zi)(1 —z2)] + In)[0, 0]„"D[0,0]UD —2([0, 0]zv) (, (3.10)

while $, and $2 are the correlation lengths for the horizontal and vertical directions and o =2 for T&T,
but U =1 for T& T, ; the correction term in (3.9) is discussed further in Appendix C.

We can calculate f, exactly: To simplify the notation let us put

a =(I+zzi)(1+z', ), b =z, (1 —z,'), c=zz(l —z, ),

so that from (2.19) and (3.3) we have

(3.11)

I-27I
dQ

"2'
dQA~=

Jl
' '(a —2bcosg, —2ccosg, ) '.

77 vp 77

This integral can be evaluated in closed form as""
A„= (2/v)K(ii)/[(t '+ 4b)(t '+ 4c))~',

where K(z) is the complete elliptic integral of the first kind and of modulus ~ given by

ii' = 16bc/(t '+ 4b)(t '+ 4c),

where the deviation from the c7itical ternpe7 atua e is measured by the variable

t = 1 —z, —zz -z,z, = (1+z„)(1+z„){—[(1—z„)J, + (1 —zz, )J, ] (P —P, )

+ [z„(1—z„)J,+z,(1 —z,)J —(1 —z, )(1 —z, )J,J ] (P —P, ) j,
with p= I/kDT. The critical temperature T, = I/kzp, of the perfect Ising lattice is determined by

exp(- 2 J,/kz T', ) = tanh(J2/kz To ).

In the symmetric case J, =J2=k~TK, we have

t = —4v2(v2 —1)(K-K, )+ 4(M2 —1)3(K-K,)'+O[(K-K, ) ).
It is also useful to note the easily checked relation

a —2b -2c=t2.

The integral A» can be evaluated exactly, ""yielding

(3.12)

(3.13)

(3.14)

(3.16)

(3.i6)

(3.17)

(3.18)

A, o= ' ' costi(a —2b costi, —2ccosp, )
' =Avo-

p 71 0 7T

(3.19)
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where Ao(8, «) is Heuman's lambda function~~ with
modukus «given by (3.14) and argument

A„=A~+ t'(t'+ 4b+ 4c)A~/(8bc)

—[(t '+ 4b)(t '+ 4c)]~'E(«}/(4wbc), (3.23)
8 = sin '[(t'+4e)/(t'+ 4b+ 4c)) ~z. (3.20)

Similarly we find

A„=A~- [1-A,(8, «)]/2c, (3.21)

with argument now given by

8 =sin '[(tz+4b)/(tz+4b+4c}]'/z. (3.22)

Finally, the integral Aii can be evaluated"" as

where E(«) is the complete elliptic integral of the
second kind. These results, with (3.4)-(3.V),
show that all these matrix elements [0, 0] «„ can
be expressed in terms of elliptic integrals; the
formulas are tabulated in Table I. It follows that
the incremental free energy f,(T) due to a single
hole can also be written in terms of elliptic in-
tegrals. In particular, in the symmetric case
J', =Z, =bed, the free energy f, (T) reduces to
the simple form

f,(T) = ln [ ~z (1+z')' ——,
' —(1+z')'E(«)/4« —(1+z')«' K(«)/w

+ (2z'/z'«') [E(«) + 2«' E(«)K(«) —«"K(«}]j,
in which the Heuman lambda functions cancel out, while the conjugate modulus is

«' = (1 —«)~~ = 1 —8z /(1+zz)z, z =tanhIC

(3.24)

(3.25)

This result can also be obtained independently by calculating the ratio Z /Z, where Z is the partition
function of a Ising system with a singie hole present at the origin"; the incremental free energy may also
be expressed quite simply in terms of two-spin and four-spin correlation functions of the perfect Ising
1.attlce."

In the limit T-T,', (t-0, «-1), we have"

E(«)= knI 4/«'[, E(«) = 1+ z «" knl 4/«'I,

and"

A, (P, «) = 2P/z+ (2/v) sknP cosP(l —«) kn( 4/«'
~
.

Hence the free energy f,(T}due to a single hoke, in the general case, has the form

f,(T)=In[(1 —z~~)(1 —z,')]+in( Do —D,[t ln[ t ) +D, ] +D, t ln( t (
+0(t' ln( t ))[,

as T-T„where the amplitudes D, (t ) (i =0, 1, 2, 3) are analytic functions of t, not vanishing at

(3.26)

(3.27)

(3.28)

TABLE L Expressions for the matrix elements [0, 0]&„.

i(~ z22) ~
c 2( —zi) ~6bc/(t2+4b)(t2+4c) t(;

2 y K2

6)=tan '[(t2+4c}/4b]«2, 0=tan '[(t +4b}/4c]«2, E=E(K), I:=E'(K)

[0, 0]" = 2ttt(kg+ z, k
—z,z,tkt'+ 4b + 4ck/4bc}

z[(t2+4b)(t +4c)] /

z,z2[(t2+ 4b)(t + 4c) ] ~ E z f{$+ z ) [ $ Ap(p K)]
2xbc 2b

2ttt( {1+ z() —z)z2t(t2+ 4b + 4c) /4bc}
7t [(t +4b)(t +4c))«

zfz2[(t +4b){t + 4c)] ~ E z2(& + zi2) [ y —p (0, K)]
2m.bc 2c

2tlC(l —z p2t(t'+ 45 + 4c) /abc} z, [1—A, (g, «kl[0, 0]~U= +
vr [(t'+4bI(t2+ 4c)]«2

2 ~ ~p(6)& I(:)] ziz2[(t2+4b)(t2+4c)]i/2@
2c 4~bc
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t =0 (T = T,'). They are listed in Table II.
Consequently, the incremental specific heat C, due to a single hole is (p = 1/kz T)

C (T)/k. =P. "f ("

in which

T ~i T -2 t T= —C ——1 —C ln ——1 —C ln —1 +O(1)
Tc - T T (3.29)

D,C0= -P, — ", C, =C0,
8P C &0C

'='( ):" '(-") "'H '"::—:;I
(3.30)

(3.31)

where the subscript c denotes values at T = T,'.

In the symmetric case (J, =J,), we may quote
the value for the incremental free energy at T,',

f,(T,') = In[M2 —1+ (6 —4~2(U ' —U 2)]

precisely similar to (3.4)-(3.7) hold for finite n
and m when 8, =8, =0, except that the double in-
tegrals A~, are to be replaced by the double sums
S~, (n, m). More explicitly, at 8, = ez = 0 we find

~ —0.716 0631,

and the values for the critical amplitudes,

[4 —(8 —4v2)/U] ln(v 2+ 1)
U[1+2(v2-1}(U ' —U ')]

(3.32)
[o o]zz = l o o]LL = [o, o]UU = I o, o]DD =o,

[o, o];,= -lo, o];,
(3.37)

= 0.773 8464,

Ci = CD=0.598 8383, CR 0.388 0765.

B. Shift in the critical temperature for finite n, m

(3.33)

(3.34)

=(I —z )S —z, (1+z )S, —2z,z,S„,
(3.38)

]UD [ 1 ]DU

=(I -z )S -z (1+z,)S —2z,z S, ,

When n and m are finite, it is clear from (3.1)
that the critical temperature is determined by
the condition at 8, = 8, =0, namely, it is a solution
of

(3.39)

where the superscript zero denotes the condition
8 =8 =0, and

[o, o]„',= —[o, o];„=[o, o]'„,= —[0, 0];„
Iy '(0, 0}+G(0,0)I =0, (3.35) ]IU [ I ]UL [ I ]LD I I ]DL

since, as in the perfect Ising model, this is the
only possible source of a singularity in the double
integral. Note, however, that this term must
also cancel the singularity in f,(T) at the unshifted
critical temperature of the perfect lattice. In
studying this equation the main task is the analysis
of the double sums

S„(m, n)

cos(2Ul p/m) cos(2Ukq /n)
4(2Ul /m, 2wk/n)

(3.36)

Now it is easy to check from (2.23) that equations

= S00 —Zihi0 —Z2$0i —ZiZ2Sii (3.40)

On using the reduction formula (3.2), the criti-
cal-point equation becomes

I y '(0, 0)+G(0, 0)I

=Oo 0]DL[0 0]UD-2([0 0]DU}')'=0 (3 41}

We are concerned with the study of the behavior
of the critical temperature for large m and n,
i.e., a low concentration of defects. Accordingly,
the double sums S~, (m, n) must be evaluated as-
ymptotically as m, n -~ in the limit t -0 (i.e.,
T-T, ). This task, which represents the hard
heart of the analysis, is undertaken in Appendix
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B. As might have been anticipated, the asymp-
totic results have, in part, a scaling form in
terms of the variables mt, nI, and the ratio

Specificall. y we find

n z,(l-z2) ~z n

m z,(l -z', )
(3.42)

Soo(m, n) =, +
b v, [In(mn)~'+P(mt, nt)]t mn 2vbcva

where +O(t'lnm, m z), (3.44)

m =m/b~~ =m/[z~(I -z2)]~2

n =n/c~' = n/[z, (l -z2)] ~z.
(3.43) where, with 7'=y/x, the scaling function is given

by

P(x, y)=vlxl '(cothllyl -2lyl '-~lyl)+vlyl '(coth lxl -2lxl '-+xl)
+«g Hxy+4~r 'I'+4+re')-' —(4~.-'tz+4~~bz)-~]

=1, k=1

+ [~z+ In(2/v) - -' »[(b+ c)'/bc] - -,' Inr+ 2F(r)],
in which C~=0.5572157 is Euler's constant, while

(3.45}

1
+Mt(e I)

,' in[ e, (ol i r)e, (oli ~)e,(ol t ~)]

+3 ln2 (3.46)

bc -v'a+, G(r)+O(t'Inm, m '),

where the e, (vl i r) are the elliptic e functions.
It is not difficult to see that P(x, y) is analytic
for all real x and Y.

From Appendix B we obtain the further results
u'2

S„{m,n) = S„(m, n) —ta—n-'—

G(r ')+ r'G(T) =-,'r

corresponding to interchange of m and n (or m

and n)
On using these asymptotic results for the

S~, (m, n) in (3.38)-(3.40) we obtain the asymptotic
forms of the matrix elements [0, 0]o~„. The cri-
tical-point equation, which determines the shift
in critical temperature from t =0 to t, (m, n},
then becomes

Do+ 2vD, (bc) 2tS~(m, n)+E, /mn t'S2 (m, n-)

+(E,/mn)tS (m, n)=0, (3.52)

1
S„(m, n) =S„(m, n) ——tan '

(3.4'I )

bc)-22+, G(T-')+O(t'lnm, m-'),

where the function G(r) is defined by

(3.49)

(3.43)

(bc) ~'
S„(m, n} = SOD(m, n) —,,v~ + —,G(T)

n(bcj ' rn'

bc)-v'2+, G(v ')+O(t'inm, m '),

in which D,(t }and D,(t ) are given in Table II,
while E, and E2, which depend on m/n, are param-
eters listed in Table III. The neglected corrections
to this equation are of orders t ln(mn) and
(mn) 2ln(mn). It is appropriate to recall at this
point that (mn) ' is simply the concent ation, x,
of defects (holes, in this case).

Now to solve this equation we must first esti-
mate t,(m, n) in leading order. Initially, we might
suspect that t, is of order 1/m (with r~n/m of
order unity). However, on this assumption the
equation reduces to

Do+ 2 z(bc) 2D, t S~(t, m, n) + O(t z in m n) = 0.

(3.53)

and hence satisfies the symmetry relation

(3.50)
But when I;,m is of the order of unity, it follows
from (3.45) that S~ is also of order unity, so that
the equation is, in. fact, inconsistent. Thus we
assume and confirm directly that t, is of order
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TABLE II. Critical amplitudes for a single defect.

4 b 1/2 4 c i/2
u= —tan ' —,u'= —tan ' — =2 —u, A(t)=c '

7[ b ' 27[.(bc) &/'~

Vacancy (a)
Do(t) = {Tz&(1+ z2)b u+ 4z&z2A(t)} {Tz2(1+z&)c u'+ 4z&z2 A(t)}

—2{~~z&b ~u + +z2c ~u'+ 2z &z& A(t)}'

D&(t) =A(t){(1+z2)[Tz2(1+z&)u'+4z&z&A(t)]+(1+z&) [&z&(1+z )b2u+4z&z2A(t)]
—4 f

~
z&b 'u+ 4z&c 'u'+ 2z&z2A(t)] }

D2(t) =
2

ln[(b + c) /64bc]

D3(t) = 2A(t) z&z&[ z&z&(b + c) —bc] —
&

A(t)(bc) [ 2zp& + z&(c /b)u + z&(b /c)u' )

Straight-bond defect (d)
Do(t) ={z& —Tz& u+&z&z&c u} +-(1+z2) b u —16z2A(t)

D((t) =A(t)(1+z2){2z) —-[2(1—z)) —(1+z[)(z( —z()]b u+z)z2c u' —4z)(z( +z()A(t)}

1/mn, i.e. , proportional in leading order to the
concentration x, in which case t $00(t, m, n) is
of order unity. Accordingly, let us put

and expand Do(t ) and D, (t ) as

Do(t ) =Do, + t Do, + O(t'),

D, (t)/A(t) =D„/A, +t(D, /A),'+O(t'),
(3.55)

(3.56)

A(t ) = 1/2v(bc)~' (3.54} so that (3.52) becomes

(t, mn) '[ D„ /A, + (E, —1)/n m] + D + [E,+ (D, /A),'] /n m

+ t, [ Do, + z D„[n(n m) + D„PO(r)] + O(n zm z [nn m) = 0, (3.57)

where Po(r) is the limit of P(x, y) defined in (3.45) as t =x/m =y/n approaches zero with fixed m and n

We may now try a solution of the form

t, (m, n)=-u(nm) '[1+ v(nm) 'ln(nm)+w(nm) '+v, (nm) '[nz(nm}]. (3.58)

On substituting this trial form, dropping terms of the order (nm) [n(nm), and comparing the remaining
coefficients, we obtain, finally,

(3.59}

and

w(r) = (A, /D«)[E, (r) —1] —Do,'[E,(r) + (D, /A),']

+ (D„/A, )D~ /Duo, + (D,', /A, Dz~ )Po(r), r =n/m. (3.60)

t =r, [(T/To) —1]+r,(T/To) —1]z,

where

(3.61)

Since the variable t of (3.15) may be put in the
form

has the alternative form

T, (x) = T, [ 1 —Q,x —Q,x' inx ' —Q, (r)xz

—Q,x' in'x+O(x' inx)J,

in which

(3.63)

(3.62)

Eq. (3.58) for the shift in critical temperature

Q, = u/r, = (r,D„/Do, )/(r ',A, ),

Qz = Q, v, = Q, (r,D« /D~ )'/2(r ', A, ),

@4 @1 1&

(3.64)

(3.65)
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TABLE III. Constants

1-z22 N 4u= —tan n, u'=2 —u,
2z2. ' m'

m' 2ml

Ef ———[ (1+z2c)(1 —z2c) u+ & ] [z2c G(T ) + + TG(

—[(1+z2,)(sz2, ) ~u'+m ] [(1+z2,)(l —z2,) '7G(7)+ eT 'G(T )]

+[(1—z2c) u+ &(1+z2c) z2cu'+ 27r] 2(1+z2c)z c [& TG(T) +

CENT

G(T )]

(1+z2c) [z2 T G(T )+ n 'TG(T)] —2(1+z2c) [(1+z2c)(1— 2c) TG( )+ « 'G(T ')l

+ 2(1+z2c)z2c [ n TG(T) + TG(T)]

Z, = {2'--,' -,z'u +-,
' nu'}[( 1+z„)gz„.-) 'ro(r) nr -'G(r ')]

+ [--"(I+z2~~)2(l —z~~) "rQ(r)+(2/z)(1+z2~)2(1 —z~~) 2[ n7 ~C(7 ~)+ n ~rG(r)] }
——(1+ 2 )(1— 2c) u —(1+z2 )(1—z2 )

Q, (T) =Q, [w(7)+sr, /r', ]. (3.66)

1 —(2 —v 2)/v
&,[1+2(W2 —1)(v —I)/w']

It can be seen from (2.20) that the specific heat
for the Ising lattice without defects or impurities
behaves as

9, = 4&', Q', /v=0. 947 4O13,

Q, =1.147 211.

(3.69)

(3.7o)
2C'(T)=r', f.f.(T)

=r,'A„= -r', A Inl t I, (3.6V)

On comparing the results for A„Q„and Q, with
the result (3.30) for the amplitude Co and C, for
the incremental. specific heat due to a single hole,
we find the relations

where A is the double integral given by (3.12)
and (3.13), and A(t ) is given by (3.54). This shows

that the amplitude A, for the specific heat C,(T)
of the perfect lattice is given by Q, (3)= —0.334 6556.

IV. BOND DEFECTS

(3.'72)

In this section we shall show that the incremen-
tal free energy and the shift in the critical tem-
perature, due to other kinds of bond defects (Fig.
2), can be obtained easily by specializing the basic
results of Sec. II for the general point defect
shown in Fig. 1(b) with couplings 4'„Zf, Jz, Jz'.

We also quote the special values

Q, (I)= —1.274 04V, Q, (1.5) = —1.165 338, (3.71)

Q, (2) = —0.942 1229,

Qz(2. 5) = —0.65'I 4839,

C =A Q, and CQ =24 Q, (3.68) A. Single-bond defect(b): J", =J, , J~ = J2 = J2

which are in precise accord with the expectations
of the scaling theory. '3 In the symmetric case
J, =Z„we have explicitly ff', = —,

'
In(W2+ 1) and

It is obvious from (2.28) that the free energy
of the system with single-horizontal-bond defects
of strength J,' is

21I' dg 2 7I'
d6Jf(T)=f (0)T(+ms) '[In(coshK,'/coshK, )+Inlz', —z, l] + 2' InDet[y, '+G~J, (4.1)

where f,(T) is the free energy of the perfect lattice given by (2.20), while the determinant of the matrix
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y, "+G, , for single-bond defects, can be see from (2.24) to be simply of size 2x 2.
In the l.imit n, m -~ we find

I y,-'+G,
I =&[0, 1],",-(z,'-z, )-']'.

From the definition (2.25), it is easy to show that the matrix element [0, 1]„"z has the form

[O, 1];,=(1+z,)tA +(l-z,')(A„-A )-2z,z,{A„-A ).

(4.2)

(4.3)

Using the results of (3.13), (3.20), and (3.21) for the double integrals A~, A», and A», we find that the
incremental free energy due to a single-bond defect in an infinite lattice is

f,'(T) = ln(coshK, '/coshK, ) + in
I z,' —z, I

+ )nl 2(l+z, )tK(x)/v[(t'+45)(t'+4c)] —(2z, ) '[1—Ao(&, x)]

+ z, (], —z,') '[1—A (6, x)] —(z,' —z, ) 'I, (4.4)

K(K), A (g, ii), and A (S, x) are the elliptic integral and Heuman's lambda functions introduced after
(3.13), (3.20), and (3.22). This result can again be checked by «rec«alen»tion for a s»gle bond
As T-T', we find

f ', (T}= in[ —(1 + z )A (t )t E «I t I + in 6 + —' in [(5 + c)/5 c]}+ 8(t ) + O(t ' ln I t I )I,
where

(4.5)

(4.6)

and A(t ) is given by (3.54). Consequently, the incremental specific heat is

C'„(T) = —C', /[(T/T,') —1] —C,'[ lnl (T/T ,') —1 I]'+ O(lnl t I), (4.7)

C~ =r, (l+zz, )A, /8, , C, = (Co),

in which the subscripts c denote values at T = T, , while r, is defined by (3.62).
When n and m are finite, we find that the critical point is determined by

I yi'(0, 0)+Gi, (o, o)I =([0, 1]zr. —(z,' —z, ) ')'
= [(1+z2}t500+(1—z2)(~io —Sm) —2ziz2(Soi —SM) —(zi —zi} ')'=o.

On substituting (3.44), (3.47), and (3.48) for the double sums S~, (m, n), this equation becomes

"+8,+ 8, + ' +tA, (1+z„)[zin(nm)+Pa(r}]+tB,'+0» =0,
ln(n m)

tmn ' nm 3 dh n'm'

(4 6)

(4.9)

(4.10)

where 8, and 8,' are the first two expansion coefficients of the function B(t ) defined in (4.6), namely,

8(t)-8, +t8,' +

while

8 (n/m) = (zl+ z, ) z,'(n/m)G(n jm) —(m/n)G(m/n),

where G(T) is defined in (3.50). Consequently, the shifted critical temperature has the form

T', {x)= T', [1—Q", x —Q', x' lnx ' —Q,'(r)x' —Q", x' ln'x+O(x' lnx}],

with amplitudes

0', = (1+z., )/8. r„O'.= 0,'~. (1+z..)'/28'. , 0', = 2(Q.')'0,',

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

in which Po(r) is defined as before, by letting t =x/m =y/n-0 in (3.45) with fixed m and n Evidentl. y,
the variation of the critical temperature T', (x) for single-bond defects has the same form as for holes.
Moreover, its amplitudes Q,

' and Q,
' satisfy the corresponding scaling relations '
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C =Q, A and C",Q,'=240@2,

with A~=r', A, . In a symmetric lattice (4, =82 =J), we find

Q,'(4,') =(v 2 —l-z,')/K, (2 —v 2)(W2+I+z,'), Q,'(8,') =4K', (Q",}'/v,

Q,'(4'„n/m) = K, (Q,')' [[W2+ (ev 2 —4)z,' —(4+ v 2)z,"—2&2(l —z,")(J,'/4 )][1—2z,' —z,"] '

+ 4/2[ g —(n/m)G(n/m)] + 2'(v 2 —1)'} —{Q',)'+ 2Q,' Pg(T)

(4.16)

(4.18)

This shows that Q,'(J",)&0 for 4,'&4 and Q, (Z,')&0 for
Hence the shifted critical temperature

T, (x), for a finite concentration x of altered bonds
with bond strength J', &J, is larger than the cri-
tical. temperature T, of the pure lattice, but is
smaller for J,'&J, in agreement with physical
intuition. The numerical. values for J,' =0 are

Q', {0)=(~2-1)/K, W2=0. 664629o,

Q ( ) = —0.015 8587,

Q~(~, 1)= —0.785 1338,

Q,'(, 2) = —1.11153O,

Q,'(~, 3)= —1.446 455.

(4 23)

(4.24)

Finally, in the opposite, antiferromagnetic limit

Q', (0) = 4K', [ Q,'(0)]'/«=0. 072 5952,

Q~4(0) —0.015 8581,

Q', (0, 1)= —0.098 3296,

Q,'(o, 2) = —o.374 4oe9,

Q'(0, 3)= —0.616 1616.

(4.19)

(4.20)

(4.21)

In the extreme ferromagnetic limit, J', =~, we
find likewise

Q,'(-~) =1/(2 —v 2)K, =3.873742,

Q', (-~) =14.3'l3 49,

Q', (-~)= 106.6654,

Q'(- ~, 1)= —33.451 54,

Q,'(, 2) = —38.703 26,

Q,'(- ~, 3}= —39.274 71.

B. Bent-bond defects (c): Jl = J2 = 0, JI' =J

(4.26)

(4.27)

Q', (~)= —0.664 6290,

Q', (~)= —0.072 5952, (4.22)
The free energy given by (2.28) for bent, missing

double-bond defects, as illustrated in Fig. 2(c}, is

f (T) =f,(T) —(n m) ' ln(coshK, coshK,

(4.28)
" d6, d&2

0 0

where the determinant ly, '+G, l can be seen from (2.24) to be of size 4X4. It is shown by Ferdinand,
in Appendix A, that this determinant can be reduced to a 2&2 determinant, and from (A.21) one finds

(z,z, ) l y, ' + G, l
= [ 0, 0] [0, 0] —[0, 0] [ 0, 0] (4.29)

Hence, it can be seen from (3.4) and (3.7) that the incremental free energy f;(T) due to a single bent-bond

defect in an infinite lattice is

ff(T) = —ln(coshK, coshK, )+ lnl[0, 0]Uil

= —ln(cos hK, coshK2) + ln f 2t K(«) [ 1 —z,z2t (t 2+ 4b + 4c)/ebc j /s [{t~ + 4b }(t'+ 4c)]~'

+ , zwz'(bc) '« 'E+z, (2b} '[l-A, (8, «)]+z,(2c) '[I-A, (81 «)J}

= Inl A (t )t {ln I
I

I
+»8 + -' in[(b + &}/b &]j + &(t ) + 0(t ' » I t I)], (4.30}

where K(«), &(«), A,(8, «), and A, (8, «) are the
elliptic integrals and the Heuman's lambda func-
tions introduced in Sec. III, while A(t) is given
in (3.54) and

(4 31)
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Therefore, the incremental specific heat is

QC T 3
C', (T) = —C,' ln ——1 + O(ln i t i),

C C

in which G(v) is defined in (3.50). Hence we find
the result

T; (x) = T, [ 1, —Q; x —go x Inx ~ —Qo (n/m)x

with the ampl. itudes

—pox inox+O(x lnx)], (4.38)

Co =r,A, /B, , C; =(C')o:

in which the subscript c again denote values
evaluated at T = T, .

When n, m are finite, using (4.29), (3.3V), and
(3.40) we find that the critical. temperature is
determined by

1, A, , 2(Qo)'B, 0;=
2 'Bo, 0'=,', (439)

VJ

gc qc 4 ~ 2qc ~ + 1 2

(4.40)

[o 0]5L =taboo-zl(810-~oo)-zo( ol- oo}

—ziz. (5ii —3oo) = o. (4.34)
@x = Co/Ao @o = o Ao(C)' = o CxC/Ao (4.41)

which again satisfy the predicted scaling relations

On substituting (3.44) and (3.4V)-(3.49) for the
double sums So, (m, n), this equation reduces to

(tmn) '+B, +(nm) 'E4+I [ —,'A, ln(nm)

The numerical. values for a symmetric lattice
(4, =4, ) are

q; = 1/Z, 2W2[-,'+ (W2 —1)/x] =1.26 V 9"I3, (4.42)

+A, Po(T)+B,'] +O[n 'm 'ln(nm)] =0,

vrhere, simply,

lvhlle

(4.35)

(4.36)

(4.3 "I)

Q'=0 506 1820 Q' —0 4041414

Q;(1)= —0.6V9962V, Q;(2)= —0.5045234,

Q;(3)——0.1V9 Vl 1l.

C. Straight-bond defects (d): J"
, = Jl =0, J2 = J2 =J2

Finally, we consider the case of a straight
double-bond defect as illustrated in Fig. 2(d}. The
free energy of (2.28) can be written as a double
integral over the logarithm of a 4~4 determinant,
namely,

"
d6)~ 2

d6)~f(T) =f (To)+ lnsinh'K, + ' ' ln(y-&+G
~nm 2mn, 2~ (4.45)

In the limit n, m ~, the matrix y~'+G~ becomes antisymmetric and we find that the incremental free
energy due to a singl. e straight-bond defect is

f,'(T) =2 lnsinhK, +in((z, '+ [0, l]z~)' —[0, 0]77z, [0, 2]nial, (4.46)

where [ Q Q] is given by (3.5) and [ Q 1]&I by (4.3) while we have

[0, 2]zz =(1+z,)tA„+(1-z,')(A„-Aoo)-z, (1+zo)(Aio-Aoo) -2zizo(Aii-Aoo). (4.4V)

It ls easy to verify the rel.ation

aA, o
—b(Aoo+A ~) —2cA„=0. (4.48)

This shows that [0, 2)z~ can also be written in terms of the double integrals already calculated in Sec.
III. In fact, we find

[0, 2]s~ = 2tÃ[(1+ ) zt +' ztz, (t' 4b+4 +)(4cb z)'c]/w[(t'+4b)(t'+4c)]~'

—(1+z',}(2z,b) '[1-Ao(8, «)]+2z,z, '« 'B/z(bc)~'
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As T-To (t-0), the incremental free energy thus varies according to

f,'(T) = in[ 3 (t }—D, (t) t I Ln[ t
) + in8+ z L n[(b+ c)/5 c]) + O(t ' Ln) t ))(, (4.50)

where the amplitudes D,(t ) and D, (t) are again
analytic functions of t and are listed in Table II.
The incremental specific heat due to a isolated
straight-double-bond defect is

C4 T 2

C,'(T) = T,T,
'

1
- C', ln —,—I + O( Ln( t ()

(4.51)

in which the amplitudes are

(4.52}

When n and m are finite, we can, by using a
relation similar to (4.48), namely,

[ y~'(0, 0)+ G~ (0, 0)l = 0

reduces to

(4.54)

D,(t)+D, (t)A(t) 'tS~+(tn'm') 'E,

+(nm) '8, +O(n 'm 'inn) =0, (4.55)

where'(t) is defined in (3.54), D,(t) and 3,(t)
listed in Table 11, E, =—0, and &,(n/m) given in

TabLe III. Consequently, we obtain for T, (x) a
result of the same form as before butwith ampli-
tudes

aS,o —b(Soo+ Sao) —2cS„=0,

show that the critical equation

(4.53) Q-D A- r ~ Q-D ~ r ~
~-

QQc c ], Qc c 1

(4.57}

in which the prime denotes the derivative with
respect to t and the subscript e denotes values
at T = T'„P,(7) is defined as before by letting
t =x/m =y/I Oin -(3.45) with fixed m and n, and

r„r, are defined in (3.62). The appropriate
scaling relations are again satisfied.

In a symmetric lattice (4, =J2 =Z), we find the
numer ical vat.ues

I -2v r - I)/v
[v 2 —4(Wa- I)/x']If

Q =0.367 9879, Q", =0.2372154,

Q,'(1)= —1.169 508,

Q~(2) ~ —1.629 508,

Q~(3) = —1.955 392.

(4.58)

(4.59)

(4.60)

&. DISCUSSION

We may summarize our analysis of the shift
in critical. temperature produced by an array of
point defects on an m xn grid by the rather simple
expression

T, (», ~) = T', [ 1 —(C,/A, )x ——,'(C', /A', )x' inx '

—Q, (7)x' ——,'(Co/A', )x' Ln~x+ O(x' lnx)],

(5.1)

where x=1/nmis the density of defects (on a per
site basis) and Y=n/m. The amplitudes Ao and
CQ are those of the leading critical singularities

x=2x for vacancies (s),
=-,'x for missing single bonds (5),

=x for missing double bonds (c) and (d).

(5.2)

The corresponding reductions in T, according
to our asymptotic formula (5.1) are plotted versus

in the bulk specific heat and in the incremental
specific heat due to a single isolated defect [see
(1.2) and (1.3)]. To derive this expression we
have observed that C, =C2Q, which follows from
(3.30), (4.8), (4.33), and (4.52).22 The form (5.1)
is consistent with a general scaling theory" for
the effect of point defects; thus although it has
been checked explicitly only for the defects il-
lustrated in Fig. 2, we expect it to be true for
all bounded defects in the limit of low density. A
further check on the scaling theory is provided
in the following paper" where the change in the
amplitude of the shifted logarithmic specific-heat
singularity is calculated.

It is instructive to examine the results for the
various defects numerically; this indeed reveals
that the asymptotic form (5.1) is surprisingly
accurate even for concentrations x so large that
the mean defect spacing is only two lattice
spacings' To compare the different defects in
the case where the modified interactions are all.
zero, corresponding to missing bonds, it is useful
to to introduce x, the fraction of missing bonds
(per bond) via the definition



13 INHOMOGENEOUS ISING MODE LS. III. REGULARLY SPACED DE FECTS 1253

x in Fig. 3, for a symmetric lattice (4, =J,) with

a square grid of defects (m=n, 7 = 1). In this
normalization the tighter groupings of missing
bonds yield higher critical temperatures, as is
to be expected. The close similarity of the single-
bond and bent-double-bond defects [(5) and(c)]
is, however, rather surprising. We may note
that for missing single bonds we find [ T,(x)/T', ]—1
= 2Q,'x =1.329258x, in leading order; this agrees
with Harris's result for a random system of miss-
ing bonds. Since the coefficient of x is indePen-
de&~ of the distribution ratio 7 it is quite reason-
able that the random- and ordered-system shifts
in T, should agxee in first order.

The dependence of T, (x, T) on the distribution
ratio for vacancies is shown in Fig. 4, which
displays the deviation from the leading linear
form To(1 —Q,x). The critical-temperature de-
pression is smallest for a square defect array.
It is remarkable, however, that even for a mean
spacing as small as 3& lattice constants, the cri-
tical point varies over only 0.8' as the distri-
bution ratio incx'eases up to 3:1.

By symmetry we have T, (x, v) = T, (x, ~ ') for

vacancies and bent-bond defects. However, this
is not the case for the oriented, anisotropic de-
fects (5) and (d), as can be seen from Fig. 5. For
single-bond defects it is clear that the lattice
decomposes into disconnected vertical strips of
finite width mwhen & =1. For such configurations
one must have T, =-0; the same argument appl. ies
to straight-double-bond defects when n =1. These
observations provide an understanding of why
the critical temperatures at fixed x fall rapidly
when r (=1/m) decreases, as evident in Fig. 5.
%e may note in passing that bent double bonds
(c) with m or n equal to unity also yield T, =-0.

For vacancies, however, the lowest values m
= n = 2, x= —,

' leave the lattice two dimensional and
hence with a finite T, . [By contrast a ymgdom
distribution of vacancies at a density exceeding
the percolation density P, (~0.55) disconnects
the lattice into finite pieces with probability one
and hence yields T, (x) -=0 for x& p, .]

Finally, to demonstrate the accuracy of Lhe

asymptotic expression for T, (x) at finite x we
examine the values of T, for various small finite
values of m and n (which leave the lattice two-
dimensionally connected). Consider first single-

3x4
4&4 2x6 3' 2x4 2&3 2x2

0.8

0.95—

0.6

0.4

0.9

0.85

0
0 0.4 0.6

missing bond fraction x

I

0.8

FIG. 3. Shift in cx'itical temperature of a symmetric
lattice (4& = 42) pxoduced by vacancies and missing-
bond defects distributed on a regular m x n array vs
the missing-bond fraction ~ 1/mn, according to the
asymptotic forxnula (5.1).

FIG. 4. Shift in critical texnperature vs concentration
& produced by vacancies on m x n array for different
values of 7'= n /ni. Note that the 7'-independent linear
shift has been divided out.
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0.8

T, (x)
TO

C

0.6

J L

0.4

0.1 0.2 0.3

FIG. 5. Variation of critical temperature with dis-
tribution ratio T= n/m for missing single-bond defects
(b) (solid lines) and straight-double-bond defects (d)
(dashed curves) .

bond defects (5) and straight-double-bond defects
(d), with m=1 and 2, respectively, but n arbitrary.
As can be seen from Fig. 6, these yield the same
configuration of missing bonds so that T,(m=1, n)
=—T~ (m=2, n). Furthermore, by using the decora-
tion technique" to remove the sites adjacent to
the missing bonds, this lattice structure can be
reduced to a layered lattice. ' The critical tern-
peratures of arbitrary layered Ising models can

FIG. 6. A lattice with single-bond defects (b) on a
grid with m =1 or, equivalently, double-bond defects
(d) on a grid with m =2.

(1-z,)/(1+z, ) =z,"~'" " (5.3)

The exact critical temperatures following by
solution of these equations for n =2-6 are dis-
played in Table IV. Also listed in the table are
the percentage deviations from the exact results
obtained by using the asymptotic formula (5.1)
(with appropriate m and n), both retaining the
term of order x' in'', and truncating the expan-
sion at order x'. In the worst case the deviation

be found exactly. '" In this way the critical equa-
tions are seen to be

TABLE IV. Exact values of T,(x, T)/T, in a symmetric lattice with w=&/m for single-
missing-bond (b) and straight, double-missing-bond (d) defects, compared with the asym-
totic expansion (1.4) truncated at 0(x ln x) and 0(x ).

Exact

T,(x, &)/&,

(b) m =1, x =2x
Percentage deviation

O(x~ ln x) 0(x2)

(d) m=2 X=X
Percentage deviation

&(x ln x) 0(x )

0.25
0.166
0 ~ 125
0.1
0.083

0.723 1749
0.822 8277
0.869 4034
0.896 5256
0.914 3005

3 ~ 399
1.765
1.266
0.989
0.817

3.531
1.851
1.321
1.026
0.842

3.527
0.592

-0.071
-0.271
-0.335

4.512
1 ~ 021
0 ~ 160

-0.130
-0.242
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TABLE V. Critical-point equations for vacancies at
spacings m x n [from Ferdinand (unpublished)].
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(1 —z2) = zg(1+ z2)
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APPENDIX A: REDUCTION OF THE GREEN'S-FUNCTION

DETERMINANTS

is only a few percent and, as x decreases to 0.1,
this error drops rapidly below 1%. (The expres-
sion for double-bond defects gives better agree-
ment, presumably because x is 1/2n in that case
rather than 1/n. }

The decoration technique can also be used easily
to find the exact T, for vacancies on a 2 & 2 grid.
For larger values of (m, n) the critical tempera-
ture can, in principle, be found from the deter-
minantal equation

DetU(0, 0; T) =0, (6 4)

TABLE VI. Exact values of T,(x, 7')/T, in a symmetric
lattice with 7 =n/m for vacancies (&), compared with the
asymptotic expansion (1.4) truncated at O(x lnx) and
O(x').

mxn
Exact

T,(x, ~) /T,'
Percentage deviation

O(x lnx) O(x )

2x2
2x3
2X4
2X5

0.25
0.166
0.125
0.1

0.576 5997
0.711 7460
0.782 0642
0.824 8923

—0.816
—0.615
—0.436
-0.326

5.159
1.781
0.803
0.411

where U(6„9z; T} is the 4mn x 4mn matrix speci-
fied by (2.10). However, owing to the rapidly in-
creasing size of these determinants their alge-
braic reduction is somewhat tricky. Nevertheless,
with perseverence one may obtain the explicit cri-
tical-point equations displayed in Table V for
the 2x n sequence with n=2-5. The exact cri-
tical temperatures for vacancies following from
these equations are listed in Table VI. Also shown
in this table are the percentage deviations from
the exact values resulting from evaluation of (5.1)
correct to orders x' I.n'x and x', respectively. The
full expression is in error by less than 1% even
for m=n =2, which is the most concentrated case
realizablef The deviation drops below 3 jp as x
decreases to 0.1. Furthermore, the true values
are bracketed by the expressions truncated at
O(xz) and O(x In'x). The asymptotic expansion
is thus very satisfactory for x( 0.1.

In evaluating the thermodynamic properties of a
diagonal interface in a lattice and a diagonal lat-
tice edge, " it is found that the matrix elements
[l, k]i„satisfy many useful interrelationships.
These relationships will be demonstrated here.
Using them, we can also show that the determi-
nant iy '+GJ for holes, or for bent-bond defects
(Fig. 2), can be reduced in size by a factor of 2.

If g=1+z, e'~i and & =I +z, e'~2 [see (2.25)] it is
straightforward to verify the two identities

h+h +z, '[(h+h* —ghh*) —(2 —gh*)]e '
&

—(z,/z, )(2-gh)e' i ' 2=0,

(-2 + g*h)e'& +z, '[(2 - gh) + (g - g*)]

(A1)

-(.,/. ,)(g+g*-gg*h)e '~= 'z~(~„4,}, (A2)

where 6 is defined in (2.19). It can be seen from
the definition (2.25) of the matrix element [l, k]i„
that (Al) implies

[s, s']s„+z, '([s, s'+1]„z—[s, s'+1]„U)
—(z,/z, )[s + 1,s'+ 1]SU = 0,

and

[s+1,s'+1]Uz, —z, '([s, s'+1]Uz+[s, s'+1]sz)
+ (z, /z, )[s, s']„=0.

(A3)

(A4)

Likewise (A2) yields

[Sri S I )UR + zl ([Sl S ]UI [ ~
S ]UU}

+ (z, /z, )[s,s'-1]„=z, '6„.&,. ,
and

[s + 1, s ]UU
—z ([s, s ]UU + [s, ]sU)

+ (z, /z, )[s,s'- 1]„=z, '~, ,0~, ,U.

(A6)

(A6)

On taking the complex conjugate of both sides of
(Al) and (A2), we obtain two further equations,
each of which gives rise to two equations that re-
late the elements [l, k]&,„. Next, we can see from
the definition of g and h that we may interchange
z, and z„and P, and P„ in (Al) and (A2). The
resulting equations and their complex conjugates
give rise to eight further equations for [l, k]z„.
These 16 equations can be summarized by the four
matrix equations



z, '
Q(s, 8')

0 0

-z, /z, —z z 2

0
-1

Q(s, 8')
I

Z2
s 0 s10»-I-z

2

gr(8, 8')
-I
2

-I
s,0 s .0»

Z2

(A8)

z, /z, 0 z, /z,

where the Green's-function matrices are

Q(, )
[8 ~

8'- 1]z.s

[8, 8'-1]

[8, s + 1]sz

S»S

[8, 8'] vz

[8 —1,8']D~

[si 8 +1]sv [8+118 +1]ss

[ ~ss]zv [8+1&s ]ye

[8~8 ] vv [8+1 8 ]vv

[s lis ]sv [si 8 ]So

(Ao)

S» 8 gp [8+1 8 ]vn [8+1,8 ]vs [8+1~8 +1]vz

Q( I) [8 ~8 )Dv

[8 —1, S ]sv

8»S gg

8» 8 Rg)

[8 - 1, s —1]i,v [s, s - 1]Lp

aR

RR

[8, s —1]gs

[8,8 +1]sz

[8~8 +1]sz,

[8,s']„

(Al0)

whi1e the superscript T denotes the matrix transpose.
We can now use (AV) and (A8) to reduce the size of the determinant ~y '+G~ for holes. We find from

(2.23) and (2.24) that the BXB matrix y
' can be put in the form

where

V,
0 y

-U(e, ) o v

o U(e)
with U(8) =

and

0 z ' 0 0 0 z2 0 0

-I ZI

0 0

0 0

0 z

02

0 0

0 0

0 z, '
(A13)

0 0 -z,-I 0 0

From the definition (2.25} of the matrix elements [l, k]~1 we obtain the following relations:

[l, k am] „= "e[8l, ]k~„, [f +n, m] „=e*'8 [l, k]„„.

These equations together with (2.24) show that the 8x8 basic Green's-function matrix G has the form

(A14)
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Q(0, 0) Y
G =V* V,

X Q(0, 0)

where Q and Q are given by (A9) and (Alo), while

(A15)

[1,-1],„
[o, -1],„
[0, -1]
[o, -2]„
[-1,1]„
I.-l, o] ie
[-1,0]

[-2,o]„

[1,0]

[o, o]„
[o, o]„

[0, -1]

[0, 1]

[0, 0] ~~

[o, o]„
[-1,0]

[l,o]„
[o, o]„
[o,o]„

[0, -1]

[0,1]„„
[0,0].s
[o,o],„
[-1,0]

[o, 2]„
[0, 1]

[0, 1]

[-1,1]„

(A16}

(A17)

Note that the rows of X and Y are rows of either
Q(1, 0) or Q(0, -1) and either Q(0, 1) or Q(-1, 0),
respectively, while the columns of X and Y are
columns of either Q(0, -1) or Q(1, 0) and either
Q(-1, 0} or Q(0, 1), respectively. Since the rows
of columns of Q and Q satisfy the matrix equations
(Al} and (A8), we can apply row operations and

column operations to the determinant Iy '+GI to
reduce its size. To be specific, we first multiply
the matrix V(y '+G}V*from the right by a con-
stant matrix block diagonal matrix K = diag(~K, K,}
where

ly '+GI=IKrV(y '+G)V Kl

= (z,z2} 'I[0, 0]&„I, &, g =R, L, U, D,

(A19)

which completes the reduction.
Consider now the case of a bent-double-bond

defect [Fig. 2(c)] specified by J,' =J,"=0, J',"=J„
It is not hard to see that the matrix

(y, '+G, ) for the perpendicular missing bonds is a
submatrix of the matrix y '+G for holes. In fact,
from (2.24) we find

-1

01
-z /z, 0 0 1

y, ' +G, = U*(8)[y, ' +Q(0, 0)] U(8) .
Consequently, on using (A7} we have

Iy. '+ GI = IK,'[y '+Q(o, 0}]K, I

[o, o]„[o,o]„
=(z,z, ) '

t

[o,o]„[o,o]„

(A20)

(A21)

—z'1
-z, ' 0 1

., /z, OO1

(A18)

and then multiply it from the left by the transpose
matrix K~. This leads to

which is only a 2&2 determinant.

APPENDIX B: DOUBLE SUMS Spq (m~)

In analyzing the double sums S~, , we find that it
is possible to carry out one of the summations
exactly. Hence we first calculate a sum of the
form

2@i . 2mlI =n ' x —ycos -z sin
L=1 n n

with z'~ y'+ z'. The summand r(8) has the Fourier series

r(8) =r, +g (r, +r, )e"e,
l=1

whose coefficients can be easily found as

(a2)
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r, ~, ~

= (x' —y' —x') '+((y + iz)/fx+ (x' —y' —z')'+]}~'t .
Consequently, the suxn becomes'

I=r, +Q(r„,+r „,)
1=1

1
+ [x+(x' —y* —z')'~]"/(y —iz)"-1 [x+(x'- y'- z')'a]"/(y+iz)"-1

On using this result, me find

2ml 2', t
'

S =m-'gn-'g a-2b cos -2ccos
l=l %=i m 8

= —fX('")
' l, l r('"),

X(8) = ([a —2b cos8]*—4c')'+,

([a-Illcne8] X(8) "
2c 2c

Since we can write

cos (2wb/n)

a —2b cos(2nl/m) —2c cos(2 b/w)n

(owl
'

=-(2c) '+ a —2b cos(2wl/m)
2c[a —2b cos(2wl/m} —2c cos(2'/n}] '

S„=-(2c) '+(a/2c}S —{b/c}S„,

For j=1,2, 3 let us put

1 y
2

foal

J~ = — cos
1-I m

(lml)

2 pl 2gl

(lwl)

We shall calculate these sums individuaQy in the limit n, m -~ {fixed v ) as I-0,

SumS II

%e can ferrite

X(8) = (t'+45 sin'(2 8)}~(I'+4c+4b sin'(-,'8)] '*

in which t is given by (3.18); then we can make the decomposition

w'here the contributions in order of importance are
Sl

mL
I', = (2mc'I') 'Q t'+4b sin'—

I=I m
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--1
ml

&-'~
I,'=(4mb'~} 'g sin — c+b sin' — —c ~'

7 1 PP1 m

with the correction terms

st
R, =(2m) 'g t2+4b sin' — — 2b'~~sin — c +bsi n~ — —c '~'~

7
m m m

-1 2 ' 2
Nt

} l ~ 1/2 . 2 m 2
- -1/2 . 2 r ~- 1/2

R2=m g t +4b sin — 4c+4bsin2 —+t' — 4c+4bsin'
7=1 m m m

It is not hard to verify the bounds

~R, ~((t'/16b'2c~')m 'g csc —=O(t~lnm),
7rl

7=1 m

}
}}/}8+'-~ (t' /}I}'}*c } ' P t st. —= 0 —,t'}nnr) .vl t

7=1 m m '

By removing the leading term the sum I', can be written

gott'2] l -1
I; = (2mtc'~') '+ (mc'+) ' V' t '+4b sin' — — 2b+ sin-

m m

+[4m(bc)'~] ' Q csc nl

7=1 m

where [x] denotes the integer part of x. Ferdinand and Fisher" evaluate the last sum as

--'- (-.")= —:)I"~ (.-)I~--

(Big)

(820)

(821)

(822)

(823)

(824}

where CE is Euler's constant and the correction term follows by more careful analysis. It is easy to check
that we have

c ~ g [(2b' }tt) '- [t m +4bv P] ' t—O(t )
7= gm/2g

(825)

Consequently, the sum I,' becomes

t m2
};=(2 ~"*}-.}4.(}.}*}-2c,.2}.('")-}}„,,',", I.}},.0(t }, (825)

in which R,@,(x) is the remnant function" and

q-1/2 }- g --1 - 4y+2l 2--1/2 - 2yl/2 l
- -1|

R, = (mc't2) ' t'+4b sin — — 2b'~ sin — — t'+, +

[ttt jg - '',) 4 PIN /2]

2(2}, 4}* 4 ™ ' z C~C'( )
—

( }) + }}(2}ln} 4
' z L~t."( )

—
( }) (827)

where we have expanded in powers of t'. %e can use the same devices as developed by Ferdinand and
Fisher in deriving (824} to obtain

Pntt2) 3

m ' g csc' —— — =2m lnm+0(1),g m

l
(828)

(829)

These results show that the correction term R, is or order t2 lnm, or t'm'. The lemma (84) can be used2

to convert the sum I,' to an integral plus a correction, namely,

Ib d8 ([c+b sin'8] '' —c ~)+R =-[4s(bc)''] 'ln +R
5+c

4mb'+
0 sin8 4 (830)
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where

R4= ~2 ~ . cos 2ml & c+b sin 6)
4 2mb~', ~0 sin6)

Since

d&cos(2ml 8) —— z, sin8+O(sin 8)
1 b

7r i=1 ~D 2 c (B31)

l cos2Pss' sds= =, f cos2Pssl ' "sd8=0(P " '),
0 0

we conclude that R, is of the order m '. On combining (B26) and (B30), we establish the result

t 2m2
l, =(2 lc ') ' [4 (8 ) '] ' 2C ~ 2) (2™) )2-8™, —l

+
C(l )'-')

Now we write

(B32)

(B33}

n'l 2mlI, -I2=2 sin' —X = 2mb ' ' sin —c+b sin' — +R, +R, +R7,
1=1

where the correction terms, whose order of magnitude can be easil. y estimated, are

(B34)

R, = t2+4b sin2—
- -1/a

4c+ 4b sin' —+ t'
m

= O(t ' lnm}, (B36)

ltt
2 &L '

2
n'L . wl

R, =(2bm) ' 4c+4bsin —+t t'+4bsin — —2b sin —=O(t21nm),
=1 m m m

(B36)

wl ml
R7=(mb ') ' sin — 4c+4bsin' —+t' — 4c+4bsin2 — =O(t').

m m m
(B3V)

In analogy to (B30) and (B31), we find the sum in (B34) can be written as sums of integrals or as the sums
of certain Fourier coefficients of the summand,

1 d8sin8 1 " cos(2ml8}sin8
2mb [ c+ b sin 8] mb ',—,&0 ) C1,b ~' g(2)= —tan ' — —— —+ 0(t ' ln m, m '),
)tb c 27)(bc)~' m'

where 1'(2) = +)(~ is the Riemann t function.
Finally, we obtain

(B38)

I 1 2I2+I3 4 sin & b m sin c +b sin +Rs+R9+R10 (B39)

in which the correction terms are

t' wl
-v'2 —

&l
—-v'2

R = — sin2 — tm+4c+4b sin~ — t +4b sin' — =O(t ),8 bm 1 m m- m
(B40)

ml el ~2 . , ml ~2 . wl
R9=(bm) ' sin2 —t'+4c+4bsin' — I t'+4bsin' — —2b 2sin — =O(t'),

&=1 m m m m
(B41)

2 . 3 wl ml
- -V'2

R
b m m

sin~ — t +4c+4bsin' — — 4c+4bsin — =O(t ).
m m

On using (B4) and (B32), the sum in (B39) becomes an integral so that we obtain

(B42)
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de sin38I, —21,+&, = v, , ~, +O(m «)+8, +B«+It,+b 0 [ c + b sin26 j 8 9 10&

1/2 g|/2

n'b
tan ' — + &2 +O(t2, m «).c nb'

This completes the calculation of I„ I„and I3.

(B42)

SUms Jj

We shall first show that the denominator r(8) in these sums is exponentially small for & away from the

origin; hence the main contribution comes from the region where e is small. It is easily verified using
the form (B45) that the term inside the braces in r( 8) as given by (B8) satisfies the inequality

[a —25 cos&]/2c+X(8)/2c» 1. (B44)

Since cos& is a decreasing function of & for 0 ~ 6 ~ mv, we find that X(&), and hence the above expression
and r(8), are increasing functions of 8. Therefore for [~~]» I » t„we have

2vt 2vt, [t'+45 stn'(vi, /m)] X(2st, /m) "
m m 2c 2c

1/2 pi
'

n -
b 1/2

1+2 — sin ~ -1= exp 2ml, — ——1,m Q m
(B45)

for I, «m. If we choose I, such that 1 « l, «m, then r(2vt/m) ' is exponentially small for I » I,. Conse-
quently, we can write

Z, =[mX(O)r(O)]-'+ —g X r +O(e-'"),2 2m' 2@i

where Q is a positive constant. In the interval 0 ~6~2vt, /m«1, we expand r(8) ' and X(&) ' around the
origin to obtain

rrW ' ~nW' -', (vt)'Ie" t —1 + cosh — —I "-, — —, +
r(2wt ader

-'. (st)' W'

~(2,I~= ['("' W'
' "

m &W am«c ' "

I=,&, , m =,&, , and W = W(l) = [t'm'+4v'I']'~'. (B49)

In particular, for l = 0 we have W(0) =
( t ~m and

[mX(0)r(0)]-'=[2c"'m( t[]-'[e"~'~ - I]-'{I+O(t')).

These results give

(B5o)

J,=[2c'~ m~t~] [e"~'~ —1] '+(&c) '~ g I/W(I)[e"'t'&'~ —I]~II„,
1=1

with correction term

)-1/2 g [
ni'(I) jm I]-1 «( )

8m g

n w -' Iw' (~t)'a
+ cosh — —1 —, — —«+ O(e ').

m 48m 'c Sbm '8',

(B51)

(B52)

Since the two series

w(l)
" w(I)'

, , e"~&'&': I ', cosh[NW(t)/m] -1
converge, the correction term 8« is of the order m '.

Since we can write
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(B54)

the results (B45), (B47), and (B48) may be used to give

( wl)' rn-4
W(t)[ ( )/ 1]

The above sum may be approximated by its value at T = T, (t=0), and we find

2'J, -J2=-,'m 2(bc) )t2
Z 2„«e +o(t', m ', e o'k).~e"

(B55)

(B56)

Likewise we obtain

J, —2J, +J, = — sin' (B57)

These results for I& and J& can be used to evaluate the double sums S2,(m, n).

Double sum S«(nm)

From (B7), (B13), and (B14), we have

S«(n, m} = I, +2J„
and on substituting the result (B33) for I, and (B51) for J„we find

yn't'
2„(, )=I " IlII '(~ ~ „-l,

l
)'(4 (4 )'*I ' 2&, ~ » (2™)-2*.

—ln +8m 1 W/e "" —1
C l=1

(B58)

(B59)

It can be seen from the definition of Spp that this double sum is invariant under the transformation m —n,
b —c. We shall check that this property is indeed satisfied by our expression for Spp. The function
(e* —1) ' has the expansion in simple fractions"

(e* —1) '=x ' — +2x Q (x'+4w'k') '.
0=1

From this we find

(B60}

y(t) [e ( )4)tyy( l] 4 (2wt) k[e2()4))t 1]

1, , — 1, 1 t'rn'
cot (2ltlm) — ———'ltlm +—It I2 ltln ltlm 42, 8w 4 2 () 4w2

4 yp77) ) 4np jP 4yp7p ) 4n77 jp"

/=1 k=1 n ln n m

Now let us put

(B61)

(B62)

On substituting these two relations into the last term of (B59), we may express SOD as

1 1
S« —— , +,&2

[ln(mn)'t'+P(mt, nt)]+0(m ', t'lnm), (B63)

where
(5 2

P(x, y) = wx '[coth 2 y —2y ' —~2y] + w y '[coth x —2x ' —m] + Cz + ln ———,
' ln + —,

' ln —+ 2F
x

00 4)O x
8 PP . y ~ 4 l~ —4 'k ———''4 'l' ~ —4 'k' ).

/=1 tkl=l - y X y x

We may now rewrite (B62) as

(B64)
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OO

E(v}—~»vv= g t ' g e '"""=-ln Q (1-e '"'") .

Since the elliptic 8 functions 8, (v~iv) satisfy the relation"

(t*(DI( ) &'(0( ~) e (oi ~) rr ( *-,
}

*
- KT/4 LL2e K=1

we have

F(v) =-,' ln2 ——, in[8, (Ojiv) 8,(0[iv) 8,(0)iv)]

(B65)

(866)

(B67)

Qn using the 8-function identity"

8( 0~ tv) = v ' ' 8(0[ t v '),

we hence find

E(v)=E(v ')+ lnv.

Therefore we also have

2I" —+ ~ ln —=2E —+-,'ln—

(B68)

(B69)

(BVO}

and

tan '(b/c)'t'=-, 'v —tan '(c/b)'t'

[(a —2b)/2c]S„= S«+ t'SOJ2c

(B77)

=Soo+(2cmn) '+O(t'lnm) (B'l8)

[in which we have used (B63}],we can write
So, in the form

S,= S —(1/vc) tan '(c/b)'~
This establishes that P(x, y) =P(y, x} and that S„
is symmetric in ~, n as required. +(cmn) "[z —v'G(v)]+0(t'lnm, m '). (B79)

S„=Soo —(I, —I,) —2(J, —J,).
Hence (B38) and (B56) yield

0=~00-—tan '—

(B71)

Sums $0, , $, 0, S»

The sum S«, given by (B9), can be written

+ O( t 3 lnm, m ). (B80)

Finally, we can write S», given by (B12), as

On using the identity (B75) for G(v), we obtain1,c 't', t, G(v '}
S = S ——tan ' — + (bc}'t'

mc n'

+ (bc}'', + O(t ' lnm, m '),, , Gv

where v = I/m and

g(2) ~ 2vl
G(v)=

2
+ ~277

g ~ e

It is not difficult to see

(B72)

(B73)

g —4b bS„= S„+ —S„2c c M

——[(I,+ I, —2I,) + 2(J, +J, —2J,)]. (B81)
b

The results (B43), (B57), and (B80) yield

G(v) = ———~ ln(1-e "")= F(v) (B—74).
Thus we may differentiate both sides of (B69) to
obtain the relation

S„= -- S — tan '—
2c - 2mbc c

vG(v)+ v 'G(v ') = 2.

From (Bll) we then find

S,=-(2c) '+ S
2c

(BV5) + O(t'lnm, m ').

On using (B78) and (3.18) we find

1S„—S«+ (2c~)
w(bc)

(B82)

+ — —tan ' — —bc

+O(t lnm, m ~).

Because

———1 (bc} 't', +O(t'lnm, m-').b, , G(v)
c m'

(B83)

Thus the identity (B75) yields
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00 —,, i/2 +(bc) 2m

+(bc) '~' ', ' +O(t'lnm, m '),G(T ')
(B84)

where we recall that G(r) is defined through
(B74) and (B67) in terms of elliptic b functions.

APPENDIX C: CORRECTION TERM

In the limit n, m - ~, the total defect free energy
(2.26) behaves as the bulk free energy plus the
incremental free energy f,(T) due to a single iso-
lated defect, except for the correction term

e (T) = f( T) —f,(T) -(nm) 'f, (T), (Cl)

which will be shown to be of the order e ' "or
e '" ", where &,(T) and $,(T) are the bulk cor-
relation lengths in the vertical and horizontal
directions, ' respectively, while o = 2 for T & T,
but o =1 for T& 1;. The correlation lengths may,
as usual, be defined in terms of the asymptotic
decay of the pair correlations above T, according
to

(sooso } exp[™/&(T)],

(s„s„,) -exp[-.n(g, (T)],
(C2)

~[0, I],",—(s, -s,}-'~, (C3)

where the 2&&2 determinant is given by

le'+G~l =[0,0]ss[0, 0] is Qo, Ils-i

-(el-si) ')([0 -I]is+(s(-ei) '),

(C4)

in which the elements [l, k]~„are given by (2.25).
Let us define the double sums

where n, (&p, p ) is given by (2.19), while Q, and

P, run over the m, n values specified in (2.18).
We can then express the matrix elements [I, k]~&
as linear combination of the sums R~ q. By gener-
alizing the lemma of Barber and Fisher" we can
reexpress these sums in the form

as m, n- ~. For simplicity, we will consider
explicitly only single-bond defects [see Fig. 2(b)];
however, from our calculation, one can see that
the result is true for all defects.

From (4.1) we find the error to be

1 "d8, d8

0 0

Rp, = Ap+zm, q+y ~n e &' 2, C6
j= ~ j ~00

where A„, are the Fourier coefficients of
I/6(P„P, ) as defined by (3.3). The leading coeffi-
cient A~, clearly corresponds to the integral
approximation to R~, (m, n) valid as m, n-~. One
of the integrations defining A„, can now be car-
ried out explicitly to yield"

d8 cosx8
2w X(8)

[a —2b cos8+X(8)]
2c

in which X(8) is defined by (B7).
Since X(8) is analytic in the strip 0 & ~8~ &8, ,

where

(C7)

8, = 2 sinh)t (/2b' '= )t [/b' ', (C8)

we can use the argument of Barber and Fisher"
to show that A„, is exponentially small in r, name-
ly,

A, ,= O[exp(-[r t[/b")].
On comparing the integrand of (C7) with (B8),
(B45), and (B15), we can establish the bound

(C 9)

[a -2b cos8+X(8)] ~~ ft)
2c

1+ c

= exp, &, . (C10)
C

In combination with (C9), this yields the basic
estimate

A, , = 0[exp(-[rt( /b' ' —[st[/c' ')] (C11)

Therefore in leading order as m, n- ~ we have

R~, (m, n) =A~,

Q (Aq, , +A „,, ' }+~ ~ ~,
9 =El

(C12)
where the form of the remaining terms is easy to
see but will not, in fact, effect the final result.

Now we may substitute (C12) into (C4), using
the appropriate linear combinations to express
[0, 0]ss, etc. , and hence into (C3}. The logarithm
in (C3}may then be expanded for T t T, in powers
of A p Ap y Ay y p etc. , to yield a Four ier
series. Integration over 8, and 8, is trivial for
the terms independent of ~ and n which then
cancel exactly in (C4). The only nonvanishing
contributions come from products of the form
A pA p A p Ap etc. , which are at least
quadratic in the A „etc. Thus by the estimate
(Cll) the error term e(T) is of order
exp(-2m (t(/b't') or exp(-2n[t(/c't') for te0 This.
confirms our statement.
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