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The radial (j,) integrals, which contribute to the neutron magnetic form factors, of several uranium ions

(U'+, U'+, U'+) are determined from fully relativistic Dirac-Pock wave functions. The expectation values of
the r" operators, (r"), with n= —3, 2, 4, and 6 are given for the uranium ions. The possibility of
determining the ionization state by magnetic scattering experiments is discussed. The radial (j;p integrals

are used to analyze the experimental form factor of US determined by Wedgwood. Satisfactory agreement is

found by choosing a 5f' I, crystal-field ground state with a large internal exchange field inducing

ferromagnetism. Contributions to the magnetic scattering from 6d electrons are found to be negligible for

values of sin8/X & 0.2 A '.

I. INTRODUCTION

Information about the nature of the 5f electrons
in the actinides is essential for an understanding
of systems formed from elements in this part of

the Periodic Table. ' Akey question is whether
the 5f's are to be treated as localized or itinerant
(i. e. , by the energy-band method). Although

there have been a growing number of experimen-
tal and theoretical investigations of these mate-
rials, few direct determinations have been made
which yield information about the spatial extent
of the Sf electrons. Neutron magnetic scattering
experiments may be used to determine the mag-
netic form factor s of the actinides and thus,
through Fourier inversion, detailed information
about the spatial distribution of the magnetization
density. From such measurements one has a
direct means of determining the nature of the 5f
electrons in these materials, the importance of
bonding effects, and, in some cases, the magni-
tude of the crystalline electric field.

Few neutron magnetic scattering investigations
have been performed on actinides. The mag-
netic form factor of US was determined by Wedg-
wood using polarized neutrons. Single-crystal
measurements were also reported by Frazer eg

al, 3 on ionic UGz. Attempts at interpreting these
data from two different systems (US is metallic
and UO2 is an ionic compound) have revealed sev-
eral problems and have emphasized the need for
accurate relativistic (j; ) radial integrals with
which to formulate even a first approximation. ~

One of the major probl. ems in US is that whereas
the bulk magnetization measurements give a
moment of l. 55 pa /U atom, the neutron results

indicate a moment of (l. 70+ 0. 03) ps/U atom.
In this paper we present free-ion radial. inte-

grals of several U iona (3+ to 5+) obtained by
means of fully relativistic Dirac-Pock calcula-
tions. These radial (j;) integrals show several
interesting features which are used to describe
the experimental form factor of US. %e find that
the experimental data are well reproduced using
'the relativistic (j~) values tf one assumes a 5f
I', ground state with a large internal exchange
field inducing a moment of 1.7 p~. Comparisons
are also made assuming 5f' and 5f4 crystal-field
states. In the following paper, ' polarized-neutron
measurements of the magnetic form factor of UO2

in the paramagnetic state are reported; good
agreement with theory is obtained with the (j,)
integrals of this paper.

II. DIRAC-FOCK EQUATIONS FOR ATOMS

The relativistic counterpart of the Hartree-
Fock (HF) method is the Dirac-Fock scheme (DF)
in which the one-electron nonrelativistic Hamil-
tonian is replaced by the Dirac equation. This
approximate relativistic Hamiltonian is, of course,
not Lorentz invariant because the only electron-
electron interaction taken into account is the
classical C oulomb repulsion. Nevertheless, it
is the only one appropriate for the formulation of
the relativistic self-consistent field equations,
as has been previously pointed out. ' After the
radial wave functions have been calculated with
this Hamiltonian, the rel.ativistic interaction be-
tween the electrons may be partially taken into
account by including the contribution of the Breit
operator as a first-order perturbation correction
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to the total energy.
The relativistic one-electron wave functions

are conveniently expressed in the four-component
spinor form

+nl Jna
/ / /

/

9 nkms

(f 'q(r)){ „f (ir 'q(r)y, )
(1)

where the spin angular functions y~ are two-com-
ponent spinors which are eigenfunctions of the
single-particle operators P, j2, j„and k
=P(o' i+ 1) with /(1+1), j(j+1), m and 0, respec-
tively, as eigenvalues such that

i=I&I--', f=l~. -', I--', &=I-f+ll--'.
%e have used the matrices

where o„, o„o,, andI are, respectively, the
three Pauli matrices and the unit matrix of sec-
ond order.

The radial functions P(r) and q(r) are obtained
from a minimization of the total energy corre-
sponding to the Hamiltonian

X'= Q ( —ica,' v, + P,'c —Z/r, )+Q 1/~„,

with the constraint that the wave functions form
an orthonormal set; i. e. ,

l [~„,(~) p„,,(r)+ q„,(r) q„.,(r)]dr=5„, ,
0

where 5„„.is the Kronecker 5. For each electron
i, the components of o.; are the first three Dirac
matrices and P,

' is given by

electron wave function is built up as an antisym-
metric product which is an eigenfunction of only
the total angular momentum X=L+5of the sys-
tem. If, in the relativistic case, we should re-
strict ourselves to consider a single configuration,
this would imply that one is working in the pure
jj coupling scheme. Even for the heavy ions we
consider here such a scheme is not justified
since the Coulomb interaction is by no means
negligible compared to the spin-orbit interaction.

To overcome this difficulty, the most accurate
procedure to determine the wave functions would
be to consider total wave functions defined in in-
termediate coupling. While it is worthwhile to
undertake such a calculation for a detailed study
in some particul. ar atomic cases, we are dealing
here with atoms in a crystal and it would be mean-
ingless to calculate the wave functions for a given
term as accurately as we can while ignoring the
crystal field. Nevertheless, to be able to com-
pare relativistic with nonrelativistic results we
must not depend on different coupling schemes.

In the nonrelativistic case, a useful approxima-
tion in HF calculations is the concept of the aver-
age energy. ' In this approximation, the wave
functions are calculated not for each (I, S) state
but for the center of gravity of all the states be-
longing to the configurations under study. In the
relativistic case, it is straightforward to define
an average energy for a given jj subconfiguration,
but as mentioned above, we cannot consider only
a single jj configuration. This implies that we
have to average over the entire I.S configuration;
the most natural way to achieve this average is to
consider a weighted sum of average jj energies,
with weights being proportional to the degeneracy
of the subconfigurations —an extension which has
been proposed independently by several authors. "'3
Thus for the illustrative case of the (5f)' config-
uration we have

P =P-

The rest-mass energy of the electron (c2 in a. u. )
is subtracted from the Dirac one-electron Hamil-
tonian. The Breit operatox'

E'.(5f') =ei[25E-(5fvi2)+45E (5fvi25fsia)

+ 15E~(5fspa)].

In this expression E is the average energy for
a given jj subconfiguration defined as

is used as the relativistic interelectronic term
and is treated as a first-order perturbation.

As stated, since the Dirac Hamiltonian explic-
itly i~eludes the spin-orbit interation, the one-
electron orbitals are no longer simultaneous ei-
genfunctions of the orbital (I) and spin (s) angular
momenta, but only eigenfunctions of the total an-
gular momentum j =1+s. Using these one-elec-
tron Dirac four-component spinors, the many-

(5)E„=g(2Z„+1)E(Z„) g(2m+1),

E(J„)being the total en'ergy associated with the
J„th state.

The generalization to more than one open shell
is straightforward. Given the expression of the
total energy E the DF equations are obtained, as
in the nonrelativistic case, by varying E with re-
spect to the one-electron radial functions subject
to orthonormality constraints. The method of
solution'3 and a description of the program'4 have
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TABLE I. Expectation values (in a. u. ) of (r") for n= —3,
weighted average of Gf defined in Eq. (7).

2, 4, and 6 over the Gf~ (j=&), 5f (j =7), and a degeneracy

Ion Gf Gf 5f 5f" 5f Gf

U' 5, 630 2. 285 2. 392 2. 346
g 4 6, 240 l. 999 2. 074 2, 042
~5 6.834 1.800 1.857 1.833

10.318
7.310
5.631

&.4&

11.347
7. 873
5. 994

10.906
7. 632
9.838

83.220
44. 781
28, 229

96. 307
50. 019
30. 966

90. 544
47. 774
29. 793

been given in detail elsewhere and me shall not
discuss these points here. All the results me

present here have been obtained by using the gen-
eralized average just described above and are to
be compared with nonrelativistic calculations
using the average energy approximation.

III. RADIAL INTEGRALS FOR URANIUM IONS

Mixed configuration Dirac-Fock (MDF} calcu-
lations mere carried out for several ionization
states of uranium in the ground states correspond-
ing to the electron configurations 5f', 5f2, and

5f ', respectively. The resulting wave functions
may then be used to calculate a number of phys-
ically interesting quantities, i. e. , expectation
values of observable operators. Matrix elements
of one-electron radial operators, O~(r), are sim-
ply given by the expression

(o, &=j (p'( ) o'bl]o(r)«,

where P(r) and Q(r} are, respectively, the large
and small components of the relativistic one-elec-
tron radial wave functions defined in Eq. (l).

Table I presents our Iesults for the expectation
values of the r" operators, (r") for some uranium
ions; the results for n = —3 are needed for esti-
mates of the hyperfine interaction (or of nuclear
moment estimates if these are unknown) and the
results for n= 2, 4, 6 are useful in determining the
crystal-field splitting parameters. " Table I
shows (r") expectation values over the 5f" (j
=-,) and the 5f (j=+) wave functions as obtained
from the MDF calculations and a weighted aver-
age obtained from their degeneraci. es by

&r") =~ &r"),+~ &r").

The contraction of the 5f radial wave functions
mith increasing ionization state, as expected from
the increased effective nuclear charge, is clearly
evident from the values given in Table I. These
values of (r") may be compared with those deter-
mined from single determinant (j-j couphng} cal-
culations' based on both the Dirac-Fock and
Dirac-Fock-Slater (DFS) methods. In the latter
scheme the exchange integrals, mhich are treated
exactly in the DF method, are approximated by

the Slater p'~3 free-electron approximation. Our
MDF values agree to within a fern percent of the
DF values derived" from Mann's calculations,
whereas they differ appreciably from the more
approximate DFS values. "

We have obtained radial integrals (j;) for the
ions studied using the MDF solutions,

(i, &
= j (o'(~) Q'( ))) («)« (8)

where x is the scattering vector and j, (((r) is the
usual spherical Bessel function, In general, one
can show that the magnetic form factor can be
expressed as

«~}=&jo) g c(&j() (9)

where the c& coefficients are defined by the elec-
tronic configuration of the magnetic ion and the
experimental conditions. One difficulty in the
actinides arises from the fact that the spin-orbit
and crystal-field interactions are comparable-
unlike the case of the rare-earth ions for mhich
the spin orbit is dominant. Thus because of a
partial breakdomn in the Russell-Sanders coupling
the wave functions for the ions in a crystal. are
not simply expressible in the I SI,ZM) scheme but
instead may be a combination of different 8 multi-
plets. These complications may be treated by
the tensor-operator method based on the Racah
algebra formalism. '6 Various approximate treat-
ments include the assumption that the electron
states can be considered as Russell-Sanders con-
figurations (as in the case of the rare earths),
and the dipole approximation [valid for low (sin8)/).
reflections] that approximates f(~) by the first
two terms of Eq. (9). '8 As examples of the large
variation of c2 possible for the different free ions
in their Russell-Saunders ground state configura-
tions, we list in Table II some dipole approxima-
tion values of c2 along with the ordered magnetic
moments. The special ease of 5f (IVI = ISI = 2)
with L and 8 oppositely directed leads to some
peculiar results, as in the case~7 of Sm . This
configuration, however, is likely to be greatly
affected by mixing with the higher 4 states (nota-
bly 8=+ which lies close by) and this will reduce
the effective cz coefficient.
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FIG. 1. Radial (j&) integrals obtained with Dirac-
Fock solutions for U4'.

TABLE II. Coefficients c2 of Eq. (9) as given for the
various Hunds-rule Russell-Saunders ground states.
The ordered moment ILf,~t is also given.

Number off
electrons

Uranium
ionization

Us+

U4'

U2+

Configuration
2
+s/2

304

4
Isi~

'I4

'Hs/2

C2 +at

1.333 2. 14

1.500 3.20

1.750 3.27

2. 333 2.40

6. 000 0. 71

The different (j,) functions for U ' plotted in
Fig. 1 as a function of (sing)/X in A ' show the
trends expected: a rapid falloff of (jp) and peak-
ing of ( j; ) (for i & 0), but with diminished ampli-
tudes at increasing (sing)/X values for increasing
i. What is unexpected is the large dominant con-
tribution of (j, ) for (sing)/X &0. 5 A at which the
spherical part of the form factor ( jp) has gone
through zero and has changed sign.

Since the number of 5f electrons associated with
an actinide ion in a compound is uncertain, we need
to determine how sensitive the (j,) radial inte-
grals are to the state of ionization. These re-
sults for each of the ions studied are listed in
Table III. In this table we list only the configura-
tion average of the individual (j„)obtained for the
5f* and 5f radial solutions [cf. Eq. (7)]. For
easier comparison we show in Figs. 2-4 the (j,),
(j, ), and (j, ) values for the three U"' ions studied.

0. 0
0. 05
0. 10
0. 15
0, 20
0.25
0. 30
0. 35
0.40
0.45
0. 50
0. 60
0. 70
0. 80
0. 90
1.00
1.10
1.20
l. 30
1.40
1.50

0. 0
0. 05
0. 10
0. 15
0.20
0, 25
0.30
0.35
0.40
0.45
0. 50
0.60
0.70
0, 80
0. 90
1.00
1.10
1.20
1.30
1.40
1.50

0. 0
0, 05
0.10
0. 15
0.20
0.25
0.30
0.35
0.40
0.45
0. 50
0.60
0.70
0. 80
0. 90
l. 00
l. 10
1.20
l. 30
1.40
l. 50

1, 0000
0. 9579
0. 8434
0.6860
0. 5178
0. 36350
0.23589
0. 13852
0.06938
0. 0235

—0. 0041
—0. 0234
—0. 0181
-0.0053

0. 0069
0. 0154
0. 0200
0. 0212
0.0202
0. 0177
0. 0146

1.0000
0. 9631
0. 8612
0. 7161
0. 5547
0. 3000
0. 2667
0.1613
0. 0840
0. 0316

-0.0008
—0. 0251
—0.0205
—0. 0066

0.0071
0. 0168
0.0220
0.0235
0. 0224
0.0197
0.0163

1.0000
0. 9668
0.8740
0. 7390
0. 5845
0.4314
0.2952
0.1839
0.0999
0. 0412
0.0037

—0.0261
—0.0228
—0. 0081

0. 0070
0. 0179
0. 0239
0.0257
0. 0246
0. 0217
0. 0180

0. 0
0. 0167
0. 0600
0. 1140
0. 1628
0. 1963
0. 2117
0. 2108
0. 1978
0.1771
0. 1524
0. 1020
0. 0595
0. 0292
0. 0103
0. 0002

—0. 0037
—0.0039
—0. 0021

0.0006
0. 0033

U4'

0. 0
0. 0146
0. 0536
0. 1049
0. 1547
0, 1928
0.2142
0. 2189
0.2098
0. 1911
0. 1668
0.1139
0.0675
0. 0336
0.0121
0. 0006

—0.0040
—0. 0044
—0. 0024

0. 0005
0. 0035

U5+

0. 0
0. 0132
0. 0489
0. 0975
0. 1471
0. 1879
0.2138
0, 2234
0, 2184
0. 2024
0.1793
0. 1253
0. 0756
0. 0383
0.0143
0. 0011

—0. 0043
—0.0048
—0.0028

0.0004
0.0037

0. 0
0. 0001
0.0019
0.0080
0.0198
0.0362
0.0546
0. 0721
0.0868
0. 0974
0. 1037
0. 1047
0.0945
0.0785
0. 0608
0.0442
0. 0301
0. 0190
0.0108
0.0051
0.0016

0.0
0. 0001
0. 0014
0.0061
0.0158
0. 0304
0.0482
0.0666
0.0832
0.0963
0.1052
0.1102
0.1019
0.0860
0.0674
0.0494
0.0338
0.0214
0.0123
0.0059
0.0019

0. 0
0. 0001
0. 0011
0, 0049
0 ~ 0131
0. 0261
0. 0428
0. 0611
0. 0787
0. 0937
0.1047
0.1139
0, 1081
0.0928
0.0737
0.0545
0.0376
0. 0240
0. 0138
0.0067
0.0022

0. 0
0. 0000
0. 0001
0. 0004
0. 0018
0. 0049
0 ~ 0101
0. 0172
0. 0253
0. 0339
0. 0421
0. 0554
0. 0632
0. 0653
0. 0628
0 ~ 0571
0. 0496
0. 0414
0.0334
0. 0259
0. 0194

0. 0
0. 0000
0. 0000
0. 0003
0. 0011
0, 0034
0.0074
0.0134
0.0209
0.0294
0. 0382
0. 0538
0. 0641
0. 0683
0. 0670
0.0619
0. 0543
0. 0457
0.0371
0. 0289
0. 0218

0. 0
0. 0000
0. 0000
0. 0001
0. 0008
0. 0024
0. 0056
0. 0106
0. 0174
0. 0256
0. 0344
0. 0513
0. 0638
0.0701
0.0704
0. 0660
0.0587
0.0498
0.0406
0.0319
0.0241
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FIG. 2. Comparison of (jo) values for U', U', and
U5+
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FIG. 3. Comparison of (j2) values for U ', U ', and
U5+

We observe several striking features: the ( jo)
values for U~, U ', and U' are remarkably close
to each other and cross the zero line at almost
the same (sin8)/y value; the (jz) and (j,) values
are similar for the different ions, with small dif-
ferences between them in the region beyond their
maximum values. Thus we do not expect to be
able to distinguish between the different ionization
states of uranium on the basis of the radial de-
pendence of the magnetic scattering. On the other
hand, the coefficients c, in Eq. (9) will depend on

the crystal-field interaction and may provide a
method of distinguishing between different elec-
tronic ground states. Unfortunately, over most
of the accessible region of {sin8)/X (0.2-0. I A ')
the diPole aPP roxima tion ( jo ) + ea""' (jp ) is al-
most independent of the ionization state, This
independence occurs because as the ionization

0 O. l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I.O I.I l.2 l.3 l.4

Sln 8/k(A )

FIG. 4. Comparison of (j4) values for U ', U', and
Ug+

state increases the radial extent of the Sf elec-
trons decreases leading to an increase (Figs, 2

and 2) in the ( j& ) functions; but at the same time
the magnitude of e2 decreases {Table II). For
f~, f, and f~ this effective cancellation is almost
complete, but for f' the cm term is substantially
larger and leads to observable effects (cf. Sec.
rv).

As a crude estimate of the conduction-electron
contribution in the ease of metals we have cal-
culated the ( jo) radial integral from a 6d electron
by means of free-ion Dirac-Pock calculations
for several U ions containing Gd electrons. Fig-
ure 5 shows (jo) for the 6d electron determined
from the 5f~6d' configuration of U~ together with
the (jo) function for the 5f electrons. We see that
the 6d (jo) falls off more rapidly as a function of
(sin8)/X than does the 5f contribution and so gives
only a small contribution at the first reflection
observed for US (cf. Sec. IV), and essentially a
vanishing contribution beyond (sin8)/), & 0. 2 A

Therefore the Gd electrons which may be present
in US, do not contribute directly to the form fac-
tor„although they probably contribute to the bulk
magnetization. The Gd band electrons in US are
expected to be even less localized than the free-
ion result presented and mill have an even more
rapid falloff with (sin8)/X. Estimates have also
been made of the 5f-6d mixing term in the form
factor expected from hybridized 5f and Gd bands.
This contribution is found to be small, although
their anisotropic contributions at some reflections
may be observable.

IV. COMPARISON WITH EXPERIMENT: US

Early experiments by Curry" on UN, Frazer
et al. 3 on UO2, and Sidhu et al. '9 on UP, showed
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I
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that the unpaired electrons belong to the 5f shell.
To measure the magnetic cross section more ac-
curately, Wedgwooda examined single crystals of
ferromagnetic US with polarized neutrons. Ac-
curate magnetic cross sections have not been
measured for transuranium ions, primarily be-
cause of the lack of single crystals. In this sec-
tion we reanalyze Wedgwood's data, with the new

radial functions. The earlier experimental re-
sults"'" were not accurate enough to warrant a
new analysis with our relativistic (j, ) radial func-
tions.

As is well known, an elastic magnetic cross-
section measurement determines gf(a) where p.

is the magnetic moment and the form factor f(y )
is a function of the scattering vector z [ it i

=4m(sine)jx]. Since f(0) = 1 the values of pf extrap-
olate to p, as v - 0. However, neutron measure-
ments are rarely possible at I(. = 0 so for para- or
ferromagnetic materials the value ]L(. is taken from
bulk magnetization measurements. For US the
magnetization value' is 1. 55 ps/(U atom) but Wedg-
wood's neutron data suggest a value between 1.67
and 1.72 p~. This discrepancy is not fully under-
stood; similar effects in the 3.4 transition metals
are commonly viewed as a consequence of con-
duction- electron polarization. The neutron ex-
periments sense only the local moment, whereas
the total moment (local+diffuse) is measured at

FIG. 5. Comparison of (jo) for the 5f and 6d electrons
in the configuration U (Gf, 6d ).

I

I.O —- ~

y

Ox
0.8—

O %

0 ~

(

o EXPERIMENT

o THEORY 5f2:Fj

0,2—

I

0.2
) I i 1 )

04 06

FIG. 6. Magnetic form factor for US. Solid points
are from Wedgwood (Ref. 2) using a magnetic moment
of 1.70]Lfz. Open points are obtained with a 5f 04, I )
plus exchange model and the (j&) integrals of Fig. 1.
The broken line is a smooth curve drawn through the
theoretical form factor of the Gf I4 configuration.

v = 0. In analyzing the US data the extrapolation
to v = 0 depends on the magnetic form factor and
hence on the particular choice of (j, ) functions.
For models involving f~ and f3 configurations we
find, in agreement with Wedgwood, that 1. '70 pa
is the best value. For f' configurations the best
value of p is somewhat lower (-1.63 pe) but our
analysis shows that f is an unlikely configuration.
Assuming p, = l. VO p~ the experimental form fac-
tor f~, is given in Fig. 6.

The magnetic cross section has been calculated
with the tensor-operator method. 6' ' We have
considered models for US that involve f2, f', and

f ' configurations and obey Hund's rule and Rus-
sell-Saunders coupling. Chan and I am~2 have
shown that for f~, f', and f4 configurations the
Russell-Saunders state makes up at least 80% of
the true ground state, so that the use of a single
J manifold is certainly valid until more detailed
information on the electronic ground state of US
becomes available. In all calculations to be re-
ported the diagonalization is such that p, i[[111].
Since in the actinides the crystal-field interac-
tions are larger than in the lanthanides, we have
made the Lea, Leask, and Wolf2 (LLW) param-
eter 8' sufficiently large to prevent any mixing
between the ground and excited states, except in
the case of the F, singlets and the F6 doublet.
The F, singlets are nonmagnetic so that gl/ the
moment comes from mixing with the excited
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TABLE IV. Wave functions and information used in calculating magnetic cross section of US.
The quantities c2, the coefficient of (j2) in f(I('), and (Df)«, the mean deviatio~ between theory and
experiment are discussed in the text. Ex in column 2 denotes that the application of an exchange
field is necessary to produce the given p.

Ionic
conf iguration

Crystal-
field

ground
state Wave functions ga& I M&

LLW
parameter

Cp

p for
(p~) o" = -' (b,f)

H4

f4 'I4

I'8+ Ex

I (&)
8

I (2)
8

I')+ Ex

+ 0. 836 I ~ ) —0.4671 2 ) —0. 287 I
—2 )

+ 0. 787 I
2 ) + 0. 610 I p ) —0. 086 I

—2 )
—0. 617 I p) + 0. 778 I 2 ) —0. 110 I

—2 )
+ 0. 046 I

—-')

+ 0, 911 I 3) —0. 376 I 0 ) —0. 170 I
—3 )

+ 0. 720 I 4)+ 0. 68011)—0. 1361 —2)

I'~ + Ex + 0. 878 I 3 ) —0.410 I 0 ) —0. 249 I
—3)

+ 0. 721 I 4)+ 0. 678 I 1)—0 ~ 135 I
—2)

—0. 9

+ 0. 9

—0. 8

+0. 8

1.70 1.606 0.013

2. 00 1.671 0. 025

1.70 1.741 0. 039

1.76 1 ~ 857 0. 018

—1.0

+1.0
1.44 2. 195 0. 031

1.50 2. 303 0. 035

+ 0. 74 1.88 1.757 0. 022

states. Similarly, the I'6 doublet can support
a moment of only 1. 33 p~ and considerable mix-
ing is required to obtain a moment of 1.70 p~.
The LLW parameter x, which is related to the
ratio between the fourth- and sixth-order crystal-
field potentials, has been kept to values Ixl ~ 0. 7
to reflect the predominance of the fourth-order
interaction. The form factor is essentially in-
dependent of x provided 0. 75 &

I xl & 1.00. We
list in Table IV the crystal-field ground states
for each of the ionic configurations considered,
their normalized wave functions (labeled by their
magnetic quantum numbers M;), and the calcu-
lated magnetic moments for these states, where

factor for the I', state is shown in Fig. 6 and is
clearly in good agreement with experiment. ' For
the I', ground state more anisotropy is present
in the calculated form factor than is observed ex-
perimentally. A similar situation occurs for all
three f configuration ground states. The best
overall agreement for f is obtained with I'~I ', but
the anisotropy predicted by this state is in poor
agreement with experiment as shown in Fig. 7.
Here we have selected reflections that have the
same value of ) z I and have subtracted the form
factors, i. e. , cf=f(x,) -f(x2), where lx, l

=

label.

Certainly Fig. 7 argues strongly against the I'8"'
state being correct, in spite of the reasonable

p= p, =alga;M;,

and g is the Landb splitting factor. In column 6
we give the coefficient of ( j2) for 6= —,'v, where 8
is the angle between the moment direction and the
scattering vector. In the expansion of the form
factor given in Eq. (9) the coefficients c, and c,
are usually small and the form factor is especially
sensitive to the coefficient cz of (j2). In the last
column we give the mean deviation between the
calculated and observed form factors,

(cf) = Q [(f.„f,„,),'/n]'~', -
where the sum is over all n reflections. For
comparison, the value

I I I

US
+ 006 $ EXPERIMENT

~ 5)2. 1
+0.04—

L ' 8
+ 0,02—

0

-0.02—

-0.04—

-0.06—

I I I

0.2 0.4
I I I

0,6

k k

I I

0)S IO

is 0. 006.
For the f~ configuration the ground states are

I', plus exchange and I', . The theoretical form

SIn ei) (A-')

FIG. 7. Illustration. of the anisotropy of the form fac-
tor in US, and comparison with two of the theoretical
models. Each point is derived from the diff erence in
the form factor between two reflections at the same value
of (sin&)/W.
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overall agreement. For the f configuration the
values of p. in Table IV are found to be too low.
A greater exchange interaction leads to the free-
ion state, for mhich c~ = 2. 26. Two strong objec-
tions to choosing an f configuration are that the
U ionization state is unstable, and that the co-
efficient of (j,) is sufficiently large to produce a
more expanded magnetic form factor than ob-
served. We illustrate this in Fig. 6 with the
broken line that lies significantly above f~, for
0. 15 & (sin8)/x & 0. 45 A '. The agreement between
f~, and f„„for both f states may be improved
by reducing the value of the experimental mag-
netic moment, and thus increasing f,b, by a con-
stant scale factor. Unfortunately, no uniform
scale factor will improve the agreement. For ex-
ample, a reduction of p. by 5% to I. 62 ps leads to
agreement in the range 0. 35 to 0. 5 A ' but to se-
rious discrepancies at lower angles.

In conclusion, we must emphasize that in the
absence of relativistic solid- state calculations
for the actinide compounds and information re-
garding the nature (localized vs itinerant) of the
5f electrons, we have given an analysis based on
a localized Sj crystal-field description. ~2 Davis26

has performed nonrelativistic energy-band cal-
culations which emphasize the band approach and
indicate that the Sf electrons in compounds such
as US possess a reasonable degree of itinerancy.
In addition one would expect, just as in the case
of the lighter actinide2~ metals, that this mould
be accompanied by a certain amount of hybridiza-
tion mith the 6d and 7s band electrons. These
effects were considered in Sec. III within the
crude free-ion model and estimated to give very
small contributions to the magnetic form factor
except at (sin8)/lb. = 0. On the other hand, hybrid-
ization effects can make significant contributions

to the observed magnetic moment. The smaller
moment observed in the magnetization measure-
ments compared with the neutron moment is con-
sistent with this mechanism provided there is an
antiferromagnetic exchange coupling between 5f
and 6d band electrons. As is shomn, ~' interband
mixing gives rise to just such a negative exchange
interaction which can be dominant over the direct
band mixing if the two bands are close together
in energy. Whether this mechanism is operative
here amaits further extensive investigation.

Our analysis of the results of the polarized-
neutron experiments on US suggests that the Sj,
1", plusexchangemodel is the most appropriate. ~~

In recent calculations on UOz me have considered
the effects of intermediate coupling and J mixing
on the magnetic form factor. For the f2, f3, and

f configurations the effects are relatively small,
except at large values of (sin8)/X, where the
anisotropy of the form factor is increased by the
inclusion of higher 4 states. We do not believe
that such calculations for US mould significantly
affect the agreement with the Sf' model. Our con-
clusion, therefore, agrees with Wedgwood and,
in addition, we have provided a quantitative fit.
In the region 0. 5&(sin8)/X &0. 7 A ', the values
of f,„appear to be systematically greater than

f„„,suggesting discrepancies between the (j, )
functions as derived for the free ion and those in
the solid. A serious physical objection to the I y

ground state is that me must understand the origin
of the internal exchange field that overcomes the
crystal-field interaction separating the I, and I'4
states and causes ferromagnetic ordering at 178 K.
However, until more information on these param-
eters becomes available (for example, through
spin-wave measurements) further discussion is
unwarranted.
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Foundation. .
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