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While a nonzero spontaneous magnetization m cannot exist in a d = 2 Heisenberg spin system, it is possible

that a phase transition associated with a divergent susceptibility occurs at the Stanley-Kaplan temperature

T,".The crossover from this special isotropic case to the anisotropic (Ising) behavior is studied using a Monte

Carlo technique. The classical model with Hamiltonian 0 = —JX[(1—5)(S",S," + S)S,') + S;S,] on N X N

square lattices with periodic boundary conditions is investigated for N & 100 and 5 varying from 0.005 to 1.

The spontaneous magnetization m, energy, specific heat, longitudinal and transverse susceptibilities, and the

self-correlation are determined over a wide temperature range. For weak anisotropy d I/d T decreases

nonmonotonically with increasing temperature and deviations from simple spin-wave theory occur at

surprisingly low temperatures. Transition temperatures T,(h) exceed the isotropic value T,"predicted by

series expansions although the values would also be consistent with T," = 0 if T,(h) ~ ~ln(1/h)~ '. The

asymptotic critical exponent for the order parameter is P = 1/8 for all b. The susceptibility data show

crossover from y = 1.75 near T,(h) to higher values farther from T,(h). It is shown that finite-size rounding

may lead to erroneously large estimates for P and erroneously small estimates for y. These effects may

invalidate some conclusions drawn from experiments on planar systems, too. Accepting the series estimate

ka T,"/J = 0.588 we find that the data are consistent with T,(h) —T," ~ b, "~ with $ —4. Assuming power-law

behavior we show that our data obey crossover scaling with two-dimensional Heisenberg exponents yH —3,

aH ——2 in the isotropic limit. The data are also consistent with scaling theory based on the assumption of
singularities which are stronger than any power law.

I. INTRODUCTION

The questions concerning magnetism in two di-
mensions have been a challenge for many years-
and still are t —to both theorists and experimental-
ists. In the anisotropic case, the exact solution of
the 8=-,' Ising model" presents an example of a
second-order phase transition, where the order
parameter (spontaneous magnetization m} behaves
as m~ I 1 —T/T, (1)I~, P= —,

' near the critical tem-
perature T,(1), and the susceptibility X diverges
also with a power law, }i~ I 1 —T,(l)/Tl ", y=;.
In the isotropic Heisenberg model as well as in the
XT model and related problems rigorous results
owing to Mermin and %agner' and Hohenberg~ ex-
clude the existence of a. nonzero spontaneous mag-
netization at any nonzero temperature. However,
another type of phase transition at a nonzero T,(0),
where the response properties of the system with
respect to external fields, etc. , change, cannot
be ru1.ed out: It was suggested'6 on the basis of
high-temperature-series extrapolations that y di-
verges at T,(0) W 0, implying infinite X for T & T,(0).
This work, ' however, as well as a more recent
analysis' cannot completely rule out T,(0) = 0.

While these extrapolations are based on the as-
sumption of a power-law singularity, Camp and
Van Dyke reanalyzed the same series assuming a
y= C~expIC3[1 —T,(0)/T] "jbehavior. It is found
that this assumption accounts better for the actual
behavior of the series-expansion coefficients,
especially in the case of the plane rotator (i. e. ,
XF) model; in the Heisenberg case T,(0) o 0 and

v = 0.8 was suggested. ' Her ezinskii' and Koster-
litz and Thouless ~ presented theoretical arguments
for such a transition (destruction of "topological
long-range order"~ ) on the basis of long-wave-
1ength low-temperature approximations in the plane
rotator model. %hile Her esinskii also suggests
a phase transition in the Heisenberg case, Koster-
litz and Thouless" suggest that no transition
occurs

Substances whose magnetic ordering is (nearly)
two dimensional have thus found great experimen-
tal attention as expected. A material which is
particularly close to the two-dimensional isotropic
Heisenberg case seems to be K~Nip4, where a ratio
(anisotropy energy/exchange energy) =

3+0 is
quoted, ' and the interplanar coupling is still
smaller. ' On the basis of the "universality
ideas"" one would expect that near T, the anisot-
ropy should dominate, leading to Ising-like values
for the critical exponents. %'hile this expectation
is born out reasonably well for the order param-
eter'4 (P=O. 138), the results~ for susceptibility
(y= 1.0) and correlation length (v=0. 59) cannot be
accounted for by theory: one rather expects a
crossover" between the Ising values (y= 1.75) and
higher values (the above-mentioned references"
would lead to estimates in the range 2. 5 & y~ & ~
for the susceptibility exponent of the Heisenberg
model}.

Clearly the crossover from the ordering aniso-
tropic case to the nonordering isotropic case re-
quires careful theoretical study. It is this prob-
lem which will be dealt with in the present paper.
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This problem has been studied extensively already,
using spin-wave theory, ' ' Green's-function de-
coupling, ' ' ' series expansions, ' and Monte Carlo
calculations. "22. Spin-wave theories and Green's-
function decoupling techniques cannot yieM reliable
information on critical properties, of course. The
available seriesao are very short (five terms)a'
and also the Monte Carlo results' refer to ex-
tremely small systems (10&&10 lattices) and are
based on very short Markov chains, thus these re-
sults could not give conclusive information on the
critical properties either.

In order to study the critical properties of weak-
ly anisotropic Heisenberg magnets we thus made
more extensive Monte Carlo calculations, studying
N&& N lattices with periodic boundary conditions,
continuing earlier studies of three-dimensional
systems. We used N= 25, 50, and 100 in order to
estimate the influence of "finite size rounding and
shifting"~' effects on the phase transition. It has
been shown in earlier work '~ that these effects
are rather impoxtant, and that they can in fact be
accounted for '2~ by finite size scaling theories. 35

We always use Markov chains with a length of
several 100 Monte Carlo steps per spin, which
gave reasonable accuracy in spite of the slow con-
vergence observed earlier, 22 which is discussed in
the light of the dynamic interpretations of the Monte
Carlo process s'3 In Sec II we now describe the
method and the model and in Sec. III we summa-
rize the main predictions of the theories enumer-
ated above, while Sec. IV gives our computational
results and a detailed comparison with these pre-
dictions, and See. V contains the conclusions.

II. MODEL AND SIMULATION TECHNIQUE

The model studied is described by the following
Hamiltonian' '

H = —JQ [(1—4) (S";S1+ S,'Sy)+ S,'S1],

where 8, is a unit vector in the direction of the
classical magnetic moment at lattice site i, the
sum is extended over nearest-neighbor pairs on
the square lattice, J being the exchange constant,
and h characterizes the amount of (unaxial) an-
isotropy.

(6=0 is the isotropic Heisenberg case, 6=1 the
Ising case. ) In most experimentsll'15 one has
single ion rather than exchange anisotropy, and
spin quantum number 8=1 rather than S=~, but
in the spirit of the universality ideas'5 one expects
very similar critical behavior. Since our model
is classical (i. e. , S = ~) the predictions for an anti-
ferromagnet correspond precisely to those of a
ferromagnet, i. e. , the magnetization for J'&0 is
equal to the sublattice magnetization for J & 0, etc.

In the Monte Carlo computer experiments one

generates a Markov chain of spin configurations,
using suitable transition probabilities. As a
starting configuration we always used a completely
ordered ferromagnet. The sites of the lattice
were considered in turn for a random choice of the
orientation of a spin. In order to save computing
time, the same procedure is carried out simulta-
neously using the same random numbers for four
lattices at different temperatures. The change in
energy 5H which would result from this change was
calculated from Eq. (1). If e 6"~~a r exceeded a
random number p in the interval 0& p&1, the change
was permitted while otherwise it was rejected.
This process is denoted as a "Monte Carlo step"
and had to be repeated many times. This pro-
cedure corresponds to a numerical solution of the
relaxation according to the following master equa-
tion for the probability P(A„. . . , A„.. . , A„~, I)
of the spin configuration'8'

d—P(Q1, . . . , Ql, . .. , Q~P, f)dt
N2

= —2 fd((((('(((, —((')('(((„.. . , 0„,. . . , 0, t(
1=1
N2

+ g Jd((,'(( (((,'- ((,)~(((„.. . , ((l, . . . , a, , (),
(2)

where 0, is the solid angle characterizing 8, and
the time t has to be measured in Monte Carlo steps
peI' sp111. The 'tl'allsl'tloll probability W(A( Ql) ls
in our case given by min[exp(- 5H/ka T), 1]. Since
8' satisfies the detailed balance principle with the
probability Po(x: e"~ ~3 according to the canonic
ensemble, Eq. (2) is ergodic by construction. In
the Monte Carlo runs one takes averages for any
quantities of intex'est over a number of configura-
tions generated in this way, which thus present
time averages of the stochastic model Eq. (2).
Convergence problems clearly occur if the non-
equilibrium relaxation time characterizing the ap-
proach to equilibrium 7„ is very large, since then
a large number of initial configurations has to be
omitted from the average. Since the tx eated sys-
tem is finite, the fluctuations around the equilib-
rium also affect the accuracy. For example, for
the order parameter (m) one finds the following
error estimate28 ":

((~~)'&—= , u, rx(1+2~.), r.y«&1,2= 1
nN3

where n is the number of Monte Carlo steps per
spin and r, the relaxation time of the fluctuations
in equilibrium. According to the conventional the-
ory of slowing down one expects v, =const&A&Ty,
the constant being of order unity in our units. Thus
again a large susceptibility makes it very difficult
to obtain results of reasonable precision.
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The quantities recorded in our simulation were
"susceptibility" y defined above T, by

the root-mean-square magnetization (m') '~
-=N '(ke TX)'~', the transverse susceptibility

III. THEORETICAL BACKGROUND

A. Spin-wave predictions

Here we summarize the predictions of first-or-
der spin-wave theory, which are readily obtained
by standard techniques. ' ' ' The spin-wave
frequencies of an anisotropic spin p ferromagnetic
square lattice with nearest-neighbor interactions
J are

(up (k) = Pd''8[2 —(1 —6) (cask, + cosk„)], (4)

while for the antiferromagnet we have

ar„r(k) = 2I J'I s[4 —(1 —&) (cosk„+cosk„)']'
(5)

where the lattice spacing was taken to be unity.
From Eq. (4) one obtains for the magnetization
per spin (gee = 1, 5= 1)

M= 8- — dk„dk„, 6

the self-correlation

((s.)'& = (,„,p((& .)' ~ (s .)']),
the energy (E& [see Eq. (11)below] and the specific
heat per spin C/ke = (&/ke T) (&E &

—&E& ).

kBT 4m kB T
I J I In(1/5) I J I

(lo)

A similar region of validity for the spin-wave
approximation was quoted by Mikeska. " It should
be noted that for the values of 4 considered here
this temperature T "is of the same order of mag-
nitude as the mean-field critical temperature
T," =Sill/Sk|(. Since the actual critical tempera-
ture T,(n.) satisfies the relation T, (r(,) «T,"F, one
expects the spin-wave approximation to be a valid
description for a broad range of temperatures
(T(0.5T, in"'" K,NiF, ).

Next we consider the reduced energy

&E& =——', (&S,(0, 0)S,(0, 1))+ (S,(0, 0)s, (1, 0))

+ (1 —&)[S,(0, 0)S„(0,1))+ &S„(0,0)S„(1,0)&

+ (S (0, 0)S,(0, 1))+ (S„(0,0)S,(1, 0)&]], (11)

where the arguments of the spins denote their lat-
tice coordinates (the origin being averaged over
the lattice). From formulas analogous to those of
Watson et al.

(S,(0, 0)s, (l, m)& = &S (0, 0)s„(l, m)&

dk„ dk„

+t/2 4 if/2 4
"4—(1-n)i(cosk, + cosk„)3

'dk„dk„
(9)

It is easy to see that Eqs. (7) and (9) are equiva-
lent, as expected in this classical limit, and hence-
forth we consider the ferromagnetic case only.
Since for 6- 0 we have K(1 —b,)- —,

' 1n(1/n, ), one
expects that the spin-wave approximation is valid
as long as

which gives for S - ~, J'S = J,
M kBTm= —= 1- dk dk
g »J wf

cos(lk„+ mk„)
x 4 —2(1 —4) (cosk, + cosk, )

(12)

x 1 kBT 1
4 —2(1 —4) (cosk„+ cosk„) J 2w

= 1 — —K(1 —6),

(7)
where K(x) is the elliptic integral of the first kind.
Similarly one obtains for the antiferromagnetic
sublattice magnetization

Mst = + p
— dk» dk&

&E& =1—k (14)

i. e. , in first-order spin-wave theory the energy is
independent of the anisotropy. ' From Eq. (12) it
is also straightforward to obtain the self-correla-
tion

&S,(0, 0)S,(l, m)& = m + O((keT/I JI ) ), (13)

one readily obtains using Eqs. (7) and (11)-(13)

4 I J '
I s (d„p (k)x coth "F

(d„F(k) 2ke T

which gives for S - ~, J'8 =J,

Mt kBT1 1
S IJI 2 2m

(6)

((s,)'& =1-m

and the transverse susceptibility

x, =
k T QI &s, (o, o)s„(f,m)&+(s„(0, 0)s„(l, m)&I

1

B l, tn

1
2I JJ~ '

(15)

(16)
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which are easily evaluated numerically.

B. Crossover scaling predictions

Following standard treatments of crossover
scaling for exchange anisotropy, ' ' we first con-
sider the case where it is assumed that in the
isotropic case (6 =0) a phase transition occurs at
Tf,"= T,(0}, the divergence of correlation length,
susceptibility, etc. , being characterized by power-
law singularities with exponents vr„y„, etc. We
assume that ordinary scaling laws hold (the ex-
ponents P„and 50 are then a meaningful charac-
terization for the scaling functions in the presence
of a nonzero magnetic field h). Then the crossover
scaling hypothesis states for the "susceptibility"
X= XII+X'

X(T, h, 4) = j)"fX /(/6&ff', hf6 // //),

where

f,= [T- T,(0)]/T, (0),

(ls)

(1S)

and Q is the crossover exponent. Except for Q all
unsubscripted exponents are the two-dimensional
Ising exponents. The asymptotic behavior of the
scaling function xv(x, y) is characterized as follows:

x,(,o) = c„, x,(x, o) = x',
I
x —x, l-", x- x, . (2o)

Here C~ denotes the critical amplitude of the sus-
ceptibility of the isotropic Heisenberg model, y is
the Ising model susceptibility exponent, X', is a
constant related to the critical amplitudes of the
susceptibility near T,(4), and x, is defined by

x =n-"'f =r-'/6[T, (r) —T,(0)]/T, (O);

note that this implies that the "shift exponent" is
given by 1/P

Equations (S)-(16) refer to an infinite system.
In finite systems in zero field there is no sponta-
neous magnetization and thus the spin-wave ap-
proximation is mathematically not well defined. A

rough estimate of finite-size effects at low tem-
peratures may be obtained, however, by explicitly
evaluating the summations which were replaced by
integrals in Eq. (S)

f 1v
dk x dk AT2

7T p p iv $1 l 1

for the transverse susceptibility

xi(»» &) = f7i "xoi(fo& "'
~

hf6o'"'")
~ (24)

with Xf,(~, 0)= —,'CH but X6L(x, 0) finite at x,. This
immediately yields

X,(T,(S},O, ~}= x,"fX~(x„O)d. "H" .
A similar procedure may be carried through for
the order parameter m,

m(T, h, 5) = ff//m&(f&h 6, hf& // //); (2s)

since the isotropic spontaneous magnetization
m(T, 0, 0} vanishes identically we have to require
that m6(x, 0)-0 as x- ~ as well as mv(0, y) -0 as
y-0, of course. On the other hand we have

mv(x, o)=mv(x, —x)', x-x, , (27)

((S )6) I + fl-u//f (0&(f n-1/6 hf-6//6H)

where P is the Ising-model order-parameter ex-
ponent. This y ields

m(T, 0, n) = m6x //~' // ' 6([T,(~) — T( )0]/ T( )0j',
(2s)

i. e. , the critical amplitude 8(6)~ n 66// 6"6. Sim-
ilar arguments for the specific heat yield

c(T, H, &)/ka
I fvl Hc, (f ~-'"

hl f
I

'H'H)

(20)
In analogy to Eq. (20} we require

C6(+ ~, 0) = A'„, C6(x, 0) = C fl x —x, I
~, x —x, .

(so)
The + sign refers to amplitudes above and below
T,(0) or T,(a), respectively. The prediction for
the specific-heat amplitudes is [C(T, 0, 6)
= A'

I 1 —T/T, (r6) I ]

A'= C'x- ~~"-~~'"pXc

More care is required in the discussion of the
self- cor relation. Since the renormalization-group
analysis proved the following structure for the
Fourier transform G(k) of the correlation func-
tion':

G(k) = G6k + G, (k) f + G6(k)f'+ ~ ~ ~

(22)
k 0, f= T/T, —1-0, kf "-~

and assuming that G(k) is regular in f outside of
this scaling limit, one expects the following be-
havior from an integration of Eq. (32) over the
Brillouin zone:

T.(a) —T,(0) (22) +f f (f 4, hf //H)+ ~ ~ .

C =X Q H g 8—Xp c (22)

Since X6(T, 0, 0)= —,'X(T, 0, 0), we find similarly

From Eqs. (18)-(20) one obtains the following
relations for the critical amplitude of the suscep-
tibility for Ao0 [X(T, 0, 4) = C'11 —T/T, (&) I "]:

The term &p has to be included in the analysis,
since n~ —if such a phase transition exists at all
in the Heisenberg model —is probably strongly
negative, and thus 6p & is not the leading temper-
ature dependence. The critical value of the self-
correlation follows from symmetry. Since f6 '(x,o)
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and fo"'(x, 0) should be finite (and nonzero) at
x = x„one immediately predicts

[((S )2) (] x (-0//f (0) (x 0)n(1-uB)/(t

+x f "'(x„O)n"'+ (34)

ent investigation to determine if the data can be
consistently interpreted in terms of at least one of
these scaling analyses, and to extract estimates
for the corresponding exponents.

This rather conventional scaling analysis has to
be modified, however, if the correlation length

$~ d;verges exponentially fast ' ' instead of fol-
lowing a power law, however. Kosterlitz sug-
gested' that scaling relations remain valid, how-
ever, if E'p & is replaced by $~. Thus we rewrite
Eq. (18)

X(T k n)= g Xo((
(n-)/( k$ B B) (35)

where in the case of power-law singularities

yB YBI~B 0 AI~B PB PBI~B +B +Bl B

If instead of power-law singularities we have '~'
A4= &B exp(«o" } (38)

where c is a constant and v is a new exponent; vH,

y» p» (t}, and n~ become meaningless, but 6»
pB, y» 5„, ))B, and Q are still meaningful expo-
nents. It is easy to see that one then obtains for
the shift of T, from (H'4 ' ~ = x', that

[T,(&) —T,(0)]/T, (0) ={c/[In(gx,'n. '/~) ']]' ", (37)

i. e. , a complicated logarithmic behavior. But one
still obtains rather simple amplitude predictions:
Eqs. (23), (25), (28), (31), and (33) are replaced
by

C' ~ 6 "B/,
X (T,(n), 0, n) (x: n, "B

B(b.)~n B o, A'~n ~B

[((S ) } 3]r (s) n B
~

If Qz, yz, and Q have finite values, these am-
plitude predictions still imply simple power laws.
In the case where Q would turn out to be zero, but

n~, p~, and y~ are nonzero, it may be recom-
mended to use a scaling representation which is
intermediate between Eqs. (18) and (35), i. e. ,

X(T, k, ~)=(-„" X,(e,n-"', k~'„"'") .

(38)

(39)

In this case one would retain a simple power law
for the shift exponent [Eq. (22)], while one would
get power-law predictions for the logarithms of
the amplitudes instead of for the amplitudes them-
selves, e. g. ,

ln X,(T,(n), 0, n}= In[)"„BXo (x„o}]+cyBx, "n "/~.
(4o)

If T,(0) = 0 it may be that either one of these pos-
sibilities [Eqs. (18), (35), or (39), respectively]
still holds, if T,(0) in the denominator of Eqs. (19),
(21), (28), and (37) is replaced by T,", for in-
stance.

It will be one of the main objectives of the pres-

IV. RESULTS OF COMPUTER EXPERIMENTS

A. Raw data and their analysis

In view of the difficulties reported previously' '

in two-dimensional Heisenberg systems concern-
ing the accuracy of the Monte Carlo method, it
seemed important to consider the time correla-
tions between subsequent configurations (cf. Sec.
II). In Fig. 1 we show some raw data on m, (t)
= (I/N ) g S', (t) as a function of t Sim.ple inspec-
tion of such plots already shows the problems in-
volved: Subsequent values of m, (t) are indeed
strongly correlated, and the correlation time ex-
ceeds the associated values of k~TX distinctly,
especially for small b. Thus the conventional the-
ory of slowing down seems particularly bad in this
case, although all these data are far away from the
respective critical point. ' A possible interpreta-
tion is that the relaxation becomes quite slow al-
ready in the vicinity of kB TIJ= 1, i. e. , in the
vicinity of the mean-field critical temperature,
where the probability factor for spin flips, e '
may already be very small in unfavorable cases.

Another effect limiting the accuracy of our in-
vestigation was the occurrence of "metastable
states" with strong magnetization in the x (or y)
direction below T,(t),). Owing to the symmetry of
the Hamiltonian [Eq. (1)] such a transverse mag-
netization should average to zero much quicker
than m, (t). ' However, if such a state occurred
its lifetime turned out to be too large to observe
its decay. Such states were found for b =0.02
and for N= 25, but not for N= 50 or 100; for 6
=0.01 they occurred at some temperatures both
for N= 25 and 50, while the results for ¹ 100 re-
mained unaffected. For 6=0.005, even some of
the data for N= 100 were affected, and still larger
systems would be required to obtain more reliable
results. In such metastable states the energy was
very close to the equilibrium value, while the val-
ues of root-mean-square magnetization, self-cor-
relation and, of course, transverse susceptibility
were erratic. It is unclear to us if these states
have to be interpreted in terms of domain-wall-
like or vortexlike' excitations, and clearly a more
detailed study of these effects would be desirable.
Nevertheless, the situation is in general much
more favorable than in the fully isotropic case,
where no spontaneous magnetization exists and thus
the susceptibility and therefore fluctuations are
extremely large at low temperatures. For non-
zero 6 and N not very small a spontaneous mag-
netization is metastable at low temperatures, and
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FIG. 1. Raw Monte
Carlo data of the z com-
ponent of the magnetiza-
tion plotted vs time [in
units of Monte Carlo
steps (MCS) per spin).
The curves through the
points are only guides to
the eye. Three runs with
different values of 6 or
J/ksT are shown. Mag-
nitude of the fluctuations
of m (t) determines Xiii
the susceptibility with .

respect to the z direction.

therefore fluctuations are much smaller.
Figure 2 shows data for the root-mean-square

magnetization for three anisotropies, and Fig. 3
shows corresponding curves for the energy (E).
Both diagrams indicate that rather precise smooth
curves could be obtained, which show distinctly the
change as b, is varied. For the sake of clarity the
other data for 4=0. 05, 0.02, and 0. 005, which
look quite similar, have been omitted. While dis-
tinct finite-size effects are seen in the curves for
(m')'~, the finite-size effects on (E) were too
small to be observed. In Fig. 2 we included spin-
wave asymptotes for 4 = 0.01, calculated from
Eqs. (7) or (17), respectively. While on the basis

of Eq. (10) we had expected that spin-wave theory
should be safely valid for T&0. 1Ts", i.e., T&0.4T„
or AT/J~0. 27 since bsT /J=2. 78, it turns out
that dramatic deviations occur at much lower tem-
peratures t A similar result can be seen in Fig. 3,
where the spin-wave asymptote [Eq. (14)] should
fit to the data for all 4 at low temperatures, while
in fact the spin-wave asymptote agrees only with
the data for b =0.01. In the previous investigation
of Patterson and Jones' the size of the systems
was too small (N= 10) and the accuracy too poor,
and therefore these deviations were overlooked.

In order to study this surprising effect in more
detail, we present our low-temperature data on
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FIG. 2. Root-mean-
square magnetization
(m ) plotted vs tem-
perature, for three values
of A. In the case of b,
= 0. 1 data both for N = 50
and N = 100 are shown.
Arrows denote our best
estimates for T,(A) of an.

infinite system. Full
curves drawn are only
guides to the eye.

0
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FIG. 3. Energy plotted
vs temperature for N
= 50, 6= 0.1 and N = 100,
6=0.01. Note that the
error bars of these re-
sults are in most cases
much smaller than the
size of the points. Ar-
rows denote the estimates
for V.(~).
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expanded scales in Fig. 4. While the temperature
where the first deviations occur is shifting only
very slowly to smaller values for b, -0, the amount
of deviation at larger temperatures increases very
drastically. These deviations are not only unex-
pected from the theoretical point of view' ' ' but
they are also not in accord with the experimental
observations in K~NiF4. Hence we speculate that
these strong deviations are a peculiarity of the
classical limit, where also the deviation of (m)
from unity increases much faster (i. e. , ~ks T)
than in the quantum case f= —,

' s(ks T/4J)
x exp[- (16~/S)/ks T]). Thus a renormalization
of spin-wave frequencies owing to interaction ef-
fects may become important much earlier. ' A
theoretical study of spin-wave interaction effects
in these classical magnets seems highly desirable,
but it is outside the scope of the present paper.

Next we turn to the critical properties of the
systems considered. Since our simulations were
made for finite systems of moderate size, a sharp
phase transition cannot occur and rounding effects
must be accounted for. These effects also intro-
duce some uncertainty even in the estimates of the
critical temperature T,(n). Figures 5 and 6 il-
lustrate our procedures to determine T,(n.) for
two cases, 4=1 and 4=0. 1. The self-correla-
tion, energy, and specific heat are plotted versus
temperature. Both ((S,) ) and (E) can be obtained
with very high precision, especially for not very
small values of 4, and within the accuracy of our
simulation they are not affected by finite size.
This fact is in accord with Ising S= —, studies. In
the Ising case b, =1.0 we also used some general
series expansions to obtain the result for the
zero-field susceptibility (K= J'/ks T)

as- g =10

G8
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a, =0.10

0.9

0.8
EO

0.9
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FIG. 4. Root-mean-square magnetization, self-cor-
relation, , and energy plotted vs temperature in the spin-
wave region. Four values of b, are shown. Dash-dotted
curve represents Eq. (14), the broken line represents
Eqs. (7) and (17). All points refer to N=50. Note that
the spin-wave predictions for m and 1 —((S„) ) coincid~
[Eq. (15)]. Arrows denote the temperature where the
first deviations from the spin-wave theory occur. This
is also roughly the temperature where the Monte Carlo
results for (m~)' and 1- ((S„) ) start to disagree.
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our estimates of T,(n.) increasingly uncertain as
4-0, but there we still have the check provided
by the order parameter and the susceptibility to
be shown below. Figures 7-12 show the critical
behavior of the order parameter and susceptibility.
The susceptibility data exhibited rather strong
scatter, similar to the specific heat, but never-
theless, owing to the very pronounced singularity
meaningful exponent estimates could be obtained.
Since the susceptibility data used were in most
cases not closer to T,(d) than 10%, finite-size ef-
fects were unimportant, and averages over N= 25,
50, and 100 were made. The data for the order
parameter, on the other hand, were much more
precise but affected by finite-size effects even far
below T„especially if 4 was small. Figure '?

shows that for the range of values for 6 and N
studied, the magnetization was consistent with an
I/N extrapolation. We do not expect that this be-
havior remains valid as 4 0, of course: for

0.5
+o

0.75 koT/i 1. 00

030--
((s„P)

0.25-

FIG. 5. Self-correlation, energy, and specific heat
plotted vs temperature for 4=1, 0 Qsing case). Arrows
show our best estimate for T~(g); the accuracy of this
estimate is also indicated. Curve drawn. in the case of
the specific heat is consistent with graphical differentia-
tion of the energy. All data points refer to K=50.
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Owing to an extremely strong even-odd oscillation
the series does not allow any precise deterrnina-
tion of T,(1), it only suggests that T,(1)= 0. 91+0.05,
consistent with the Monte Carlo estimate T,(1)
= 0. 88+ 0.01. In view of this fact no attempt was
made to obtain similar series for hc 1.

It is evident from Fig. 6 that the scatter in the
specific-heat data is extremely large, and thus
this quantity could not be used for any conclusion
whatsoever concerning the predictions of Sec. III.
It is evident, however, from Fig. 3 that the anom-
aly in the slope of the (E) vs T curves vanishes as
n -0, which is in accord with both Egs. (31) and

(38}, if n„or n„reanegative. In the case b. = 0,
where extensive series (up to 10 terms in K) are
available, Ritchie and Fisher' proposed a rounded
rather than singular specific-heat peak. This sug-
gestion is certainly consistent with our results.
This vanishing anomaly in (E) and ((S„)) makes

C/ke

I

0.75 g p/g t.00 1.25

FIG. 6. Self-correlation, energy, and specific heat
plotted vs temperature for 4=0. 1 and various N (in the
case of the specific heat, the points are averages over
M = 25, 50, and 100 at each temperature, since the scatter
of the data points did not indicate any systematic finite-
size effect. ) Curves drawn through the points for the
energy and self-correlation are only guides to the

eye, while the curve for the specific heat is obtained
from graphical differentiation of the energy. Arrows
show our best estimate for T, (D) and its accuracy.
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FIG. 13. Log-log plots of the order parameter of
K&NiF4 taken from Birgeneau et al. (Ref. 14) (upper part)
and of Monte Carlo data for & = p. 1, in order to show that
by shifting To one can fit the experimental data to P = 8,
and on the other hand, the computer simulation data to
peff ~ p

In Fig. 12 we then compare the temperature de-
pendence of the total susceptibility and the trans-
verse susceptibility for a=0. 1 and 0. 01 (the
curves for 6= 0. 02 and 0. 05 are similar). While
for T» T, the temperature dependence of X

' and

y, ' are quite similar, y~' remains nonzero at T„
as expected. For the values of ~ studied here
y~ (T,(&)) and )t, '(T= 0) have about the same order
of magnitude.

B. Comparison with experiment

The computer simulation uses a classical sys-
tem and thus only a semiquantitative comparison
with experimental systems-which are quantum
systems-is possible. This difference is irrele-
vant with respect to exponent estimates, of course.
It must be stressed that our results are not in per-
fect agreement with the experiments in"' K,NiF4
and other layered magnets. " First of all the or-
der-parameter exponent quoted is distinctly larger,
P=0. 138, ' or even P=0. 15-0.18." This is usu-
ally interpreted in terms of an admixture of the
three-dimensional behavior. "'" It turns out, how-
ever, that this is not the only possible explanation,
since rounding phenomena may lead to a similar
effect. This is seen in our data if we treat T, as
an adjustable parameter of our order-parameter
curve. We could then fit our data up to much
higher temperatures until the "tail" in Fig. 2 be-
comes important. This is illustrated in the lower
part of Fig. 13, where for b, =0. 1, T, was shifted
upwards about 3%, and now for e&0. 003 (instead
of e &0. 03 as in Fig. 9) a nice fit to a power law
is obtained for N= 100, with P,«=0. 16. This re-
sult is clearly meaningless, of course, since for
N= 50 a different shift would be needed, and we
feel that from our other data (Fig. 5) we can ex-
clude such a high T, safely. It fits nicely to such

an interpretation that near the real T, (i. e. , near
e =0.08 in Fig. 18, lower part) we observe the
largest statistical fluctuations. " The same ex-
planation may account for the anomalously high
exponents determined experimentally. For ex-
ample, in K,NiF, T,= 97. 23 K was chosen'4 and
then the region of the rounding was & = 2&&10 4.

However, using the tabulated data" with a T,
= 97. 05 K (Fig. 13) shows that the data points are
now quite consistent with P = 0. 125, but rounding
sets in at e = 2&& 10 '. These data for K2NiF4 have
perhaps the highest resolution of all experimental
data" to date. For other systems where the
resolution is worse or the rounding more pro-
nounced, a similar analysis would give even larger
shifts in the estimate for P. Of course, we do not
imply that one may select T, arbitrarily to obtain
a value of P one desires, but rather we imply that
the uncertainties may be larger than usually as-
sumed.

The conclusion that the experimental fitting T,
procedures possibly underestimated rounding phe-
nomena is confirmed, if we interpret the experi-
mental rounding phenomena also in terms of a
characteristic length L~, on which the crystal is
basically ideal (perhaps mean distance between
point defects, dislocations, or other inhomogene-
ities). For then one would argue that rounding oc-
curs when the correlation length $ exceeds this
length L~. In three-dimensional magnetic crys-
tals, analysis of the specific-heat data revealed
that rounding (i. e. , deviation from the true asymp-
totic form) occurs at e = 10 ' or even larger values
of e, even if the log-log plots for smaller e looked
well behaved. This result would imply that L~

JOE = 100 lattice constants, putting $0 = 1 and v

There is no reason to assume that L~ is
much larger for a crystal with two-dimensional
magnetic ordering. Even in the Ising limit one
would then expect ($0= 1, v = 1) that rounding oc-
curs for a&10 . For nearly isotropic systems
one probably has (~"=1, v~'=2, ' which would im-
ply that rounding occurs for «10 't Surprisingly
enough, in K~NiF4 below T, this estimate is clearly
too pessimistic, as seen from Fig. 13, although
the experimental data on the correlation length
and susceptibility above T, could possibly be inter-
preted in terms of such a rounding off. Here for
0. 02& a&0. 2 an exponent y"'=1 was found for the
susceptibility, ' while for larger e the effective
exponent would be much larger. The other choice
T, = 97. 05 K would not change this estimate, of
course. Obviously we cannot give a completely
convincing explanation for this experiment on the
basis of our model calculations. We mention only
as a speculation the following possibilities: (i)
The phase transition in K,NiF4 cannot be accounted
for by the simple model Eq. (1). (ii) The round-
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FIG. 14. Log-log plot of the order-parameter critical
amplitude B(b) and the critical temperature ksT (b)/J

For 6 = 0. 005 a meaningful estimate for B(g)
was impossible, since reliable data for the order
parameter were available for N~100 only, and thus any
extrapolation to N- ~ as in Fig. 7 could not be done.
Error bars are shown if they exceed the size of the dots.
No error estimate was taken into account for the value
of T, , and a possible systematic error in B(A) owing to
a nonlinear variation of (m ) with 1/N is also neglected.

ing phenomena are strongly asymmetric with re-
spect to T„with little rounding below T„and
much rounding above T,. Fitting power laws to
functions which are rounded off would of course
lead to exponent estimates which are too low.
Such an asymmetry would require a very strong
asymmetry in the critical amplitude of the cor-
relation length, since one must approach the same
finite value of $ at T, from both sides. (iii) The
wave-vector-dependent susceptibility for e & 0. 2
deviates strongly from the Ornstein-Zernike form,
and thus the data analysis of Ref. 16 would be in-
correct. On the other hand, in the rather aniso-
tropic case of KICoF, (~=0.3}"Ising exponents
have been found, consistent with our results for
b, =0. 1 and 1.0. Owing to the slower increase of
the correlation length in that material, one ex-
pects that rounding phenomena are much less im-
portant than in highly isotropic substances.

C. Comparison with crossover scaling analysis

In Fig. 14 log-log plots are given for the b. de-
pendence of the order-parameter amplitude B(~}
and the critical temperature ks T,(4). It is seen
that the slope of the ks T,(n) vs 4 curve is very
small; if AT, (0)=0-i.e. , no phase transition of
the Stanley-Kapian type~ —T,(h) would vanish with
6 roughly logarithmically. If we accept the value
ksT, /J=0. 588 quoted by Ritchie and Fisher, the
data again fit to a straight line but now with a slope
of 0. 25, which has to be identified as I/P if Eq. (22}
applies

In Fig. 15 the critical value of the transverse
susceptibility and the reduced self-correlation are
shown in a similar way. Note that these results-
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FIG. 15. Log-log plot of the inverse transverse sus-
ceptibility XJ' and the reduced self-correlation 3—
—((S„) ), both taken at To(4).

as well as the results for B(~)—are independent of
T,", they depend on the correct choice of T,(n)
only. It is interesting to note that the variation
(}',')r «, "'"' is slower than the variation in the
spin-wave regime [Eq. (16)]. With respect to B(n)
a. variation with In(1/6) as suggested by Mikeska '
cannot be ruled out, although a power law seems
to be more probable. Note also that Mikeska's
Green's-function treatment" does not lead to any
shift of T„which is clearly incorrect. The
Green's-function treatment of Dalton and Wood, 7

which implies that T,(n) ~ (Inl/b. ), cannot be
ruled out, however.

In order to check the consistency of our data
with the high-temperature series' more directly,
we plot our susceptibility data vs 1 —Ts"/T in
Fig. 16 where T, was taken from the analysis of
Ritchie and Fisher; ' accepting that their values
ke T,"/J=0. 588 and' yz= 3 would lead to a critical
amplitude of about C„=O.52 for the susceptibility.
It is seen that the data points fit quite closely to
the resulting straight line for temperatures in the
range from 0. 6&1—T,"/T&0. 2, where g itself
changes by 1—,

' decades, without adjustable param-
eters being available. Adjusting the critical arn-
plitude to CH = 0. 6 would produce an even better
fit. Close to T," deviations occur; the departure
from the asymptotic curve sets in earliest (i. e. ,
for largest e) for the largest ~ values. The de-
viations are expected, of course, since owing to
the shift of T„J(,diverges at a higher temperature
than T," for 440. Thus our data are consistent
both with the series expansions ~ and with a
power-law singularity. Thus accepting Eqs. (22),
(25), (28), and (34), we obtain ys/Q =0.65, (P» —P)/
$ = 0. 125, I/$ = 0. 25, and thus yz = 2. 6, Ps= 0. 62,
e~= —1.85, v~= 1.9, 5„=5. 2, and g~=O. 65, if
scaling is invoked. Alternatively, if from the
series7 we use y„= 3. 0 together with y„/(P„—P)
= 5. 2, we obtain P~=O. 7, a~= —2. 4, v~=2. 2,
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this is a tentative speculation, of course. We have
not used the estimate for —', —((S„))-So', since a
competition between the two powers 4"
and h'~~ = 60'25 is to be expected [Eq. (34)].

We stress the fact, however, that divergencies
which are stronger than power laws can by no
means be excluded. This is seen in Fig. 17, where
we replot the data of Fig. 16 such that Eq. (36)
would yield a straight line. We use v = 0. 8 follow-
ing Camp and van Dyke, but keep ks T,/J= 0. 588
since Ref. 8 refers to the triangular lattice. It is
seen that this form fits the data equally well, and
is in fact numerically not too different from a
power law for a broad range of values of y. Re-
plotting T, (d, ) —T," from Fig. 14 in the appro-
priate logarithmic form leads to a reasonable
straight line as well. If we would accept Eq. (38),
we would obtain yz/Q = 0. 65, pz/Q = 0. 125, —nz/Q
=0.4, i. e. , Eq. (42) would be replaced by

FIG. 16. I og-l.og plot of the susceptibility data for
various 6 vs the distance from the Stanley-Kaplan tran-
sition temperature. The lines are obtained from the
analysis of Ritchie and Fisher (Ref. 7).

5~ = 5. 3, and g~=0. 64. Choosing the slopes slight-
ly differently we could obtain simple rational num-
bers for PH, y~, and Q, and using scaling rela-
tions to determine the other exponents, we could

r~=PH=~~=- &~=4=+".
(43)

Q, y&, P„, and n~ cannot be determined indepen-
dently. Since the above values for their ratios do
not satisfy the relation yz/Pz+ 2 = nz/Pz, it must
be concluded that probably ((S„) ) ——,

' is again strong-
ly affected by correction terms. Note, however,
that Eq. (43) would disagree with recent renor-
malization group treatments. "

V. CONCLUSIONS

The main results of this investigation can be
summarized as follows: (i) The Monte Carlo
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curve represents an or-
dinary power-law predic-
tion as obtained from
Ritchie and Fisher (Ref. 7).
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method can be applied with moderate amount of
computing time to the two-dimensional Heisenberg
model even in the case of very weak anisotropy.
This is in contrast to the fully isotropic case, in
zero field, where the large relaxation times as-
sociated with the large susceptibility do not allow
accurate studies~~'4' unfortunately [cf. Eq. (3)]. A
significant improvement in the accuracy of our ex-
ponent estimates would requixe going to smaller
6 values and larger lattices and longer Markov
chains. %e estimate that substantial improve-
ment would require at least 10' as much computing
time as used here (which was equivalent to 35 h at
an IBM 3VO/188 machine). (ii) Conventional spin-
wave theory is valid only for T/T, (4) ~ 0. 15 in the
range of 4 values studied, in contrast to both the-
oretical predictions T/T, (n) 0. 50 and experi-
mental results on K~NiF4. '

Since ke T,(n,)/J is quite small, this early break-
down of the spin-wave approximation is rather un-
expected. (iii) For all values of A studied the or-
der parameter is well described by an exponent
P=-', for T~ T,(n), while above T,(n) we find sus-
ceptibility exponents y = 1.V5 [or la,rger effective
values farther away from T,(n)]. In no case do we
obtain y = 0.8-1.0 as in the K2NiF4 and KzMnF4 ex-
periments. ' '" %bile we present arguments that
rounding phenomena may have been underestimated
in this experiment (and in related other experi-
ments, too), it seems less probable that these ex-
perimental results can entirely be attributed to
these rounding effects. Thus the implication might
be that the phase transition of K~NiF4 is seriously
affected by terms not included in the simple Hamil-
tonian [Eq. (1)]. It is interesting to note that in

our model the transverse susceptibility (Fig. 13)
behaves qualitatively similar to the three-dimen-
sional case. Since in the experiment' a consid-
erable uncertainty concerning X~ occurred, it is
hoped that these results may be helpful in a re-
analysis of the experimental data. (iv) The criti-
cal temperatures T,(n, ) are shifted to lower values
as n, decreased. If T,(0) =0, the shift is certainly
not stronger than logarithmic while if one accepts
the Stanley-Kaplan transition temperature T,(0)
= Ts" one finds a variation T,(a)- T,(0)~ a'~~ with

Q =4. In the latter case the singularities in the
isotropic limit must be either power laws with
rather large exponents (ye=3; n„=—3), or even
exponential singularities (yz ———az ——~). Our data
are in both cases qualitatively consistent with

crossover scaling theories 17,44 For T &1.2TSK

our susceptibility data are independent of 6 for
small 6 and in good numerical agreement with the
series expansions for 4 = 0. '7 The quantitative
diffex ence between y~= 3 and ~, however, is quite
small in this regime (Fig. 1V).
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