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The influence of quantum effects on the critical properties of an n-component vector model for structural
phase transitions is explored, It is shown for n = 1, 2, and 00 that these effects can suppress the occurrence of
a phase transition for all dimensions d. This turns out to be of particular relevance for systems where the
classical transition temperature almost vanishes (T, = 0 represents the displacive limit). We also discuss the
critical properties at this limit for n = cc and show that the critical exponents change discontinously,

I. INTRODUCTION

The static and dynamic properties of model
systems undergoing a structural phase transition
have been studied recently by a number of authors,
with emphasis on the critical behavior. ' '2 One
of the reasons for this interest is that many real
systems undergo a structural phase transition
which takes the system from a high-temperature
displacement pattern to a different low-tempera-
ture displacement configuration. To imitate such
systems one may adopt the Hamiltonian

P x,.x, . h x,.
IgL', e

I denotes the lattice sites and PJ. and X~ are
the ath components (o. =1, ~ ~ ~, n) of momentum
and displacement, respectively, of particles with
mass M. A, B, and C are model parameters and
h is an external field. Higher-order terms
g~(g X~,), etc. may give rise to tricritical
points. " " Neglecting the kinetic energy, Hamil-
tonian (1) may also be considered as a lattice
model for magnetic systems, where at each site
L, there is a spin variable X ~ with n compo-
nents. i 'i

In recent years, the Static and dynamic proper-
ties of these systems have been studied by means
of different techniques. They include the renor-
malization-group approach, ~' ' 8 the Monte Carlo, 's

and the molecular-dynamics technique. ' '~' Even
exact results have been established for quartic
long-range interactions'o'~ and in the limit
n-~, 's'~~ as well as for the existence of a phase
transition.

A common feature of these studies is the use of
classical mechanics. Quantum effects can no
longer be neglected, however, if the model param-
eters are such that the classical zero-tempera-
ture value of the order parameter becomes very

small or even vanishes. Indeed one expects that
the occurrence of a phase transition will be sup-
pressed, if the local mean-square displacement
fluctuation {5X~ 5X~ ) becomes equal or larger
than the classical value of the zero-temperature
order parameter squared.

It is the purpose of this work to investigate the
influence of quantum effects on the occurrence of
a phase transition and on the critical properties.

In Sec. II, we derive an exact inequality, dem-
onstrating that zer'o-point oscillations can sup-
press the occurrence of a phase transition. This
effect is shown to be particularly relevant for
systems having model parameters close to the
classical displacive limit, which represents an
isolated point with different critical exponents.
In fact, we establish for @=1, 2, and ~ and all
dimensionalities d that zero-point fluctuations will
suppress a phase transition at this limit. More-
over, we find a quantum-mechanical displacive
limit, i.e. , a particular choice of the model pa-
rameters for which T, vanishes.

The limit n= ~ is treated in Sec. III, where we
investigate the critical properties, including those
at the quantum-mechnical displacive limit. We
find, at least for n = ~, that this limit also repre-
sents an isolated point, where the critical expo-
nents change discontinuously. For T, &0 the ex-
ponents are equal to those of the spherical model,
where y = 2/(d-2) and 5= (2+2)/(d-2) for dimen-
sionality 2& d~ 4. For d~ 2, there is no phase
transition. At the quantum-mechnical displacive
limit, where 7', =0, we find 5 =(4+2)/(d —1) for
1&d&3, 6=3 for d~3, as well as y=2 for 1&d
~ 3, and y=d —1 for d&3. These differences
reveal that the quantum-mechanical displacive
limit also represents an isolated point giving rise
to crossover phenomena. It also follows that the
mean-field domain for 6 ranges down to d= 3 at
the quantum-mechanical displacive limit, in con-
trast to the usual case of d=4.

In Sec. IV, the main results are summarized
and implications to real systems are discussed.
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ihx, .= rx, , scj

[x,. p, ,.]=5„,5..ia
we find

—(P ~~) = —m(x~ )

(2)

(3)

=(A —4dC)(X, ) B —,X X,)—h=o1

II. DEFINITIONS AND DERIVATION OF
AN INEQUALITY

In this section, we derive relations between the
local mean-square displacement and the model
parameters. On this basis, we establish the sup-
pression of a phase transition due to zero-point
oscillations.

To simplify the derivation, we adopt the Hamil-
tonian (1) describing ferrodistortive structural
phase transitions. The rigid reference lattice is
assumed to be cubic, with 2d nearest neighbors.
Only nearest-neighbor interactions are taken into
account. Using the relations

eter vanishes at the displacive limit for all tem-
peratures. (b) The classical displacive limit
represents, in the space of the model parameters,
an isolated point in the sense that the critical ex-
ponents change discontinuously.

The vanishing classical transition temperature
implies, however, that physical reality may be
different in any lattice-dynamical system, due to
the existence of zero-point oscillations. To es-
tablish this conjecture, we note that the inequality,

XI.~ X~~ — Xl.~ X~~, 11

holds for n=1, 2, and in the limit n=~ as an

equality. This relation is an extension of a
Griffiths-Kelly-Sherman inequality to quan-
tum-mechanical and lattice-dynamical systems.
The derivation of this inequality will be given in
Appendix A.

From Eq. (5) and inequality (11) it then follows

For zero external field, it then follows that

(5)

Within the framework of classical mechanics,
there are no fluctuations at zero temperature. In
this case, relation (5) reduces to

A &0, 8 &0, C &0, and 4dC —A&0 (10)

to displacive transitions. For further details on
this nomenclature and its relevance to character-
ize real systems, we refer to Ref. 5.

The model parameter dependence of the classi-
cal zero-temperature value of the order param-
eter has two important consequences: (a) The
classically calculated spontaneous order param-

=(x,.) '„.. . (6)

and determines the zero-temperature values of the
order parameter. There are two important lim-
itss: (i) the displacive limit where

4dC -A = 0 (displacive limit),

so that the classically determined order param-
eter vanishes even at T=O. (ii) The Ising limit,
where

A = —~, B=+ ~, A/B = —1 (Ising limit). (8)

Here (Xl, ) =1. Consequently, we may distin-
guish two regimes. ' The choice,

A&0, B&0, C&0

leads to transitions of the order-disorder type and

Consequently, a nonvanishing positive order pa-
rameter requires that

n
4dC —A 1 g (5X2)B n~~

(13)

Due to zero-point oscillations, the local mean-
square displacement fluctuations (5X~, ) do not
vanish at T = 0 for any finite mass M of the parti-
cles. It then follows that an ordered state
((X~ ) v0) is suppressed if at T=O,

4dC —A(1 P ( X 2)
n 8~

(14)

Consequently for any physically meaningful mass
M, there exists a quantity S „defined by

min gX 2

8=1

so that for model parameters satisfying

4dC-A =S~, )

(15)

(16)

the quantum-mechanical displacive limit is
reached, where, according to inequality (12),
(X~ ) = 0 even at T=O.

From the results presented in this section, the
following conclusions may be drawn. Zero-point
fluctuations may suppress the occurrence of an
ordered state. This result is particularly rele-
vant for systems having model parameters close
to the classical displacive limit (4dC-Ag 0). In
fact here, zero-point oscillations can suppress
the phase transition.

According to the range of validity of inequality
(11), these results are rigourous for all values of
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the dimensionality d for n = 1, 2 and n = ~.
Unfortunately, the proof of inequality (11) has

not yet been extended to systems with 2& n& .
On this basis it is impossible, however, to study
the critical properties at the quantum-mechanical
displacive limit, in order to find a possible dis-
continuous change of the critical exponents and

associated crossover phenomena.
To explore these questions, we study in the

next section the limit n-~ which can be treated
exactly.

Thus the spectral function

4'..(q, t) = ( [X.(- q, o), X.(q, t)1 &,

with

X (q, t) = 5X~, (t) e"'"~
N

has harmonic time dependence

—4'..(q, t) = &(q)4'..(q, t),
with frequency

(24)

(25)

(26)

III. LARGE-6 LIMIT

It is quite straightforward to study the static
properties of model Hamiltonian (2) in the limit
n-~. First, we note that Eq. (5) reduces to

M '(4)=A —4CX(o) ~-g (X ', )

where for d = 3

F(q}= cosq, a+ cosq„a+ cosq,a,

(27)

(28)
n"c "(x,.&=' p &x,, &&x

because

X X ) =(GX )=(G)(x )
B=i

+ (5G5X,.&,

(5G5xi & ~(5G5G)(5xi 5xr ),

(17)

(18) o (oC)

(q, e) =i lim dte'"""'4 (q, t)
0+ ~0

is calculated to be

(29)

Thus for n = ~, the dynamics is described by tem-
perature-dependent undamped modes so that the
self-consistent phonon approximation becomes
exact.

Next, the wave-vector-dependent dynamic sus-
ceptibility,

where

(5G5G) =O(1/n) . (20)

1 1
M ( +&die)' —&0 (q)

' (30)

2C Q (Xl„(t)X~,G(0) & (22)

In the limit n-~, the second term on the right-
hand side simplifies according to Eqs. (18)-(20)
to

n

E x ', (t)x (tlx,(ol),n

n

X,', X,.tX, .0 (23)

Rewriting Eq. (17) in the form

( o -„—E (o&))tx)t,=(x,.),'., (»)

it is seen that inequality (13) holds in the limit
n=~ as an equality. It again leads to condition
(15) for the suppression of an ordered phase and

to relation (16) defining the quantum-mechanical
displacive limit, where the order parameter van-
ishes.

To study the critical properties of the n =~
model at this limit, we start from the equation
of motion,

—M ( Xi (t) Xi.,(0) ) = A ( Xi (t) X~, (0) )
n,—E x,', (t) x, (t) x, .(o)).n g

At T = T„ the zero-frequency susceptibility di-
verges, so that according to Eqs. (27) and (30)

x..'(o, o) =M&(o)

5x - ' ~ '
th

"(q}

which is independent of n. Therefore [Eqs. (31)
and (32)] the critical temperature is determined
by

(32)

4dC —A 5 2 1
2Mn ~ &d(q)

~(q)x coth
2y Truant ~

B c
(33)

T,'"~' denotes the quantum-mechanical transition
temperature. In contrast to this, the classical
T," is given by

4dC —A
(5 2) keT 1

B ~ " NM uP(q)
(34)

A —4dC+ — Xi,g +— ~Xig5XI g
——0

The local mean-square displacement fluctuation
of a phonon system with harmonic time dependence
[Eq. (26}] is given by
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From the inequality

(35)

For T, ~0, the leading contribution to the q sum is
obtained by expanding the hyperbolic cotangent
with respect to small argument. Therefore, the
exponents of the spherical model

we infer that

Tcl ~ Tquant
C (36)

d 4 i 2 d+2
d 2' ' d 2' d-2 ' (44)

For the quantum-mechanical displacive limit we

obtain from Eqs. (16) and (32} for d = 3

1 ~ 1 1 ~ 1
2NM ~~ (d(qq r 0

—
2NM ~& 4 C[3 F(qq]tin

(37)
Thus, for any finite mass M and coupling constant

the quantum-mechanical displacive limit
occurs at a finite value of 4dC-A.

Next, we consider the S = 4d C —A dependence of
T,. Classical statistical mechanics predicts, ac-
cording to Eq. (34), a linear relationship, namely,

1 ~(q)
S(q} 2M ( )

oth
2 k T (45}

is no longer proportional to X(q, (d = 0) for T
= T,'" ' =0. From Eqs. (43) and (45), we find for
T=T" =0:C

for 2& d& 4 are obtained. For d —2, there is no
phase transition and for d~ 4 mean-field expo-
nents are found.

In the quantum-mechanical displacive limit
(T,'" '=0), care has to be taken as to the defini-
tion of some of the exponents. For instance, the
q-dependent displacement-correlation function de-
fined by

T,"-$=467C-A . (38)

2Mn ~ (2}(q) 2k/2[T~~ 1(S}+r]'

To treat the quantum-mechanical case, we set

T= T," ' (S) +[ T —T," ' (S)] = T~~" ' (S)+r .
(39)

From Eqs. (31), (33), and (39) we find

M (d~(0, S, 1)

1 1=o}-,(, ~acqj q'
X (q, (2} = 0, T = T,'" ' —0}=

2g Cq2 q2

Thus, if we define for T = T","~' = 0

s(q)-q' ", x(q, o)-q' ",

we obtain

(46)

(47)

(48}

so that at 7 =0, (4o)
g=0

(49)

B 1 (d(q)
2MN 5 (1(} 22 T" '(2})

(41)
Thus, close to T~ ' we obtain

quant
C

(T w(}2}2}2Ml/2B
S = S,„+ '

3/2 && const
C

(42)

For S»S „, however, T',"~ (S)2approaches the

classical behavior, as given by Eq. (38). The re-
sulting S dependence of T'," ' is shown in Fig. 1.
For S & S f we have no phase transition. At the
quantum-mechanical displacive limit, T'," ' van-
ishes and increases for S &S „, but small values
of S —S „according to the square-root law (42}.
T,'"~2 (S) approaches the classical linear law (38)
for S»S

To evaluate the critical exponents, we start
from the integral equation determining Mu/(q} and

thus the static susceptibility. From Eqs. (31) and

(32), we have

1
(q, (2}=0) =M(d~(q)=A —4C F (q)+B(X1~}

+~M ~
( )

coth „.(43)
a

S min
FIG. &. 8 =&2& -A dependence of the quantum-me-

chanical transition temperature in the limit n = ~ at d = 3.
The linear relationship is the classical result fEq. (38)].
S~~ denotes the quantum-mechanical displacive limit
where the transition temperature vanishes.
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&(q)=r+v (q), s (0)=0

Thus, the integral equation (43) determines r,

(50)

r=A-4dc+BU +—~ [

+s (q)l
sa

oj (51)

Np denotes the Bose function

No (X)=(er-I) ' (52)

and U is the expectation value of any XL in the
presence of a homogeneous field h. U is deter-
mined by the equation of state

U= h/r (53)

which is essentially Eq. (4), simplified by virtue
of Eqs. (18)-(20), (27), and (50). Equation (51)
is cast into the form

r=A 4$C+BU T' ~ 4 (r/T )+ Z(or) . (54)

In Eqs. (B6) and (B8) of Appendix B, explicit ex-
pressions for C and Zo representing thermal and
zero-point fluctuations in & 5 X'I,' & are given.

Putting T =0, we find the critical exponent 5 by
inserting (53) into (54) and solving for r(h). The
result is

for l(d(3d+3
d-1

&=3 for d) 3
(55)

For d& 1, there is no phase transition (see below)
and for d=3 the exponent is 3, except for loga-
rithmic corrections. Together with the value
rI=1 [Eq. (49)], the scaling relation~7

Therefore, g has the classical value, whereas g,
corresponding to the conventional definition of
this exponent, is one. This discrepancy will be
mirrored in the scaling laws.

To evaluate y and 5, we write the frequency ur(q)

for M = 1 in the form

k T
Z - dq q'-'

Qo + +q
(58)

and the quantum-mechanical zero-point fluctua-
tions,

1Zo-, dq q
( gaia (59}

y=2, 1(d(3,
y=d-1, d)3 .

(60)

For the specific heat, the free energy and its
derivatives with respect to T must be evaluated.
This is most easily achi. eved by writing the Ham-
iltonian (2) in the form,

2M

g (x' &&x,~. &
—c gx,.x,... +v,

4n ..., L) L y'a
(61)

where

A similar observation was recently made by Holz
and Medeiros, 38 who also found q (in our notation)
remains unchanged to first order in I/n for d &3

at the quantum-mechanical displacive limit.
The exponent y is obtained from Eq. (54) by

putting U=O. according to Eqs. (B6) and (B8)
(see Appendix B), the following observations can
be made: For d(1, Zo diverges for r- 0; thus,
there is no phase transition. P gain, this is dif-
ferent from the classical case for T, ) 0. There,
the phase transition is suppressed by thermal
fluctuations for d —2. In the quantal case the
zero-point fluctuations, being "weaker", shift the
limit of dimensionality, where a phase transition
might occur, down to one. For 1& d& 3, r(T)- T~

+ ~ ~ ~ [Eq. (54)]. Consequently, r/T~ is a con-
stant and so is the unknown function @(r/T ). For
d=3, the same is true, including, however, log-
arithmic corrections due to (B6). For d&3, we

find r- T" + ~ ~ ~ . Here, r/T'- T" ', goes to zero
for small T and 4(r/T~) can be replaced by its (finite}
valueforr/T =0. Tosummarize, wefind

5 = (d+2 —q)/(d —2+q) (56) v=4„+ x,'., x,& ——g &x,'.& x,'. ,
B B

is obviously violated. The Buckingham-Gunton
inequali

B
+ 4„L &x~' &i&x~, &

~ (62)

d )2 —g
6 —1
6+1 (57)

however is satisfied. Moreover, 5 [Eq. (55)] dif-
fers from the value of the spherical model, be-
cause &=1. It is interesting to note that the
mean-field domain for 6 ranges down to d=3 in
contrast to the usual case~s of d=4. This is ob-
viously due to the different "infrared" behavior of
classical thermal fluctuations,

It is easy to verify that (61) is the appropriate ef-
fective Hamiltonian for the large n limit, because
the contributions of V to the partition function van-
ishes for n- ~. By using Eqs. (27) and (50) and
the usual expression for the free energy of a har-
monic phonon system one ends up with

F = —k~T g ln 2 sinh — (r —r,)'1 ~(q) 1

(63)
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for the free energy per particle and per compo-
nent for n=~. Here

YO=A —4dC .
The exponent of the specific heat,

(64)

(66)

can again be defined in two ways. Because 7.',"
=0 at the displacive limit, the factor T in front of
the second derivative (usually replaced by T,)
weakens a possible singularity of C„(for T- T',"

=0). We thus define

(66)

e(R+X )t~ X2 1 &r
[e(ft+X')'"-1]' ' 3T sT '

R=r/T' .
Using similar arguments as for y, we find

@=1—d,
except for logarithmic corrections for d=3.

Finally, we turn to the correlation length $,
which might be defined by

(70)

d'x(e)
x(4)

(71)

where X(g) is given by Eqs. (43} and (50). After
some algebra we conclude, using the previous re-
sult for y [Eq. (60)], that

(72)

which is in agreement with the scaling law, 27

r=(2-n) ~ .

Finally, we remark that the scaling relation, ~7

Q=Q+1

a corresponds to the usual specific-heat exponent,
Explicit differentiation of (63}yields, by invoking

Eq. (B7) (Appendix B),

IV. SUMMARY AND CONCLUSIONS

%e have explored the influence of zero-point
oscillations in an n-component vector model for
structural phase transitions.

An important result is that this quantum effect
can suppress the occurrence of a phase transition
for m=1, 2 and n=~ and all dimensionalities d.
The fact that there is no ferroelectric phase tran-
sition in SrTiO, at normal pressure may be a
prominent example for this quantum effect. In
fact, the dielectric constant is found to increase
with decreasing temperature as high as 104 in the
liquid-He temperature range. ' o However, de-
viation from the Curie-gneiss behavior is mani-
fest below 60 K, being interpreted as due to zero-
point oscillation. 3 ' ~Concerning the applicability
of our results, which are valid for n =1, 2 and

n = ~, to SrTiO3 one has to bear in mind that the
critical behavior of a system with Hamiltonian (1)
may depend on the stress conditions. In fact,
Bruce and Aharony have shown that the critical
behavior might be of Ising, I- F or Heisenberg
type

The suppression of a phase transition due to
zero-point oscillations was found to be of particu-
lar relevance for systems having model param-
eters close to the classical displacive limit. 0

Here, a phase transition ean be suppressed if the
mass of the particles is sufficiently small. The
classical displaeive limit has been replaced by the
quantum-mechanical analog. A common feature
of these limits is, at least for n=~, that they
represent an isolated point in the space of the
model parameters, having different exponents.
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APPENDIX A

For classical systems, inequalities like Eq.
(11)were established by Guerra, Rosen, and
Simon24 for n = 1, and by Dunlop and Newman2' for
n = 2. This inequality represents an extension of
the second Griffiths-Kelly-Sherman inequality to
continuous variables.

The proof rest upon the fact that correlation
functions like,

is fulfilled-

(74)

,V n

(x~,)=g II II dx~ x~', p (x, , , xg),
&=i a=i

(A1)
are integrals over a ferromagnetic measure p,
which in this case is the classical distribution
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function e ' .
Extension of the inequality to quantum mechan-

ics is most easily done by replacing the trace by
an integral over a suitable ferromagnetic mea-
sure.

To derive this measure we first consider an an-
harmonic oscillator with Hamiltonian

m-identical n-component oscillators with a ferro-
magnetic nearest-neighbor coupling. (ii) The
single-particle measure of each oscillator is
modified.

Next we consider N such oscillators with a fer-
romagnetic coupling. The Hamiltonian reads [see
Erl. (2)],

K = P o/2M + V(X) = T + V,
where

v(x) = ~x'+ (a/4 )x',

(A2)

(As)

N 2 n

+V(X,) -C P x,.x,.. (A1S)
i=1 2M l, l~=]. u=

Defining

X=(X, X . . ~, X„) .
Next we introduce the X representation of the
density matrix,

p(x, , X,)=(xo
l p X„&

Using the Trotter formula, 34

(A4)

(A5)

X, , =(X,.„, ~, X, ,. X,r„),
where

i=0, ~ - ~ m l=1)

we obtain in analogy to Eq. (A8)

(A14)

e ~ = lim exp ——exp —— (A6)

=lim IId"x; p (x, . . . , x,),
m~~ i g

where

p (X, ~ ~ ~, X„)=exp[-Pv(X„)] p (X —X„)

(A7}

m-r r VX
p

' II p (x;,-x),
i=1 m i

(A8)
2Mm n~'

po (Xr f
—X;)=C„

P

Mm -, Mm
xexp — (Xo r+X;)o exp X; r X; (A8)

2P '
P

we may rewrite (A5} in the form

PT Ptr™
p (Xo, X„)= lim (Xo l

exp ——exp ——
l X„)m

g 1

Mm g 2xexp — (Xor +X r)
2P

&&exp — X, exp

x exp — X, ,X

m N n

x exp p, c g E pe,.„x~,.) .
i=1 l, l'=1

(A15)

The last two terms again describe ferromagnetic
couplings. Consequently, the measure p is again
ferromagnetic. The partition function is then
given by

C„'= d"X exp( —X ) (A10)

Z= Trp ~~=lcm 2

where

(A16)

On this basis, correlation functions like (Al) can
be expressed as z.= p (Ix, ,]}'[[II d" x.. . (A17)

m 1

(X') =lim — II d" X; X,' p
m ~ ~ i Q

x(Xo, ~ ~ ., X -r Xo} e

(Al 1)

and a typical correlation function reads

(Xr's Xr"&

where
„m-1

z=lim II d" x; p (x, , x, , x ).
(A12)

Obviously, (All) is again an integral with a fer-
romagnetic measure. Thus the noncommutative
properties of kinetic and potential energy lead to
the following modifications with respect to the
classical distribution functions: (i) p describes

lim p (/x, ,j) x,'„X„,„II'p[ d" x, ,
tft o i=Q

(A18)
To summarize, we have shown how the trace is
transformed into an integral over a ferromagnetic
measure. Therefore, ' all classical inequali-
ties for systems with continuous variables and
ferromagnetic coupling also hold in quantum me-
chanics for lattice-dynamical systems.
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APPENDIX B

We have to calculate

B~ 1
(~La) lqM~ [r ~ ~(q)]1/2

(Bl)

Z,„represents the effects of the thermal, and Zp
of the zero-point oscillations in & 6 XL~ &. For
low temperatures the integration in (B4) can be
extended to infinity. Zp can be evaluated explic-
itly. The result depends on the dimensionality d.
To lowest order in r we find

d=1, Zp=a —5 lnr

For an infinite system the q sum is converted to
an integral. For a cubic system in d dimensions
it is sufficient to approximate p(q) by its small q
behavior

1&d&3, Zp=a —br-cr ' + ~ ~ ~
(4-1i /2

d=3, Zp=a —br+crlnr

d &3, Zp ——a —br+ ~ ~ ~ (B6)

q (q) —q' (B2)

(6 X~' ) -Z,„(r, T)+Z, (r)

where

(B3)

and to integrate over a sphere of radius A. Ne-
glecting the uninteresting constants we have to
deal with two integrals of the form

Higher powers in r than those given here would
not alter the critical exponents calculated in Sec.
III. Z,„cannot be given in closed form. By
means of the transformation

q = TX, r=RT~ (B7)

which is well defined for T&0 (for T=O, Z, „van-
ishes), we find

Z,„(r, T)= dq q~ ' 1
4 Q

&1 d-J,

Zo(r) =
2

dq. 2.i&22-p (r+q )

(r+ q')"'
r+ ')"' ' u, T

(B4)

(B6)

Z,„(r, T) = T~ ~ C'(R)

where

(BS)

r Oo x"-~
@'(R}= dX g gg2 No (R+X )~3~~ . (B9}R+X
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