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Self-interacting walks, random spin systems, and the zero-component limit
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Emery's analysis of n-component "spin" systems is extended and simplified for the limits n = 0, —2, —4, ....
Restrictions on the spin-weighting function implied by an interpretation of the n i0 limit as a random system

are pointed out. Fully explicit relations are also derived for the interpretation of the n~ 0 correlation function in

terms of self-avoiding and, more generally, weighted self-interacting lattice walks.

I. INTRODUCTION

where the s; = (s; ) are n-component classical vari-
ables associated with sites i = 1, 2, . . . , N (which
need not be regularly arrayed in a lattice), and

JCI((s, j) is a general single-component Hamilto-
nian; an important example for subsequent devel-
opments is the standard pair interaction Hamilto-
nian

JCI((s,)) = —p K„s,s, + h g s, .1 (1.2)
1~

The function W(x) in (1.1) represents a general in-
teraction which couples the independent Ham ilto-
nians together via the sum of local variables X,
=X(s; ). For the most part we shall consider the
simple variable

X(s) = s';

in this case exp[-W(~s~')] can be interpreted sim-
ply as a spin-length weighting factor for variable
length spins, s, . However, one may more gener-
ally' use functions X; which are combinations of
spins components s& with j neighboring i.

For the partition function ZN{n) appropriate to
(1.1), Emery introduced the integral representation

ZN('n) =
f~-C

, (2vi)"

N

-Qf~|;)~ v*;1 ~f. tb ))), (&4)
1=1

in which fd z denotes J dz, ~ fdz„, etc. , and
where the reduced single-component free energy

In a recent article, Emery' discussed a very
general class of n-component classical spin Ham-
iltonians, and demonstrated various model equiv-
alences as a function of n, in a concise manner,
without the use of term-by-term perturbation the-
ory or diagrammatics. In particular, Emery con-
sidered' the reduced Hamiltonian

N n

JC„({s,])= g JC, ((s,"j) —P W P X(s, ),

fr(]y, )) is defined by

exp[Nfl(&y, H

f„= (Nn) 'InZs(n), (1.6)

could then be interpreted directly as the free ener-
gy of a single-component system on which were
imposed random fields y; [coupled to the X(s, )] with
a distribution explicitly related to W(z). (An inde-
pendent derivation" of this result utilizes a rather
complex diagram-by-diagram analysis of a Feyn-
man graphical-perturbation theory. ) Emery also
made some remarks concerning the interpretation,
first suggested by de Gennes, "of the n- 0 limit,
in terms of the excluded volume problem for poly-
mers or random walks. " " However, his treat-
ment here was not very detailed or complete. Fur-
thermore, he assumed that W(0) was zero (or, at
least, finite) which excludes the case in which
e ' ' vanishes as s- 0; but this case is needed to
describe standard fixed-length spins or analogous

d"sexp JCz((s,)) —g y;X(s;), (1.5)
i=i

so that the b~j represent a set of local fields. The
number of components, n, enters (1.4) only as the
prefactor of f,((y;)). This formula thus provides a
natural analytic continuation in n.

Emery' showed that his representation led for-
mally to a very transparent and general treatment
of the n-~ limit; this is found to correspond to a
class of single-component but constrained systems
("generalized spherical models" or Hartree mod-
els)' ' with "renormalized" critical exponents. ' In
addition, Emery showed that previous results' '

for the special cases n= —2, —4, —6, . . . , could be
derived readily. [When JC, has the pairwise form
(1.2) with K„=—1, these values give pure Gaussian
behavior provided the spin interaction, or weight-
ing function W(z), vanishes rapidly enough as
z- 0 (Refs. 8 and 9); see below also. ]

Finally, Emery considered the case n-0 and ob-
tained the striking result that the free-energy-per-
spin component
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13 SELF-INTERACTING WALKS AND RANDOM SPIN SYSTEMS 1113

spin distributions which have zero weight at zero
length. We shall refer to spins s with weight fac-
tors exp[ —W()s(')] vanishing as )s (-0, as "stiff"
spins. Note in particular that "stiff spins" are not
restricted to fixed-length spins such as described
by e &'!= 6(s' —1); they also include continuous

-w(s2)spins with smooth weight factors like e
=s'e "', etc.

The relationship of the excluded volume problem
to the n- 0 limit for fixed-length spins has been
studied by Bowers and McKerrell. " By making a
diagrammatic analysis of the high-temperature
series for pairwise interacting n-vector models,
they showed explicitly, that the expansion coeffi-
cients a, (n) of the susceptibility become propor-
tional to c„ the number of l-step self-avoiding
ualks, when n approaches zero. An alternative
diagrammatic derivation of this result was given
by Gerber and Fisher, " incidental to a derivation
of an expansion for the critical temperature T, (n, d)
in inverse powers of the dimensionality d. More
recently, in the same connection, Gerber and
Fisher" considered general spin weights W(~s~')
and showed diagrammatically that the n-0 limit
yields, in general, self interacting -random walks
with a Boltzmann factor p„ for each v-fold self-in-
tersection. The factors P„are expressible explic-
itly in terms of the spin weight function W(x). For
stiff spins, it is found that only the totally self-
avoiding walks survive.

In this note, we modify and simplify Emery's
analysis slightly in order to reconsider the n-0
limit in more detail. We shall see that the inter-
pretation of the n = 0 free energy, as deriving from
a random system, imposes certain, fairly strin-
gent conditions on the interaction or spin weight
function W(x). In particular, stiff spins are ex-
cluded. In addition, we show that the method pro-
vides a straightforward, transparent, and explicit
derivation of the connection with generally seeight-
ed self-avoiding and self-interacting walks on the
appropriate lattice structure. In particular, de-
tailed diagrammatic analyses of the high-tempera-
ture or Feynman graphical-perturbation series are
not required, nor are path integral representations
or continuum limits.

Our analysis of the n=0 free energy and the con-
nection with random models is presented in Sec.
II. For completeness, the limits n= —2, —4, . . .
are also considered briefly. In Sec. III, we study
the pair correlation function and its relation to the
random -walk problems.

II. FREE ENERGY IN THE ZERO-COMPONENT LIMIT

To demonstrate most concisely the connection to
random systems we suppose, following Emery's

lead, ' that the interaction or weight factor admits
an integral representation

e v&"'= dyP(y)e '*, (2.1)

for some j with 6 & 0, one will have, by differen-
tiating (2.1), the relations

e ~&"=e,= P(y)dy,
c

(2 2)

1
e = —,l !'P(y)dy (t-)). (2 4)

We may also note, for future reference, that

x e '*'dx =m! dyP(y)/y ",
c

(2.5)

provided the moments exist (as they normally
should).

On introducing the representation (2.1) into the
definition

Z„(n) = d"s exp JC„({s,))], (2.6)

for the total n -component par tition function, one
finds that the integrals over the separate sets of
components (s,") factorize and one obtains

Z„(n) = ( d"y II P(y; ) exp [nNf, ((y,))],
~C i=1

(2.7)

where the single component fre-e energy fr(t&yj))
was defined in (1.5) and is, in particular, indepen
dent of n. This, of course, corresponds to Em-
ery's expression (1.4). We want to study f„, the
reduced free-energy-per-spin component, defined
in (1.6) in the limit n-0, understood via the ana-
lytic continuation provided by (2.7). By L'Hospi-
tal's rule, we have

where C is a suitable contour (in general in the
complex y plane). Note that this encompasses dis-
tributions which contain sums of 6 functions, etc.
Emery' chose C to be the whole imaginary y axis,
in which case P(y) is essentially the Laplace trans-
form of e "& [which will always exist for reason-
able weight factors; but a shift of the contour to

c, as -in (1.4), may be needed]. It is significant,
however, that if W(x) is suitably restricted, C may
be chosen to be (part of) the real axis. If, further-
more, P(y) is to be non-negative, as needed for a
probabilistic interpretation, W(x) must satisfy fur-
ther conditions; in particular, W(x) cannot then
increase faster than x as x -~.

Quite generally, if there is a power series ex-
pansion

e &*'=e, e,x+ e, x-'+ ~ ~ ~ +(-)'e,. x'+O(x'")
(2.2)
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lnZ„(n) . SinZ„(n),= lim " = lim
n~ Nn n~ NSn

(2.8)

which yields immediately

d"y Il[P(y, )f .]f,{b;8, (2 9)
C

where we have used the relation (2.3) to replace
JP(y, )dy, . by eo. (We may note that if the thermo-
dynamic limit, N-~, is to be taken before the
n-0 limit this step requires more justification. )

The interpretation of fo as the free energy of a
system with fields y, coupling to X(s, ) varying ran-
domly from site to site, follows from {2.9)pyovid
ed the contour C may be restricted to the real axis.
(This point was not made by Emery. ') Evidently,
the probability that the field y; lies in the (real)
interval (a, b) is given by

This question is treated in Appendix A where it is
shown that the problem as n-0 is merely trans-
formed but not removed.

Before proceeding to discuss the correlation
function for this model, where a definite e, —= 0 lim-
it does exist, we may observe how straightfor-
wardly the Gaussian results at n= —2/ with /=1, 2,
. . . , follow from the representation (2.7). In these
cases, the factor exp(nNfz) becomes simply
)y — K~'. On expansion of the determinant this
yields a polynomial in the y& of degree / which
must be multiplied by II, P(y;) and integrated B.ut
now we see directly from (2.3) that if the coeffi
cients e„e„.. . , e, vanish identically in (2.2) [as
implied by W(x) = O(x)" )], the integrals over all
nonzero powers of the y& also vanish. Consequent-
ly, we may set y, —= 0 in (2.6) and so find

d'(a ~ y, & h) =e, ' P(y) dy. (2.10)
Z„(-2l) =eon exp[- 2INf, ((0))],

e(2 )v'"~ -K~', {2.14)
Clearly, for a probabilistic interpretation, one

must have P(y) ~ 0 and e, & 0. In the simplest case
in which the fields take just two values c, and c,
with probabilities (t), and P„an appropriate inter-
action factor is given by

e
- tw(x) -s (o) t * e -cP + ~ e -c2& (2.11)

where, in fact, W(0) may be arbitrary.
It is clear, however, that the interpretation as

a random system fails if e, vanishes because, in

particular, the integral f„„P(y)dy cannot vanish if
P(y) is never negative. Furthermore, we see that,
at bestth, e representation (2.9) for f, becomes
indeterminate when e, is zero.

In the important case where Zz((st) has the pair-
wise form (1.2) and one puts X,. = (s,.)' and sets
&=0, one finds' simply

fib'i] = —,I» —,N ' ln ly ——,'K—l, (2.12)

where
~

~ ~

) denotes the determinant of the NXN
matrix formed from

y=[y(5(~], K=[K(,], K(, ——K)), K((= —1. (2.13)

Then one may interpret f„as the free energy of a
system of pairwise interacting spins s; with
weights Iy((s('). In the limit n-0 one obtains a
Gaussian system of scalar spins with random
mean-square spin lengths. However, if the orig-
inal spins are stiff, the n-0 limitcannot be inter-
preted in terms of a random system.

Since there exist transformations (of the Kac-
Baker-Hubbard type) which, forfixed n, replace
stiff spins by "soft" spins, it might be surmised
that a suitable spin transformation could remove
these difficulties of the zero-component limit.

which, apart from the factor of e„ is the pure
Gaussian result (meaningful only when all eigen-
values of -K are positive). Note, as observed by
Knops, 'o that for stiff spins the partition function
actually vanishes identically in the n = —2/ limit.
This can be understood heuristically because when

n is negative, the integrand of the spherically sym-
metric spin-length integral, Jo"e i' ls" 'ds, is
concentrated around s = 0.

It is natural to ask what the restrictions on the
weighting function ~(x), necessary for a proba-
bilistic interpretation, might imply about the be-
havior of random spin models'P %e have no de-
finite answer to this question. Note, however,
that in addition to the exclusion of stiff spins, the
positivity of P{x) implies that &(x) cannot increase
more rapidly than linearly with x as x-~; when

X& = (s;)', this means the spin weighting cuts off no
faster than a Gaussian for large s;. If one sub-
scribes to a sufficiently broad interpretation of the
universality hypothesis for critical behavior (as
indicated, say„by the formal c =4 —d expansion of
renormalization-group theory for nonstiff spins
with ~s~' weighting) one would, nevertheless, prob-
ably feel that no special limitations are placed on
the random-system behavior. Conversely, if one
is disturbed by such problems as the apparent
breakdown of hyperscaling in the three-dimension-
al Ising model (i.e. , dvt2 —~), or the difference
between the critical exponents of real alloys and
real fluids, one may feel constrained to pause for
further thought about the possibilities of critical
behavior in random systems which is not simply
continuous with that: of better understood, n & 0
systems.
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III. ZERO4 OMPONENT CORRELATIONS AND

SELF-INTERACTING WALKS

The two-spin correlation function in the zero-
field pairwise interaction models follows directly
from

on the sites i in which arbitrary length steps can
be taken at each point of the walk but where a di-
rect step from site i' to site j' carries a uei ght
z;, . The partition function Q, (i,j) may then be
generalized by introducing the weights which gives

n

I'„(n; K}= —P (s, s, ) =N
&=1

(3.1) and

Q,(i,j)=5„, Q,(i,j)=z... (3.6)

with the understanding Kij =- Kj;. We will consider
the limit n - 0 under the condition e p 0 0 although
we will show that, with suitable normalization, one
may let ep vanish. A diagrammatic analysis of the
zero-field high-temperature expansion in powers
of K j without the restriction e 0 0 has been given
and shown generally to yield self-interacting
walks. " (See also Refs. 13 and 14 where only
fixed-length spina are considered. ) In the present
approach we obtain from (2.9) and (2.12) the re-
sult

( }= r. II: Ir "'. (3.7)
C(i,f;l) r=2 i', j'

where the sum runs over all l step walks from i to
j (with steps of any length) and g,', is the number
of times the step from i' to j' appears in the walk. "

Now the correctly weighted noninteracting, on
free walks (with all j) =1) on a graph of N sites
can be generated in terms of the matrix z =[z,,].
Thus, by the rules of matrix multiplication, one
has

N

«;(O;))) = j &"~ 11)&)~;)' .])'U(~;b)),
i=1

(3 2)

C(i,f; I) i', f '
(3.8)

where the correlation functions in the Gaussian
model are given by

(K' (y )) = k (y — K} ]" (3.3)

which arises since the derivative of a determinant
with respect to a particular element is the corre-
sponding cofactor. The form (3.2) clearly displays
the n =0 correlations as those of a randomly
weighted Gaussian model.

Before analyzing (3.2) further, we introduce
precisely the concept of a weighted self interacting-
zoalk" on a lattice or general graph. Consider
first, for simplicity, random walks in which at
each step the walker moves always to a nearest-
neighbor site. Let q, (i,j;k„k„.. . ) be the number
of such walks which leave site i on the first step
and arrive at site j on the lth step having visited
k, distinct sites precisely twice, k3 distinct sites
precisely three times, and so on. If a self-inter
section of order r (i.e., a site visited r times)
carries a Boltzmann factor P„(with t), = 1), the
total partition function for l-step walks from i to

j is

where the superscript zero denotes free walks.
The corresponding free grand partition function,
for small enough g, is then seen to be

Qo(I; t, j) =[1+hz+ g'z'+ ],,
=[(I —lz) ]/,' (3 9)

+&'y '(zy 'K}'+ (3.10)

and then substitute in (3.3) and in (3.2). On re-
calling that y=(y, 5;&), we see that y '=[6,&/y,.] and
—,'y 'K=[-,'K;J/y, ]. Thus, consider the coefficient
of P' in I',&(0}; by (3.2) and (2.3) this reduces to

This result clearly bears a close resemblance to
the expression (3.3) for the Gaussian-model corre-
lation function; indeed, for uniform fields, y, -=y„
the two expressions can easily be brought into one-
one correspondence. However, since we are in-
terested in self-interacting rather than free walks,
we will, instead, replace ~ by g and expand the
Gaussian expression as

(y-2&K} '=y '+&y '(zy 'K)

Q, (i, j }= Q Q ~ q, (i,j; k„k„.. . )p22 p', &

k3
(3.4)

I', , (0; K—= 0) = 5,, dy, P(y, )/y, e, =m, 5, . -
C

(3.11)

For a self-avoiding m«~, all the factors P„P3,. . .
must be set to zero. With the convention q,(ij, )=5&, ,
one may then form the grand partition function or
generating function'

Q(g; i, j}= Q Qg(i,j )&'.
l=p

More generally we may consider a random walk

(3.12)

Now, on using (2.5), the coefficient of 5„may
easily be recognized as the mean-square nonin-
teracting spin length

&Isl'&"- Jo s'e ' s" 'ds
e -"'(s istt-Id/ 'n ng' e

0

continued analytically to n =0 by using (2.2). [See
Ref. 15, but note that m, (0) diverges if e, =0.] To
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obtain a scale free result, we should clearly nor-
malize I', , by dividing by m, .

Consider then the eoeffieient of I,
' in I', , (0)/m,',

namely,

4E, ; dy& dy; P y; P y; y&y~epm, =m, &&,

(3.13)

This, in turn, indicates that K~; should also be
normalized by dividing by m, . Both this and the
previous normalization are quite standard in de-
riving such high-temperature expansions. "

Comparison of (3.11) and (3.13) with (3.6) now

indicate the identities

q(I; i, j) = r„(0)/mo,

Z, , =z„/m,'.
(3.14)

(3.15)

To justify the first identity, however, we must
consider the general coefficient of g' in I';,.(0)/m,'.
The powers of the matrix &y 'm2PKwill clearly
generate the correctly weighted walks and will al-
so introduce factors y"; if site i is visited r times
by the corresponding walk. As in the derivation of
(3.11) and (3.13), sites which are not visited at all
introduce a factor P, =1. Since each of the r in-
coming steps carries a factor ~, by virtue of
(3.15), we see that the remaining Boltzmann fac-
tors for an x-fold self -intersection are

Pr = dy& + y& 2yc ~z epl

f(2y} e r -1

(r - I)' f(2)»(2) (3.16)

where we have used (2.5), (3.11), and introduced
the moments

r(l)= J e "' ~ ' 'd,
0

(3.17)

which are well defined for / &0. This agrees pre-
cisely with the result of Gerber and Fisher. "

We may cheek from (3.16) that P, is unity as re-
quired. Furthermore, we note that e, now appears
only in the numerator defining P„. Evidently, the
limit e, =0 yields P, =p, =- ~ ~ =0, so that all self-
intersections are forbidden. Thus, in the n 0
limit for stiff spipgs, the normalized correlation
function describes only self-avoiding walks. "'"
(Note that all other details of the spin-weighting
factor enter only into the normalization. }

Finally, for all spin weights W((s~'}, we may con-
clude generally

limI';, (n; k=z /m, (n))/m, (n)
n 0

(3.18)

where Q(ij) is the grand partition function [at r. = 1;

see (3.5) and (3.7)] for walks with step weights z, ,
and self-intersection Boltzmann factors p„given
by (3.16); the superscript T denotes a matrix
transpose, while from (3.12) and (3.17) we have

m, (n) =f(n+2)/nI(n). This completes our explicit
identification of the n- 0, zero-field correlation
function for pairwise spin Hamiltonians with weight
W(~s~ ), with weighted self-avoiding and self-inter-
acting walks. The result agrees with that found in

Ref. 15 through a diagram-by-diagram analysis of
the high-temperature series. Self -avoiding walks
arise from any stiff-spin weighting function (for
which e ~toi=0), while more general spin weights
yield interacting walks.
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APPENDIX: TRANSFORMATION OF SPIN VARIABLES

In Sec. II we have shown that the direct interpre-
tation of the free energy in the n-0 limit as the
free energy of a random system fails when the
original spin model has stiff spins, i.e. , when e,
vanishes in (2.3). A particularly important ex-
ample of stiff spins is, as mentioned, provided by
fixed-length spins in which the restriction

is imposed at each site. The failure of the direct
interpretation is more general, however.

It is known from the work of Kac,"Baker, "Hub-
bard, "and others that a system with pairwise in-
teractions of the form (1.2) involving stiff spins,
s&, can be transformed to a model with "soft"
spins, o, in which the new weight factor exp[-W(o't]
does nol vanish at o = ~o ~

= 0. It might be supposed
that the difficulties uncovered in Sec. II would not
arise in the transformed description. In fact, as
we now indicate, the difficulties are merely trans-
formed so that the conclusions of Sec. II remain
unaltered.

The basic transformation of the interaction
Boltzmann factor is expressed by"

D(k)exp —g K,&s; s,.
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where i; is the new n-component spin variable,
[K '],

&
is the element of the inverse matrix of K

=[K;,], supposed positive definite and nonsingular,
and D = (2v)"" '[Det(K)]" ' is the normalization fac-
tor. The zero-field partition function is

Z„(n)

=Bp„d s exp — K)qs; ' sg — + s~

n - 0; the remainder

(A6)

is absolutely convergent for all n & —2, positive for
real z, and varying as z' for small z. Substitution
in (A4) and comparison with (2.1) yields

(A2)

where we allow for an arbitrary normalization
factor B„„in case this proves important when
n- 0. [A natural normalization is to require
Z„(n)—:1 for free or noninteracting spins (K;, —= 0
for i wj). ] On substituting with (Al) we find Z„(n)
expressed in terms of the partition function of a
new model of N spins, g;, with pairwise interac-
tion matrix -K ' and a new spin weight function
(P„(~o ~') defined by

-IV„& )

with

=b„+c„s"-'(R„(sze &' &ds,
- 0

(A7)

„=b I'(-, ) „(
" 'e t'~d

- 0
(A8)

where P„(y) should, in the limit n-0, be directly
related to the probability distribution of the ran-
dom fields y, [see (2.9)].

Now from (A7) with g = 0, we have

s.a -w(l s t 2)g~-'e ~s ~
Y(o) = P.(y)dy =b. , (A9)

ses a —w(IS I

n
se- (I I') (A3)

Here b„represents an arbitrary normalization fac-
tor related to B„„.We note that for Ising (n = 1) spins
restricted by s&

——sl one finds 8'„(g') = —ln cosho.
Similarly, for classical Heisenberg (n=3) spine
of unit length the weight is +„(gz) = —ln[(sinho')/o'].
Quite generally W„(g') varies as -s ~o ~

when

g —~ (where s &0 is fixed) so that in the g-spin
model the weight function does not serve to estab-
lish a cutoff at large )g~. On the contrary it is only
the negative bilinear interactions which provide
convergence as P~-~. In effect, the g-spin mod-
el is Gaussian for large ~g~ (although this is not,
of course, the situation for small g).

Now the angular integrations in (A3) can be per-
formed leaving

b„l'(zn) f, s" 'X„(sg)e ' ds
(A4)

0

where, in terms of the modified Bessel function"
I,(z), the kernel is

X„(z)= (-,'z)' '"t"f&„t,&,(z) = I /I" (-,'n) +dl„(z). (A6)

The second equality isolates the singular part as

so that a probabilistic interpretation (P, & 0) is
consistent provided bp: lim„„b„&0. For nonzero
g the integral in (A7) remains well behaved as
n- 0. Furthermore, the factor c„behaves as
2b„e ' when n- 0 provided the s-spins are not
stiff. In these circumstances, as before, an in-
terpretation of the zero-component limit as de-
scribing a random system is hence permitted.
Conversely, for stiff spins, with e ' =0, one sees
that c„/b„diverges to infinity. If b, remains non-
zero, it follows that Y„(g) is undefined (i.e. , infi-
nite everywhere) for nonzero g in the limit n-0.
The implications of this behavior can be under-
stood by choosing b„-0 such that c„remains finite
as n-0. In the limit, P„(y) becomes a function
with well-defined first, second, . . . moments [cor-
responding to the successive terms in (A6)] but
with vanishing zexoth moment [since b, = 0; see (A9)].
Such a function, T,(y), must have negative parts
and hence cannot be a probability distribution. If b,
is not allowed to vanish, P, (y) simply becomes a
function with unbounded oscillations. The addi-
tional terms entering in the application of L'Hos-
pital's rule in (2.8), through the n dependence of
I'„(y), do not alter these conclusions.
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