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Molecular-dynamics results simulating a canonical ensemble are presented and discussed for a two-
dimensional one-component displacement model for ferrodistortive and antiferrodistortive structural-phase
transitions. Our results include: (i) There is strong evidence that the system undergoes a continuous phase
transition, except at the displacive limit. (ii) For three different sets of model paramerters, the static critical
exponents are found to be model parameters independent and consistent with those of the two-dimensional
Ising model. (iii) The formation of clusters of locally ordered regions is demonstrated. (iv) Close to T, and at
the wave vector Ec where the order-parameter susceptibility diverges, we observe a central peak around @ = 0
in the dynamic form factor of the density fluctuations. (v) For wave vectors slightly away from Ec the central
peak splits into a double-peak structure, giving rise to a new excitation branch. (vi) The central peak and the
new excitation branch are traced back to traveling cluster waves and their lifetime. (vii) The cluster dynamics

is shown to dominate the critical slowing down.

I. INTRODUCTION

This paper is concerned with a two-dimensional
one-component displacement model for ferro-
distortive and antiferrodistortive structural-phase
transitions. It may also be viewed as a set of
harmonically coupled oscillators with quartic
anharmonic and identical single-particle poten-
tials. As the static properties are concerned,
it is equivalent to a one-component continuous-
spin model,! which reduces in a certain limit to
the Ising model.?

Until recently, the molecular-dynamics tech-
nique, representing a brute-force numerical
solution of the set of Newton equations associated
with a given Hamiltonian,3'* has not been applied
to systems which might undergo phase transitions.
Recently, we have undertaken such studies based
on a one-component displacement model. It is
the purpose of this paper to present and discuss
the numerical results of this study. Some pre-
liminary results have already been published else-
where.>”® The following main results are ob-
tained.

(i) There is strong evidence that the system
undergoes a continuous-phase transition, ex-
cept at the displacive 1imit, where the order
parameter vanishes already at zero temperature.

(ii) For three different sets of model param-
eters, the static critical exponents are found to
be model-parameter independent and consistent
with those of the two-dimensional Ising model.

(iii) The formation of clusters of locally or-
dered regions is demonstrated.

(iv) Close to T, and at the wave vector l?c where
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the order-parameter susceptibility diverges, we
observe a central peak around w =0 in the dy-
namic form factor of the density fluctuations. In
the displacive regime the central peak is dis-
tinct from the soft-mode doublet.

(v) For wave vectors slightly away from k. the
central peak may split into a double-peak struc-
ture giving rise to a new excitation branch. The
temperature at which this branch appears de-
pends on the model parameters.

(vi) The central peak and the new excitation
branch are traced back to traveling cluster waves
and their lifetime.

(vii) The cluster dynamics is shown to domi-
nate the critical slowing down.

The first main result is consistent with the ex-
act proof of Kunz and Payandeh,!® stating that an
ordered phase occurs up to and including some
region of the displacive regime. The second con-
firms universality. The third result cannot be
obtained by conventional phonon perturbation the-
ory. Infact, it is a consequence of the strong
nonlinearity. The fourth agrees with experiments.
This central-peak phenomenon, first observed in
SrTiO,, has received a variety of interpretations,
which remain open to question.!’ The fifth result
has not yet been observed in a real system. It is
consistent, however, with particular solutions of
the nonlinear equation of motion for the continuum
limit, as considered by Krumhansl and Schrief-
fer.? They represent traveling cluster waves.
The sixth agrees with the evidence that the cen-
tral peak and the new excitations are due to the
formation of clusters and their dynamics.

The one-component displacement model for
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ferrodistortive and antiferrodistortive structural -
phase transitions considered here, is described
in Sec. IL Here we also define the Ising and dis-
placive limit of this model as well as the order-
disorder and displacive regime. To which regime
the system belongs depends on the values of the
model parameters chosen. Moreover, we pre-
sent and discuss some exact relations and show
that the displacive limit represents an isolated
point where the critical exponents change discon-
tinuously.

The molecular-dynamics technique is described
in Sec. III, including the conventional microcanon-
ical procedure®* and a new constant-temperature
procedure, being more convenient to investigate
critical properties. Here we also discuss how the
static and dynamic properties can be calculated
by assuming that the system is ergodic. In Sec.
IV, we present some of our numerical results.
They include:

(a) Static and critical properties, such as the
temperature dependence of the order parameter,
of the order-parameter susceptibility of the spe-
cific heat, and of the local mean-square displace-
ment.

(b) The demonstration of the existence of clus-
ters and of the temperature dependence of the
cluster pattern.

(c) The temperature, wave-vector, and fre-
quency dependence of the dynamic form factor of
the density fluctuations and of the associated ex-
citation spectrum. The temperature dependence
of the spectral density of the time-dependent spa-
tial-displacement autocorrelation function.

(d) It is shown that damped traveling cluster
waves exist. The central peak and its splitting is
then traced back to the cluster waves and their
lifetime.

(e) The critical slowing down is shown to be
dominated by the cluster dynamics. Section V
contains our conclusions and some comments on
related work, as well as on the experimental ob-
servability of the present results.

II. MODELS, REGIMES, AND EXACT RELATIONS

We consider the following two-dimensional lat-
tice-dynamical model for a structural-phase
transition:

m . o A
K= 2 Xh+YT)+5 D0 (X +Yi,
I,k 1,k
B 4 4
+7 2, XY+ 20 Vo XuYine . (1)
I,k

1,1
K,Kk?

K labels the particles with mass m in the lth unit

:}yeK

®

x
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FIG. 1. Square reference lattice with lattice constant
a. X and Y;, denote the displacements.

. o

cell. X;,, X,;,, Y, and ¥, are velocity and dis-
placement of the corresponding particle with re-
spect to a square reference lattice with lattice
constant a. It is important to note that a given
particle can move only either in the X or Y di-
rection (Fig. 1); m, A, B, and V,,,s,+ are the
model parameters. They are chosen in such a
way that the mean displacement, representing

the local order parameter does not vanish at low
temperatures. Thus, the system is expected to
undergo a structural-phase transition, which takes
it from the low-temperature displacement con-
figuration to a different high-temperature dis-
placement pattern, where the mean local displace-
ment vanishes.

A. Ferrodistortive models

To guarantee a ferrodistortive low-temperature
phase, we choose
- C for nearest neighbors
VIK k' = )
. 0 otherwise.

@)

At zero temperatures, the properties of this phase
can be calculated exactly within the framework of
classical mechanics. Infact, by setting the force
acting on the particles equal to zero, we find at

T =0 for the local mean displacement

<Xlk>§'=0=<YlK T-0=(4C-A)/B. ®3)
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FIG. 2. Arrangement of the particles in the ferrodis-
tortive phase. Open circles represent lattice being
equivalent to the mean arrangement in the high-temper-
ature phase. The dots denote the mean positions in the
ferrodistortive phase. There are two particles per unit
cell. « takes on the value 1 only.

The corresponding ferrodistortive arrangement
of the particles is shown in Fig. 2. To guarantee
that the energy of the ferrodistortive phase is an
absolute minimum and, moreover, that the sys-
tem is stable, it is necessary that

4C-A>0, B>0, C>0. @)

B. Antiferrodistortive models

An antiferrodistortive low-temperature phase
is obtained by choosing

— C(-1)*~*' for nearest neighbors
VIKI’K’ =

0 otherwise. ®)

At T=0, we find in anology to Eq. (3),

x0 = (2524)  ar. )

The corresponding antiferrodistortive arrange-
ment of the particles is sketched in Fig. 3. The
energy and stability requirements lead again to
the conditions (4) for the model parameters. We
note that the ferrodistortive and antiferrodistor-
tive models may be mapped onto each other by
means of the transformation

Xy~ (1) X, M

where X, is the ferrodistortive local displacement

FIG. 3. Arrangement of the particles in the antiferro-
distortive phase. Open circles denote the reference
lattice, being equivalent to the mean high-temperature
pattern with two particles (1’ and 2’) per unit cell. The
dots characterize the mean displacement pattern in the
antiferrodistortive phase with four particles per unit
cell. Particles 1 and 2 belong to sublattices with x =1,
and particles 3 and 4 to those with x =2.

C. Order-disorder, displacive regime, Ising, and displacive limit

The structural-phase transitions associated with
Hamiltonian (1) and the nearest-neighbor inter-
actions defined in Eqgs. (2) and (5) may be classi-
fied according to the form of the single-particle
potential

3AXG, +3BXY,, ®8)

appearing in the Hamiltonian. The choice A <0
leads to a double-well single-particle potential,
suggesting transitions of the order-disorder type.
In fact, in the limit A= -, B—+© but A/B=-1,
the zero-temperature values of the order param-
eters [Egs. (3) and (6)] reduce to those of the
spin-3 Ising ferromagnet or antiferromagnet, re-
spectively. Moreover, in this limit the partition
function reduces exactly to those of the corre-
sponding Ising models.? As a consequence, the
choice

A<0, B>0, C>0 9)
leads to transitions of the order-disorder type
and defines the order-disorder regime. In the
displacive regime, where

A>0, B>0, C>0, (10)
the single-particle potential has a single mini-

mum, consequently the low-temperature phase
is stabilized only by the interaction. At the dis-
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placive limit,
A=4C, (11)

the local order parameters [Eqgs. (3) and (6)] van-
ish already at zero temperature. Figure 4 shows
schematically the two regimes and their limits,
For a more detailed discussion of these regimes
and in particular for a discussion of the properties
of the one-particle probability distribution we
refer to Ref. 9.

D. Exact relations

In this section we derive some exact relations
which turn out to be useful in the subsequent dis-
cussion. In doing so, we obtain from Eq. (1) for
the equation of motion,

-mX, =AX, +BX}, +2 ) Vi p ¥, . (12)

k!

Multiplying by X,, we obtain for the kinetic energy
per particle

264n=kp T=A(X2) +B(Xt +2D  Vieye AY e Xy )

1K
(13)

The potential energy per particle is, according
to Eq. (1), given by

26,0, =A(X2) +3B(X1)+ 2D Vi A¥ 10 Xy
1, Kk

(14)
Y.
2
_ _(4C-A
Kerdr, o= Yendy, o= (Fg—)
1/ . .
4cy /2 Displacive
¢ (5 fimit
!
Ising :
limit Model Model Model;
- 1 I ‘ A
4C
| | | o
T T L
-0.5 0 0.25 0.875 14
l
Order-disorder Displacive
regime regime

FIG. 4. Sketch of the order-disorder and displacive
regime, including their limits for ferrodistortive and
antiferrodistortive transitions. The ratios A/4C=-0.5,
025, and 0.875 designate models I, II, and III, re-
spectively, subsequently studied.

It then follows that

ekin-epol=}iB<X?K =%kBT_epol (15)
and

€01 = €yint €por =kp T —3B(X1,) . (16)

Equation (14) represents a particular form of the
virial theorem, stating that the mean kinetic en-
ergy equals the virial, (V), where

(V) =epm+%B<X?K . (17)

Equation (16) also allows expression of the spe-
cific heat in terms of the temperature derivative
of the local quantity (X%,), because

C=te,  =ky- %;T(X';K) ) (18)
To demonstrate that the displacive limit (see

Fig. 4) represents an isolated point in the space

of the model parameters, we consider the ferro-

distortive model. In this case and in the pre-

sence of a homogeneous external field #, the equa-

tion of motion (12) becomes, by invoking the inter-

action given by Eq. (2),

-mX, =AX; +BX} -2C Y Yime =k, (19)

m, K

so that

-A h
4C—B—<X,K) +g5 =X . (20)

At the displacive limit and T=T, =0, where the
spontaneous local order parameter Eq. (3) van-
ishes, the equation of state (19) reduces to

h=B(X;)%=0, (21)
so that
5=3. (22)

This result holds for any dimension d. Empha-
sizing that for d=2 and the one-component order
parameter considered here, 6 is expected to be
15, the value of the two-dimensional Ising model,
it becomes clear that the classical displacive lim-
it represents an isolated point where critical ex-
ponents change discontinuously. For a more de-
tailed discussion of the critical properties of the
classical displacive regime and the associated
crossover phenomenon, we refer to Ref. 13.

HI. DYNAMICAL EQUATIONS AND METHOD OF
SOLUTION

The dynamical equations required to describe
the temporal evolution of our model systems are
the coupled Newton equations. In the case of the
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ferrodistortive model for particle lk we have [Eq.

(19)]

-mX, =AX, +BX} =2C Y Yiimer.  (23)

myK’

From the computational point of view, it is con-
venient to choose the time unit in such a way that
the mass of the particles is equal to one. Our cal-
culations involve 3200 particles moving on a rig-
id reference lattice (Fig. 1), and subject to peri-
odic boundary conditions. Starting from given ini-
tial conditions for the positions and velocities, the
particles are then allowed to move, and their ca-
nonical variables (X;,, X;,) are calculated accord-
ing to a set of difference equations with a time
increment. This set of difference equations ap-
proximates the set of Newton equations. To solve
the difference equations, we used the predictor
and corrector technique developed by Rahman and
Gear.>!* The time increment was chosen in such
a way that the period of the oscillation with max-
imum frequency contained 70 time increments.
The particles were placed initially at randomly
chosen positions around their zero-temperature
arrangement. The resulting displacements were
restricted, however, to small values. Since this
configuration leads to a small increase of the po-
tential energy, the velocities quickly increased

to a distribution characteristic to a low tempera-
ture. The system was then interrupted, and all
velocities multiplied by a constant factor so that
their distribution was characteristic for the de-
sired temperature. To avoid drastic corrections
we restricted the constant factor g to values
0.71<g<1.22, Several repetitions of this pro-
cedure were required to bring the temperature
close to the desired value. Thereafter, we used
one of the following procedures: a microcanoni-
cal one, where the energy is a constant of mo-
tion, and a constant-temperature technique. Most
calculations were carried out by means of the
constant-temperature procedure.

A. Microcanonical procedure

In a microcanonical system, the energy is a
constant of motion, so that

E0=Ekin(t) +Epol(t)= const (24)
and
Ekin[% Vz(t)]=Ekin[Eo _Epot(t)] ’ (25)

where V?Z denotes the mean-square velocity. Ow-
ing to the numerical noise in the integration pro-
cedure of the difference equations, condition (25)
cannot be satisfied exactly. To overcome this

difficulty, we introduced a correction function
Z(t) defined by

gz(t)Ekm[% VZ(t)] =Ekm[%g2(t)vz(t)]

=Ekin[E0_Epot(t)J5 (26)
so that
g2(t)=[2/VA3(I[E, - E o, (D)]. (27)

2(t)V(#) represents the corrected mean velocity.
Because 7(¢), defined by g(£)=1+n(f), turned out
to be very small (=107¢) for sufficiently large
systems, we performed this correction after any
time increment. Temperature is inferred from
the average value of the kinetic energy over the
molecular-dynamics run; in a sufficiently long
run

<V2> =kBT. (28)

Temperature variations for a new calculation can
be implemented by suitably modifying the veloc-
ities at the end of the previous run. A disadvan-
tage of this procedure to investigate phase transi-
tions arises from the relation between the mean-
square fluctuations of the microcanonical ensem-
ble and the susceptibilities of the canonical en-
semble. To illustrate this point we note that'®

(l/N)<6Eim>E =(1/1V)(6E‘2p0t &
=3k?3T3(1 -1/2C,), (29)

where C, is the specific heat and { )z denotes a
microcanonical average. At 7T=T,, the specific
heat may diverge. Hence, the mean-square fluc-
tuations tend to a constant value. Such a behavior
is rather inconvenient to estimate critical ex-
ponents. The situation becomes even more se-
vere, by considering the order-parameter sus-
ceptibility, which is given by

N(6Xb6X), =N(6X(5X)T—IE (B<—X->1>2, (30)
C,\ aT

where the temperature dependence of (X); and
(6X6X), has to be evaluated separately. Moreover,
the specific heat C, is given by Eq. (29) from which
it is inconvenient to extract the critical behavior.
In this case, it becomes clear that the microcanon-
ical approach allows confirmation only of the in-
equality

(0X 6X) ({0 EpoS Bpor) 7> (O Eoi0X) 7, (31)
which leads to the Rushbrooke inequality!®

a+28+y=2, (32)

B. Constant-temperature procedure

To overcome the difficulties associated with the
conventional microcanonical procedure to estimate
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critical properties, we developed a molecular-dy-
namics technique where the temperature is fixed
at each time step. As a consequence the prob-
ability

dPN(XU .

=FN().(1’ .

.. ,XN; le e yXN)

9--',XN)IId>.(i HXm

(33)

of finqing the particles in the element I1 d)'(,. MdX;
near X,,...,Xy; X,...,Xy is determined by

. 7XN; Xl

. o 1 o
FN(XI! L !XN;XU L4 )XN)~6(N_ ZX?—kBT> e-BV,
i

(34)

where V denotes the potential energy. This prob-
ability distribution leads to mean values equivalent
to those of a canonical ensemble,

To fix the temperature at each time step, we
rescaled the kinetic energy according to

g2E[2VEM)] =E\[282(WV2()) =3k,T, (35)

where V?2(¢) denotes the instantaneous mean-square
velocity; g(t)V (t) represents the corrected mean
velocity. To keep the correction 7(t), defined by

g(t)=1+n(), (36)

small, we performed this rescaling of the kinetic
energy in the predictor and the corrector step.
Consequently, the kinetic energy is constant at
each time step.

Assuming the system to be ergodic in the
(2N - 1)-dimensional phase space (-1 because the
temperature is fixed), time averages will coincide
with the averages based on the probability given by
Egs. (33) and (34) characterizing a canonical en-
semble. Concerning the dynamic properties, it is
not clear, however, to what extent the fixed-tem-
perature procedure affects the time-dependent cor-
relation functions. To clarify this question and the
accuracy of the integration procedure, we studied
a set of 3200 coupled harmonic oscillations. The
results, presented in Appendix A, demonstrate
that the uncertainties due to the numerical noise
and due to the fixed-temperature procedure do not
lead to serious limitations. In particular we find
that the associated damping and frequency shift is
negligibly small.

C. Calculation of the static and dynamic properties

In all, over 20000 time steps were expended in
allowing the system to “age.” After this interval,
the subsequent period of 60000-100000 time steps
was actually the time interval over which the time

averages reported below were calculated. We be-
lieve that the system had developed in time long
enough to eliminate any effects due to the choice
of the initial conditions.

Assuming the system to be ergodic, we per-
formed, on this basis, time averages representing
estimates for the ensemble averages. For exam-
ple, the order parameter is given by

1 tn
@ =2 [ "x0a, (37)
where
X=gs .Z 0, +¥,,)(=1)% . (38)

A characteristic behavior of X(¢) is shown in Fig.
5 for T<T,.. Two time intervals may be distin-
guished: a first stage, in which the system re-
laxes to a metastable state., This metastable state
may be so long-lived (7, the second interval) that
time averages, such as Eq. (37), become meaning-
ful quantities. At 7., however, the system might
undergo a “first-order transition.” This behavior
expresses the fact that in any finite system (X)
vanishes at zero field. Nevertheless, as long as

Tp™> tn— tm (T<Tc) (39)

and the interval f, - ¢, is sufficiently long, reason-
able time averages representing estimates for the
infinite system can be performed. By approaching
the transition temperature of the infinite system

Tr becomes shorter and 7, increases. Consequent-
ly, condition (39) can no longer be fulfilled very
close to T,. The actual region depends, of course,
on the number of particles and decreases with in-
creasing N.

X (1)

-

<X>

~

(@]
x
t-————ft----

FIG. 5. Schematic time evolution of the order param-
eter X(t). Two time intervals may be distinguished:
(i) the decay to “equilibrium” 7y which becomes critical,
and (ii) this “equilibrium” state is a metastable state
with lifetime 7;, owing to the finite size of the system.
Time averages representing estimates for the ensemble
averages are taken from ¢, to t,. In practice, 7z is
accessible only close to T, .
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For T >T,, condition (39) must be reversed:

Tr<t,=t, (I>T,). (40)

In this case, (X) represents an estimate for (X) =0.

In analogy to the situation below T, 7T increases
by approaching T and condition (40) can no longer
be satisfied.

It now becomes evident that the molecular-dy-
namics technique provides a direct technique for
estimating ensemble averages of an infinite sys-
tem, except in a region around T',. The actual
extension of this region depends on the number of
particles and the model parameters chosen. In
the systems discussed subsequently it extends
from T /T ,~0.98-1.,06.

This technique may also be used to estimate
many other properties, such as the susceptibility

Cr T ) XO- @) (1)

and the correlation functions

AAGZ t)_ SAA(E’ t)1 (42)

SM(k t=0)
where

SAA(I.E; t) =<A (_ﬁy O)A(Ey t»

t =t
=-—L—f" A(-E, tYA(K, t+ ') dt" .
fomt=tn J;

43)
A stands for
D=3 5 (enpk- B, 0 - 101,
(44)
(8,0)= 5 3 expl (R +{510),01)
- (expliE®, . +{X,., 0D , (45)

w(k, t)=}, > explR- Ry Mis ) =(1i0l , (46)

« =8gnX;, . (47)

Estimates for the associated spectral densities
are obtained from

~ > 2 f‘n"m -
Saalk, w)—SM( 7=0) J, coswtS,,(k, t)dt.

(48)

Of the associated spectral densities, only Spp(E’ w)
is accessible in a neutron-scattering experiment.
Syx (K, w) is closely related. u(K,¢) denotes the
fluctuations of the Ising variable, characterizing

the cluster dynamics. A cluster consists of a
locally ordered region, with u,, identical or op-
posite to those at T =0.

Because £, - ¢,, is finite, $,,(k, ¢) as defined by
Eq. (43) will deviate from the exact value by
65 ,,(k, ). This deviation increases with ¢, where-
as $,,(Kk,t) decreases. Consequently, the relative
error increases with £, To reduce the associated
uncertainties, we replaced S, ,(k, ¢) in Eq. (48) by

SAA(E,t)exp{—[t/Td(ﬁ)]z} . (49)

7,(K) leads to an additional damping. To extract
the low-frequency structure of S 4, (k, w), 7,(k)
was chosen according to

Td(i)>>TAA(E)’ (50)
where
7 4a(K) =8, (K, w=0). (51)

7 ,4(K) is the relaxation time characterizing the
critical slowing down (see Sec. IVE). As a con-
sequence, the resulting spectral densities (48) rep-
resent a folding between a resolution function [sec-
ond term in Eq. (49)] and the true function. Condi-
tion (50) guarantees, however, that the low-fre-
quency structure in S 4, (k, w) will be resolved.

For high frequencies, condition (50) has been
replaced by

7,(K)>1/T'(k), (52)

where I'(k) denotes the half-widths of the peaks in
this frequency region.

In view of the reasons discussed in Sec. III, we
adopted the constant-temperature procedure to
evaluate the time averages. Consequently, our
susceptibilities represent estimates for the iso-
thermal ones, whereas the time-dependent corre-
lation function should be ensemble independent.!®

IV. NUMERICAL RESULTS
A. Static properties

In this section we report some estimates based
on three models, differing in the parameters chos-
en. These parameters are listed in Table I, and
apply to both the ferrodistortive and antiferro-
distortive systems. In fact, these systems may
be mapped onto each other. Model I corresponds
to an order-disorder system and models II and III
belong to the displacive regime. From Fig. 4, it
is seen that model III is close to the displacive
limit.

We note that the partition function associated
with the Hamiltonian (1) and the interaction terms
specified in Egs. (2) and (5) reduces in the limit
A =-w, B=+o but A/B=-1 to that of the Ising fer-
romagnet and antiferromagnet, respectively.? In-



voking the universality hypothesis, one expects
therefore that the static critical exponents of all
three models should be equal to the corresponding
exponents of the spin-3 Ising model except at the

x4 08

~ 1500
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XD § <X

- 100 ) (b)

X § <X) \
[e]

- 0.015
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0 04 0.2
FIG. 6. Calculated temperature dependence of the
order parameter (X) and (X)%: (a) model I; (b) model
II; (c) model III.
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displacive limit [Eq. (11)], representing an iso-
lated point [see Eq. (22)].

In this case, it makes sense to plot the order
parameter as a function of T to the power eight
and the isothermal susceptibility as x3¢/7. In
fact, from the two-dimensional Ising model one
expects the behavior!®

(X) =Gy (T, - T)'3, (53)
Xp=Gy| T =T|7"/%. (54)

In Fig. 6 we summarized the calculated tempera-
ture dependence of the order parameter. From the
(X)® plot, it is seen that our results are consistent
with the Ising power law. The amplitude Gy, how-
ever, is seen to decrease by approaching the dis-
placive limit. From the (X)® plot, we also esti-
mated the critical temperatures listed in Table I.

Figure 7 shows the calculated temperature de-
pendence of the isothermal susceptibility. In mod-
els I and I, we find below T, consistency with the
Ising power law. Above T, and in particular in
model III, the critical region is found to be inac-
cessibly small, however.

Finally, we turn to the temperature dependence
of the specific heat, shown in Fig. 8. Obviously,
our results are consistent with the logarithmic
singularity characteristic for the two-dimensional
Ising model. We find, however, a reduction of
the amplitude by approaching the displacive limit.

Summarizing these results, we note: (a) the
universality hypothesis is consistent with our nu-
merical results; (b) the amplitudes of the power
laws are found to be model parameter dependent;
and (c) continuous-phase transition are expected
even in the displacive regime and close to the dis-
placive limit (Fig. 4).

Finally, we turn to the local mean-square dis-
placement being a relevant quantity in the self-
consistent phonon approximation (Appendix B).
Moreover, this quantity is also related to the line-
width broadening of the paramagnetic resonance on
paramagnetic ions, randomly distributed in sys-
tems undergoing structural-phase transitions.!”

TABLE I. Model parameters for models I-III. T, has
been estimated from the calculated temperature depen-
dence of the order parameter. (X )%-=0 denotes the order
parameter squared at zero temperature, given by Eqs.
(3) and (6).

Model A B C A/4C kT, X)d- o
I -1 4 4 -05 53 *0.05 9
1
I 1 4 4 +025 22 =£0.02 4.5
I 1 4 4 +0.875 0.245%0.003 0.75
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In fact, close to T, the critical part of the line-
width squared is expected to be proportional to
((8X,, . In Fig. 9(a) we show the calculated tem-
perature dependence of (X3,) and ((6X,, P =(X%
-(X,,0? in model 1. It is seen that (X3,) tends to a
constant value at T, and is, consequently, uncriti-
cal. As a consequence, this also holds for

((6x,, ), as pointed out by von Waldkirch et al.!”
The temperature derivative of this quantity ((6X,)?
is singular however, [see Fig. 9(b)] and would al-
low an independent determination of the critical
exponent 8. Similarly, the temperature derivative
of (X%, would also be singular [see Eq. (18)].
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FIG. 7. Calculated temperature dependence of the
isothermal susceptibility x : (a) model I; (b) model II;
(c) model III.

B. Formation of cluster

An interesting observation was made by analyzing
the time evolution of the model systems. In fact,
it turned out that clusters are formed, represent-
ing particles connected by nearest-neighbor bonds
and having local instantaneous order parameters
with a sign opposite to that expected from zero
temperature.

Figure 10 shows snapshots of cluster configura-
tions taken at various temperatures in model III.
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FIG. 8. Calculated temperature dependence of the
isothermal specific heat C,: (a) model I; (b) model II;
(c) model II1.
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FIG. 9. (a) Temperature dependence of (X%,) and
((6X;,)% in model I (Table I): (b) Temperature depend-
ence of d(X%,)/dT in model I.

By approaching T the cluster size is seen to in-
crease. Above T, the number of clusters with
positive and negative local order parameters re-
mains of course equal. It is seen, however, that
above T, the clusters become smaller with in-
creasing temperature as one expects.

The formation of these clusters and of the as-
sociated cluster walls has important consequences.
In fact, the existence of these clusters reveals
that a given particle not only vibrates around a
mean position, but that this mean position itself
is tied to the cluster dynamics. Such complicated
motion cannot, of course, be treated within the
framework of the conventional theory of lattice
dynamics, assuming well-defined equilibrium posi-
tions,

It should also be noted that the cluster border is
sharp only in the Ising limit (Fig. 4). Otherwise,
the local displacements are continuous variables
(-o<X,< +»), Thus, the cluster is expected to
become increasingly blurred by approaching the
displacive limit. A preliminary analysis reveals,
however, that this smearing out of the cluster
border becomes effective only close to the dis-
placive limit.

In the spirit of the Chinese proverb “A picture
says more than a thousand words,” we should like
to mention that the formation of clusters and their
dynamics has also been demonstrated by means
of a motion picture.!®

C. Spectral densities and excitation spectrum

To investigate the excitation spectrum we calcu-
lated various spectral densities, defined by Eq.
(48). Of particular interest is the dynamic form
factor Spp(E, w) which can be measured by the neu-
tron-scattering technique. Provided that phonons
are well-defined excitations, they appear in
S (K, w) at fixed wave vector, as a narrow peak.
Until recently, it was believed that the critical dy-
namics of structural-phase transitions is domi-
nated by a soft phonon whose frequency decreases
as the transition temperature is approached from
above or below and vanishes at T.. This soft-mode
concept, implicitly suggested by the Lyddane-
Sachs-Teller relation, has been developed by Lan-
dauer, Cochran, and Anderson.!®* New observa-
tions have indicated, however, that the dynamics
of these transitions might be more complicated
and also more interesting than previously as-
sumed. In fact, neutron-scattering® and EPR
measurements!”+2422 have shown in addition to the
soft-mode peaks, the appearance of a central com-
ponent around w =0 in the dynamic form factor.

Up to now, it has not been possible, however, to
resolve this central peak by means of the neutron-
scattering technique and to study its temperature
dependence. Nevertheless, the experiment indi-
cates that the central peak seems to be distinct
from the soft-mode doublet that is also present
close to T, either strongly damped or overdamped
for those wave vectors where the central peak is
strong.?° This phenomenon has received a variety
of interpretations which remain open to ques-
tion.!''?®* The microscopic attempts have been
based on diagrammatic techniques, familiar from
phonon hydrodynamics, by summing up some class
of graphs in order to obtain additional structure in
Spo(k, w). Besides the fact that these calculations
can only be performed under hardly controllable
approximations, one also misses a clear physical
picture of the mechanism producing the central
peak.

On the other hand, molecular-dynamics calcula-
tions also revealed the occurrence of a central
peak in model systems, at least undergoing struc-
tural-phase transitions.5'*® This central peak was
not only resolved but also traced back to the for-
mation of clusters and their dynamics.’'®® In this
section, we present additional results and discuss
them in more detail.
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f 0.8.

In doing so we first introduce the Brillouin-zone
scheme for the high- and low-temperature phases
shown in Fig. 11. Here, we present our results
in the zone scheme appropriate for the antiferro-
distortive models. These results can easily be
transformed to the ferrodistortive case by the

following transformation:
(n/a)(1,1)« (7/a)(2,0),
(n/a)3,1)~ (1/a)4,0).

Moreover, it should be recalled that in the ferro-

(55)
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FIG. 11. Brillouin zones of an (a) antiferrodistortive
and (b) ferrodistortive model in the low-temperature
phase. Above T, the zone scheme is given by (b) in
both cases.

distortive case, with two particles per unit cell,
there are only two phonon branches in the low-
temperature phase.

Let us now start with the discussion of the dy-
namic form factor of model III, being close to
the displacive limit (Fig. 4). In Fig. 12(a) we
show some results of the calculated SPP(E, w) at
kpT =0.24, being close but below k T =0.245
(Table I). At (3,1) the spectrum is dominated by
a central peak. We also observe, however, the
soft-mode peak marked by 2. It is important to
note that the half-width of this central peak is
several orders of magnitude larger than the in-
verse damping constant arising from the numerical
noise and from the constant-temperature proce-
dure (see Appendix A) and smaller than 1/7,(k)
[Eq. (50)]. Consequently, this central peak is real
and has been resolved. Slightly away from (3,1),
the central peak is seen to split into a double-peak
structure, appearing in addition to the soft-mode
resonance. The k dependence of the norm
Spp('ﬁ, t =0) reveals, however, that the strength gf
the split central peak decreases very fast with k
values taken relative to (3,1). By plotting the peak
maxima of S,,(K, w) for various k vectors parallel
to (1,1) we find the dispersion relation shown in
Fig. 12(b). There are four phonon branches. For
comparison we included the prediction of the self-
consistent phonon approximation (SCPA) (Appen-
dix B), where (X%,) was determined by means of
molecular dynamics., From Fig. 12(b), it is seen
that SCPA leads to a reasonable description of the
phonon frequencies except in a small-wave-vector
region of the soft phonon branch.

More exciting is the appearance of an additional
excitation branch, originating from the splitting
of the central peak. This branch is well defined
only up to a cut-off wave vector.

Above T,, where only two phonon branches are
expected, we found a similar behavior, as demon-
strated by Fig. 13. In fact, at (3, 1) there is a re-
solved central peak and a weak soft-mode reso-
nance. Slightly away from (3,1), the central peak
is again seen to split into a double-peak structure,
giving rise to the new excitation branch [Fig.
13()].

By going further away from T, the central-peak
intensity is found to decrease, whereas the soft-
mode resonance intensity increases. In this tem-
perature region, we found no evidence for the new
excitation branch.

In model I, belonging to the order-disorder
regime (Fig. 4), the phonons turned out to be not
well defined for temperatures slightly different
from T =0. This fact is also seen in Fig, 14,
where we plotted the calculated Spp(l?, w) for wave
vectors k parallel to (1,1). The temperature kyT

Spp(k,w)
| —® as o
2% Spp (k,1=0)
— 3.1 ) 24.3
40 ft
--- (2.95,095) 8.3
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FIG. 12. (a) Frequency dependence of §pp(f(, w) at
some fixed k values close to (7/a)(3,1) in model III at
kgT =0.24, being close but below k23T, =0.245. The peak
maxima 2, 4, 6, and 7 are due to the conventional soft
mode. The peaks 3 and 5 represent evidence for the
new excitation branch. (b) Phonon dispersion and dis-
persion of the new excitation branch in model III at
kT =024 for k parallel to (1,1). The numbers label
corresponding peak maxima in Fig. 12(a). The solid
curve was obtained by means of a SCPA (see Appendix
B).
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FIG. 13. (a) Frequency dependence of S op( E, w) at
some fixed k values close to (r/z)(3,1) in model III at
kpT =026, being close but above T.. The peak maxima
2, 4, 6, and 7 are due to the conventional soft mode.
The maxima 3, 4, and 5 represent evidence for the new
excitation branch. (b) Phonon dispersion and dispersion
of the new excitation branch in model III at 2 3T =0.26.
The numbers label corresponding peaks in Fig. 13(a).
The solid curve was obtained on the basis of a SCPA
(see Appendix B).

=5.7 is above but near to kT .=5.3. Obviously tue
spectrum is dominated by the central peak only
and there is no evidence for phonon resonances.
Moreover, the central peak does not split for
wave vectors slightly away from (3,1). Conse-
quently, there is also no evidence for the new ex-
citation branch.

To clarify the occurrence of the new excitation
branch in this model belonging to the order-dis-
order regime, we also studied the temperature
dependence of S,,(k, w). From Fig. 15, it is seen
that at k£,T =8, being above kzT,=5.3, the central
peak splits into a double-peak structure for wave
vectors slightly away from (3,1). Consequently,
the new excitation branch appears again. For
lower temperatures, however, we found no evi-
dence for such a splitting. At higher tempera-
tures, on the other hand, the detection of a pos-
sible splitting became difficult owing to the small
intensity of the central peak.

Because the new excitation branch evolves from

A §PP (k,w)
kgT = 5.7
60
I o
Fk S(k,t=0)
— (3.0,1.0) 11.01
—— (2.9,0.9) 3.66

—— (2.85,0.85) 2.43
—-— (2.65,0.65) 0.51

40 ft

20

w
< —p—nel g

01 02 03
FIG; 14. Frequency dependence of §pp(ﬂ, w) at some

fixed k values close to (3,1) in model I at k gT =5.7,
being above but close to kT, =5.3 (Table I).

the central peak by varying the wave vector, it is
suggestive that there is a common underlying
mechanism. To substantiate this conjecture, we
also calculated the dynamic form factor of the

— ( 3 ) 2.75
—— (2.95,0.95) 2.50
---- (2.85,0.85) 1.70

FIG. 15. (a) Frequency dependence of 8p0( k, w) at
some fixed k values close to (3,1) in model I, at 2T
=8 (kgT.~5.3). (b) Dispersion relation of the new ex-
citation branch. The numbers label corresponding peaks
in Fig. 15(@).
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Ising variable [Eqs. (42), (46), and (48)] charac-
terizing the cluster dynamics. It was found that
both the central peak and the new excitation branch
also appear in this spectral density at corres-
ponding temperatures. Therefore, one will be led
naturally to the conclusion that both phenomena are
due to the cluster dynamics. The appearance of
the new excitations, however, is not only tied to
the presence of a central peak but also depends

on the model parameter chosen. In fact, in model
III they appeared close to, but above and below

T., whereas in model I, they are visible only above
T..

This may be understood by recalling again that
the new excitation branch arises from the collec-
tive “flipping” of the particles from one effective
potential well to the other. This collective “flip-
ping” can be effective only if 2,T exceeds the depth
of these wells. This depth is given by B[(4C -A)/
BJ?, and corresponds to the temperatures kT
=0.047 in model IT and k,T =6.75 in model II (see
Table I). Obviously, this argument fits with the
numerical results, revealing that the new excita-
tions appear in model III above and below 2T
=0.245, and in model I above kT, =5.3 only.

It is interesting to note that our central-peak re-
sults are consistent with a Lorentzian frequency
distribution. In fact, the half-width A w satisfies
[see Figs. 12(a), 13(a), 14, and 15],

AwS,(k,, w=0)=1, (56)

where &k, denotes the wave vector where the order-
parameter susceptibility diverges.

Finally, we turn to the spectral density of the
time-dependent spatial displacement autocorrela-
tion function, defined by

thtm
§A(w)=2f S (t)coswtdt, (57)
1]

where

< o K O, () = (X,
A=y T

(X3 (00X, (£D

1
“t—t—t,

(58)

t -t
f" X, ()X, (1) dt . (59)
‘M

This spectral density is related to the linewidth
broadening of the paramagnetic resonance of para-
magnetic ion centers, randomly distributed in
systems undergoing structural-phase transi-
tions.!”*?! In Fig. 16 we plotted the frequency de-
pendence of this spectral density for various tem-
peratures in model II. It is seen that also in this
function, a central peak appears by approaching
kpT . =2.2 from above or below and that its half-

— 1.00
\ -— 207
¥ —— 240
‘-\ —— 3.00
\ - 5.00

FIG. 16. Frequency dependence of the spectral density
of the local displacement fluctuations [Eq. (57)] in model
II (Table I) at various temperatures (kgT, ~ 2.2).

width decreases. Another important feature is
that close to T (see k;T =2.4) two frequency re-
gimes may be distinguished. A low-frequency re-
gime, dominated by a central peak which charac-
terizes the cluster dynamics. Above some cut-off
frequency, there is some smooth background aris-
ing from the fast motions. The distinction between
these slow- and fast-motion regimes is also seen
in Fig. 17, where the time dependence of the spa-
tial autocorrelation function is shown. We note
that the existence of these two regimes plays a
crucial role in the interpretation of the linewidth
broadening of the paramagnetic resonance as a
tool to investigate dynamic critical phenomena.'”*#

Satn kgT

(b)

ij 10 20 30 40 50

-4 +

FIG. 17. Time dependence of the local displacement
correlation function in model II at various temperatures
(kpT.~2.2): (a)ksT=1,2.07, 2.4; (b)kgT =24, 3, 5.
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More recently, it even became possible to ac-
count quantitatively for the EPR line anisotropy
for T .< T < 300 °K in SrTiO,, by assuming a cen-
tral peak and a smooth high-frequency back-
ground.?? Moreover, it has been shown that the
central peak in S ,(w) dominates the secular re-
laxation, and the smooth background the non-
secular relaxation.??

D. Cluster waves

Nonlinear wave processes are involved in phe-
nomena occurring in many scientific areas.?-2¢
It suffices to mention elastic properties of media,
ergodicity, surface waves in liquids, propagation
of magnetic flux on a Josephson line, wave mo-
tion in a plasma, nonlinear optic and electrody-
namics, theory of elementary particles, etc.

The formation of clusters and their dynamics
(Sec. IV B) revealed that strong nonlinearity also
plays an important role in systems undergoing
structural-phase transitions. These findings may
also be understood by considering particular so-

20

lutions of the associated classical equations of
motion. In fact, Krumhansl and Schrieffer'?
found, by studying a strongly anharmonic chain,
particular solutions representing cluster walls
which cannot be described by the conventional
phonon perturbation expansions. At low tempera-
tures, they found that the exactly calculated static
properties agree with those found from a phenom-
enological model in which both phonons and clus-
ters are included as elementary excitations.

To demonstrate the relevance of these cluster
excitations and to clarify their relation to the
central-peak phenomenon and to the new excita-
tion branch, we also analyzed our results from
this point of view. In doing so we considered only
small w and % values to calculate

X}(@#)=Re Y, > x&, w)

I”xlslkrcl lwl=w,

xemi®Fman | (60)

FIG. 18. Hysometric plot of X7} (t) [Eq. (60)] for the ferrodistortive model III at (a) kT =0.24 and (b) kT =0 .26.
Negative values of X7} have been suppressed. Increasing blackening corresponds to increasing displacements. Vy=0.23a.
denotes the mean velocity of the cluster waves, and 7 a cluster lifetime.
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X7 () describes the slow fluctuations of the dis-
placement in space (ﬁ,) and time, provided that
the cut offs k., and w, are sufficiently small. The
continuum version of the equation of motion of the
ferrodistortive model [see Eq. (C3)] suggests that
traveling-wave solutions

X,(0)=f(R,,0),?) =f((R,,0) - (V,,0)t) (61)

may dominate X7(f), provided that [see Appendix
C, Eq. (C6)]

mV?:<Cd®. (62)
x

In fact, following Krumhansl and Schrieffer, one
can identify these particular solutions as travel-
ing cluster waves (see Appendix C).

In Figs. 18(a) and 18(b), we plotted the calculated
X*(t) [Eq. (60)], where negative values have been
suppressed, for the ferrodistortive model I, at
kpT=0.24 and k,T=0.26, respectively. k was
chosen along the (1,1) direction excluding k=0.
The cut offs are specified in Figs. 19(a) and 19(b).
Increasing blackening (Fig. 18) corresponds to
increasing displacements. These plots demon-
strate, in analogy to Fig. 10, that clusters of lo-
cally ordered regions and cluster walls exist.
Another important result is that the clusters prop-
agate with a finite lifetime 7 and velocity V. At
both temperatures, the velocities are distributed
around V,=0.24q. This value agrees quite well
with the group velocities of the new excitation
branches shown in Figs. 19(a) and 19(b). There-
fore, from these results, one will naturally be
led to the conclusion that the new excitations ap-
pearing in the ferrodistortive model III corre-
spond to traveling cluster waves. This result is
consistent with the existence of the above-men-

FIG. 19. Calculated dispersion law of the ferrodis-
tortive model III at (a) kg7 =0.24; (b) kT =0.26; we
only show the low-lying phonon branch and the new exci-
tation branch. The shadowed rectangle marks the w —k
region over which the sum in Eq. (60) has been performed.
The dashed line corresponds to a group velocity of 0.23a.

tioned particular solutions but by no means guar-
anteed by the existence of these solutions. In
fact, our X7(¢) has been calculated for an aged
system, or in other words, our X}(¢) is indepen-
dent of the initial conditions.

According to Fig. 20, a similar pattern of X }(#)
occurs in model I at 2, 7=8 where the new excita-
tion branch also appeared (Fig. 15). The mean
cluster wave velocity V,=0.12q and the group ve-
locity derived from Fig. 15(b) again agree quite
well.

To investigate the temperature dependence of
these cluster waves, we also calculated X}(¢) in
the ferrodistortive model at k,7'=5.7, being
closer to k;T=5.3. The results are shown in
Fig. 21, and reveal a nearly vanishing mean ve-
locity and a longer lifetime.

Let us now turn to the mechanism underlying
the central-peak phenomenon. Recognizing that
the cluster waves propagate with a finite life-
time (see Figs. 18, 20, and 21), it is obvious
that for small wave vectors k, where the fre-
quency of the cluster waves w =V K is small, the

O

FIG. 20. Hypsometric plot of X7} (¢) [Eq. (60)] for the
ferrodistortive model I at k2T =8.0. V;,=0.12a denotes
the mean velocity, and 7 a cluster lifetime.
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FIG. 21. Hypsometric plot of X/ (t) for the ferrodistortive model I at k5T =5.7. V,~ 0 designates the nearly vanish-

ing mean velocity, and 7 a cluster lifetime.

damped cluster waves become overdamped and
give rise to the central-peak phenomenon. Here
the wave vector K is taken relative to the I" point
or R point (Fig. 11). Consequently, the central-
peak half-width is proportional to the inverse life-
time of the cluster waves and its height is pro-
portional to this lifetime. For larger Kk values,
and in those situations where the cluster waves
become underdamped (V,k>1/7) the central peak
splits, which in turn gives rise to the new excita-
tion branch [Figs. 12(b), 13(b), 15(b), and 19].

To summarize this section, we have shown that
damped traveling cluster waves exist. Their life-
time was found to increase by approaching T, and
determines the central-peak half-width and height.
In fact, the characteristic lifetime of the cluster
waves shown in Figs. 18, 20, and 21, are con-
sistent with the corresponding half-widths Aw=1/7
in Figs. 12(a), 13(a), 14, and 15(a). Moreover,
the new excitation has been traced back to travel-
ing cluster waves.

It is important to note, however, that the re-
sults presented in this section do not necessarily
justify the continuum approximation. In fact, our
results have been obtained from a lattice model
by filtering out the rapidly varying fluctuations in
space and time. Consequently, we have taken into
account the effects of the short-wavelength and
high-frequency fluctuations on the slowly varying
fluctuations. This is not the case, however, in
the continuum approximation where the short-
wavelength fluctuations which may give rise to
complicated effects, are neglected. Such effects
are that they act as a reservoir causing dissipa-
tion,?” and that they may combine to form addition-
al long-wavelength excitations. An intersting ex-

ample is the occurrence of a central peak in the
antiferrodistortive model II around (7/a)(4,0)
which must be attributed to two-phonon process-
es.t

E. Critical slowing down

The critical slowing down of a dynamic variable
A may be characterized by the characteristic fre-
quency or relaxation time defined by

1 ~
m=TAA(E) =SAA£E:“’ =0)
_2 fg SAA(E: t)dt ° (63)
- SAA(E>t=0)

If the variable A is not conserved, 7 ,,(k) is ex-
pected to diverge at the wavelength k, where
S,4(k, ,t=0) diverges according to

1
Waa (Ec)

-844

=, &)~ | T—‘TT— (64)

To estimate 7,,(k,) we used the procedure out-
lined in Sec. ITC, so that our upper integration
limit was finite. Nevertheless, for sufficiently
long intervals ¢, — ¢, (Fig. 5), S,,(k.,?) becomes
very small and, consequently, the cut off does
not lead to serious limitations, as long as T is
not too close to 7.. In any case, T, cannot be
reached because the correlation length has to
remain smaller than the linear dimension of the
system in order to avoid finite size effects.

In Fig. 22, we plotted the calculated tempera-
ture dependence of the order-parameter relaxa-
tion time, divided by the corresponding suscepti-
bility for model I (Table I). The conventional the-
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FIG. 22. Temperature dependence of the order-
parameter relaxation time [Eq. (63)] divided by the
susceptibility Syy (k. , ¢ =0) for model I, at k., = (n/a)
3,1).

ory of slowing down predicts that

Txx (Kc )/S:x (Ec ,t = 0) =const (65)
so that
A='}’ . (66)

Our results (Fig. 22) reveal that the conventional
theory [Eq. (65)] does not hold in the temperature
region considered. We note that these results
should not be affected by finite size effects, be-
cause the correlation length associated with our
smallest

l -7, } =0.03,

TC
is still considerably smaller than the linear di-
mension of our systems.

To elucidate the mechanism underlying this
slowing-down phenomenon, we also calculated the

T (ko) /Ty (Ko

0 Tpp (Ke) /Tyy (ko)
kKe= T (3,0)
12 o328 < 567
/
1.0 os O
08— . : ' kgT
5 6 7 8

kgTc
FIG. 23. Temperature iiependence gf the relaxation-
time ratios T, (ko )/Txx (ko) and 7, (ko) /T (ko) at
k.= (r/a)(3,1), in model I.

o T, (ko) /T (Ko)

o Tﬁp(Fc)/Txx(;c)
12 Ke= T (3,1)

. 4C-A _
‘ii!!qa a/ 5 ° 52
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FIG. 24. Temperature dependence of the relaxation-

time ratios Tuu(Ec)/TXX(Ec) and 'rpp(ﬁc)/‘rxx(ﬁc) at
k. = (r/a)(3,1), in model III,

>~ kgT

ratios of the relaxation times associated with the
Ising spin variable pu, the displacement X, and

of the density p [Eqgs. (44)-(47)]. Figure 23 shows
the results for model I, indicating that for T- T,
these ratios tend to 1. As Fig. 24 demonstrates,
the same behavior was found in model IIl. Em-
phasizing again that the Ising spin variable char-
acterizes the formation of clusters and their dy-
namics, it becomes clear that close to T, the
cluster dynamics provides the mechanism for the
critical slowing down.

V. CONCLUSIONS AND COMMENTS

We have shown that for a one-component model
for structural-phase transitions, the molecular-
dynamics technique enabling anharmonicity to be
treated without drastic approximations, yields
useful information about the static and dynamic
critical properties provided that the constant-
temperature procedure is used. It is clear that
this technique has a number of potential applica-
tions in the field of phase transitions, and, in
particular, a two-component model and tricriti-
cal phenomena will be considered in forthcoming
publications.

To summarize, our numerical work made it
possible to unravel the physical origin of the
different motions inherent in a one-component
model for structural-phase transitions. On the
one hand, each particle undergoes phononlike
motions around some momentary position. These
motions include the conventional soft-mode phe-
nomena. To understand the other kind of motion
one has to realize that the existence of a phase
transition is connected with the fact that each par-
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ticle also feels an intrinsic (order-disorder re-
gime) or an effective (displacive regime) double-
well potential. Thus, as a function of time, the
motion of a particle may be decomposed into a
slow “flipping” from one well to the other, and
comparatively fast oscillations around some dis-
placed instantaneous mean position. An additional
feature is that the displacement pattern shows
clusters of particles oscillating in the left well
together with clusters of the opposite type.

There is no doubt that the two different kinds of
motion, phononlike oscillations and collective
“flipping” motions, are properties of any noniso-
tropic n-component model Hamiltonian for struc-
tural-phase transitions., It should be emphasized,
however, that the “flipping” degrees of freedom
increase with the number » of the displacement
components. In fact, there are 2x different clus-
ter patterns for cubic anisotropy.

Recently, molecular-dynamics studies have also
been carried out in equivalent but one-dimensional
systems which may be related to structural tran-
sitions of the so-called Peierls type in pseudo-
one-dimensional materials.”#*®-% These calcula-
tions were performed, however, by means of the
conventional microcanonical technique, being un-
suitable to investigate critical properties (see
Sec. II). In one-dimensional systems such pro-
perties occur at T'=0, where the classical dis-
placement susceptibility diverges. As a conse-
quence, the microcanonical technique can pro-
vide only a qualitative picture of the low-tempera-
ture properties of these systems. Nevertheless,
results equivalent to those found in our two-di-
mensional systems for T'> T, are expected.

Approaches to include the “flipping” motions
and their collective appearance in the form of
clusters, have recently been put forward by Krum-
hansl and Schrieffer'? for the one-dimensional
chain, by Bishop and Krumhansl® for coupled
arrays of chains, and by Beck® for a small num-
ber of coupled quartic anharmonic oscillators.

Finally, we discuss the connection between the
models we have studied and real systems. There
is considerable evidence that the static proper-
ties of structural-phase transitions are well de-
scribed by an anisotropic n-component displace-
ment Hamiltonian,*-%* This includes stressed
and “monodomain” crystals. Neglecting the kinet-
ic energy of the particles, such Hamiltonians may
also be considered as models for magnetic sys-
tems, where at each lattice site / there is a spin
variable X, with » components. The static criti-
cal properties of these model Hamiltonians have
been studied rather extensively by means of the
renormalization-group technique.!+*"-* Even
exact results have been established,***! including

the existence of phase transitions' and tricritical
points, £ %3

Of particular relevance in this context are the
results of Aharony and Bruce?®® suggesting that
under various stress conditions, the critical be-
havior of the structural transitions in the perov-
skites SrTiO, and LaAlO, might be of the Ising,
XY, or Heisenberg type and might include a bi-
critical point with a flop line. The Ising critical
behavior occurs by applying an equivalent stress
along the (1,0,0) axis. These predictions have
recently been well confirmed in SrTiO,.*

It then appears that even the one-component
models considered in this work embodies some
of the essential features of real systems. Never-
theless one should keep in mind that our model
systems are incompressible. In fact, we assumed
a rigid reference lattice. Consequently, acoustic
modes and their interaction with the order-param-
eter fluctuations, are lacking in our models. Thus
we neglected the effects arising from the inter-
action between the soft mode, the cluster waves,
and the acoustic modes, which is expected to oc-
cur in real systems.

Finally we note, that the central peaks in real
systems, as observed in S, , (K, w) turn out to be
much narrower than the central peaks reported
here.2°#! Recent experiments® suggest that this
discrepancy is related to the different dimension-
ality of the systems. In fact, inelastic neutron-
scattering experiments on the high-temperature
phase transition of NaNbO, indicate that a sharp
narrowing of the central peak occurs at the change-
over from two- to three-dimensional behavior.

ACKNOWLEDGMENTS

The authors are indebted to H. Beck, Ph.
Choquard, J. L. Lebowitz, K. A. Miiller, St.
Sarbach, and H. Thomas for valuable suggestions
on this work.

APPENDIX A: TEST OF THE INTEGRATION AND
CONSTANT-TEMPERATURE PROCEDURE

To study the influence of the numerical noise
and of the constant-temperature procedure (see
Sec. IMI B), we considered the ferrodistortive
harmonic system defined by

3c=.;_ ()E§+1"$>+%Z <X3+Y§> -CY X, Yy,

1 [ 1,m
(A1)

where

A=2,0004, C=0.5. (A2)
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Assuming a rigid square reference lattice (Fig.
1), and introducing

XG,0=3 3 X, (06 Pix
’ (A3)
Y@,0)=5 Z Y, (e Ry,

UG, ) =X@,0)+Y(@,?),

we find from the equation of motion the normal
mode frequencies

wi(@=Azx2C (cosaq-"‘%q-z +cosa Q&%ﬂ) . (A5)

(A4)

The displacement correlation function is then
given by

SO@,t) Oq’ ) <U( q90)U(q,0))

= cosw,(@?. (AS)
To compare this exact result with the molecular-
dynamics estimate defined by [ see Eq. (43)]

t—tf

we introduce the function

5,@@, 1) = cos{(w, @) + Aw@)t]e—t/na) ,

to estimate the frequency shift and the damping
arising in (A7) due to numerical noise and the
constant-temperature procedure.

Starting with the initial conditions taken from
model III at low temperatures, we switched on
the constant-temperature procedure described
in Sec. II B, by choosing k,T=0.24, being close
to T, of model Il (Table I).

5@, t) = at' U(-q, ') U, t +t') (A7)

(A8)
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The system was then
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aged over 20000 time steps. The time evolution
of the system was then followed over the next
90000 time steps of unit length 0.02828. The
canonical variables of this interval were then
used to calculate $(@,?) [Eq. (A7)] for different
wave vectors and time intervals. By comparing
the numerical results with Eq. (A8), we also
evaluated the frequency shift Aw(Q)/w,(q), the
damping constant 7(q), as well as the root mean-
square deviation

at(g) o™ B@ 0 -8,@ nat
S [3@, 0] at

The results are summarized in Table II. In this
context, it is imporlent to note that A and C,
specified in Eq. (A2) have been chosen in such a
way that w,(q) at 4= (7/a)(0,0) corresponds to
the half-width of the central peak in model II at
kyT=0.24 [ Fig. 12(a)]. Moreover, w,(q
=(r/a)(2,0)) corresponds to the highest normal
mode frequency of this system (Fig. 12). It then
follows from Table II that the “central-peak half-
width” arising from the numerical noise and the
constant-temperature procedure, is 10* times
smaller than the half-width in model IT at 2T
=0.24. Consequently, the central peaks observed
in our models is not the artifact of the calculation
procedure. Moreover, the frequency shift and
the root-mean-square deviations are also seen
to be negligibly small.

In conclusion, we have shown that time-depen-
dent phenomena can be calculated with rather high
accuracy and that the numerical noise and the
constant-temperature procedure do not seriously
affect our results.

(A9)

APPENDIX B: THE SELF-CONSISTENT PHONON
APPROXIMATION
Here we sketch the important steps in the deri-
vation of the normal mode frequencies within the

TABLE II. Comparison between the exact wave-vector-dependent displacement correlation
function of coupled harmonic oscillator and that evaluated by means of the constant-tempera-

ture procedure. w, (a) is the exact normal mode frequency (A5).

t max designates the time

interval, £max /At designates the number of time steps, wo(') tmax /27 designates the number of

periods.

Aw(q) is the frequency shift and 7(q) is the damping constant [Eq. (A8)] characterizing

the effects of the numerical noise and of the constant-temperature procedure. A(q) denotes
wy(q) is given by Eq. (A5) with the minus sign.

the root-mean-square deviation [Eq. (A9)].

tmax

wo(a)tmax

og - Aw(a) - - -

t A
a wy(q) max AT > e 7(q) wy(q) (q)
(2, 0) 2.0001 424 15000 135 -1.3x1074 3.4x104 0.16x1072
(1.5, 0.5) 1.7322 424 15000 117 -2.0x107* 4.7x10% 0.6 x1072
(0.05,0.05) 0.1127 848 30000 15 -12.0x107% -4.3x10¢%  0.11x107?
(0, 0) 0.02 1696 60000 54 —=10.0x10"* -—2.5x10% 0.7 x1072
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framework of the self-consistent phonon approxi-
mation (SCPA). First we consider the ferro-
distortive model defined by Egs. (1) and (5). The
equation of motion reads

-mX,;=AX,+BX}-C Y Y,in,
m

(B1)
-m¥ =AY, +BY}-C Y X,.,,.
In the SCPA one replaces
X}I-¥Xx3x,, (B2)

Yi-Xr2)y,.
The normal mode frequencies are then given by
mw?*(q) =A+3B(X?)
+ 2C[coszalgy +qy) + coszalgy ~qy)] . (B3)

In the antiferrodistortive model, we find below
TC

w*(@) =A+3B(X?)
+ 2C[cossalgy +qy) £ coszalgy —qy)] (B4)
and above T,
w?(q)=A+3B(X?)
+ 2C[coszalgg +qy) — coszalgy —qy)]. (B5)

(X3) has to be determined self-consistently. For
our purpose it was more convenient to use for
(X?%) the molecular-dynamics results (see Fig. 9).

APPENDIX C: TRAVELING-WAVE SOLUTIONS IN THE
CONTINUUM LIMIT

To substantiate the possible importance of clus-
ter waves, we consider the ferrodistortive model
defined by Egs. (1) and (5) in the continuum limit

vy s A=4C
se= T3 3 (X2+¥)+E5= 3 (X3+73)
1 1

+

>

4 q 9 2
zl: (Xi+Y )+ g(x,-Y”m) . (cy

Introducing the displacement field f (R), (C1) re-
duces in the continuum limit to

we= [aR <%;2(§) +AECrR) B puwy

S (o P . (c2)

The equation of motion becomes
-mf(R,8)=(4-40F R, 1)+ Bf3(&, 1) - ca®af (R, 1).
(C3)
Traveling-wave solutions can be obtained by as-
suming
F®R, ) =f®R-V1). (eZ)
V denotes the wave velocity. For our purpose it

is sufficient to consider waves propagating along
the X direction,

f((Rx,o)’t) =f((RX)0) - (ny O)t) . (Cs)

The resulting particular solutions of (C3) reduce
to that considered by Krumhansl and Schrieffer.?
Of particular relevance in our context are the
solutions with

mV%<Ca®. (ce)
An example is
_ 4C—A>1/2 R,-V t)
7@, 0=(252) " tamn (Bpit) . em
2 Ca’ = Vim
¥="4c-a (C8)

Over the semi-infinite region Ry — V4 <0 the
displacement field is constant and given by the
negative value of the zero-temperature order
parameter [Eq. (3)]. For Ry, - V,¢>0, however,
the displacement equals the positive value of the
zero-temperature order parameter. The tran-
sition takes place through a cluster wall of ap-
proximate thickness 2v2 £. The wall moves
with V.
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FIG. 18. Hysometric plot of X% () [Eq. (60)] for the ferrodistortive model III at (a) ;T =0.24 and (b) & gI'=026.
Negative values of X% have been suppressed. Increasing blackening corresponds to increasing displacements. Vy=0.23a.
denotes the mean velocity of the cluster waves, and 7 a cluster lifetime.



FIG. 19. Calculated dispersion law of the ferrodis-
tortive model III at (a) k5T =0.24; (b) 25T =0.26; we
only show the low-lying phonon branch and the new exci-
tation branch. The shadowed rectangle marks the w -k
region over which the sum in Eq. (60) has been performed.
The dashed line corresponds to a group velocity of 0.23a.
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FIG. 20. Hypsometric plot of X’f (t) [Eq. (60)] for the
ferrodistortive model I at 23T =8.0. V;=0.12a denotes
the mean velocity, and 7 a cluster lifetime.



FIG. 21. Hypsometric plot of X,* (t) for the ferrodistortive model I at k5T =5.7. V¥~ 0 designates the nearly vanish-
ing mean velocity, and 7 a cluster lifetime.



