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Dispersion relation for phonon second-sound waves in superfluid helium
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The velocity and attenuation of phonon second-sound waves in superfluid 'He at saturated vapor pressure
have been calculated, as a function of sound-wave frequency ro, over the entire frequency range at a single
temperature 0.25'K. Second sound is obtained as a wavelike normal mode of a model phonon Boltzmann
equation containing, in addition to the lifetime T i of a single thermal phonon due to small-angle scattering, a
sequence of longer lifetimes characterizing wide-angle scattering of phonons with anomalous dispersion. The
calculated second-sound phase velocity shows a dispersion spread out over four orders of magnitude in

frequency in the range &or(( 1. Moreover, there is a wide frequency range satisfying car
l &1 in which a

second-sound collective mode still propagates, with the same velocity as a thermal phonon but with an

attenuation length much longer than the thermal-phonon mean free path. The existence of a collective mode
in the regime cov(( & 1, due to small-angle scattering, supports Maris's proposed explanation of resonancelike
dispersion in the first-sound velocity, and also implies that the transition from collective to ballistic
propagation in heat-pulse experiments is more complicated than previously supposed.

I. INTRODUCTION

A number of recent experimental and theoretical
studies of phonon excitations in superfluid He at
low pressures have provided much evidence that
the phonon spectrum ~(q) is anomalous at long
wavelengths; the phonon frequency increases
slightly faster than linearly in the wave vector q.
For such an anomalous dispersion, the lifetime
7(~ of a thermal phonon at low temperatures is due
to the three-phonon interaction, with all three
wave vectors nearly collinear (small-angle scat-
tering). ' In addition to r„, there is a sequence of
longer relaxation times characterizing the coupling
of phonons over wide angles via many back-to-back
small-angle collisions. The existence of long
relaxation times characterizing wide-angle scat-
tering, and their importance in the hydrodynamic
response of the phonon system, have been exam-
ined in an extensive set of computations by
Maris. ' 4 His results for the phonon viscosity'
and for the first-sound velocity and attenuation'
are in striking agreement with experiment. Maris
also finds a number of different collective modes4
of the phonon system, including a second-sound
mode with very spread-out dispersion: the sec-
ond-sound velocity variation between about c,/v3
and co (c, is the phonon velocity) typically extends
over about four orders of magnitude in second-
sound wave frequency at fixed temperature, or
over a factor of 6 or more in temperature at fixed
frequency.

Maris's calculations involve extensive numerical
treatment of the collision operator in the phonon
Boltzmann equation, and are limited to the range
of collective mode frequencies cow~~«1. In this

work we use a model Boltzmann equation to relate
the collective-mode dispersion relation more
directly to a spectrum of wide-angle relaxation
rates. We also examine the nature of second-
sound propagation in the high-frequency regime
coT~) &1, which is of special interest in connection
with first-sound propagation. Calculations by
Maris' and Wehner' show an unusual resonancelike
dispersion in the first-sound velocity, in agree-
ment with experiment. ' At for instance T =0.25'K,
the resonance is seen in the frequency range
10' us 100 MHz, which (according to a calcula-
tion of r~~ given below) corresponds to 0.6 & err~~ 6.
Maris and Wehner both attribute this dispersion
to resonant interaction of the first-sound wave with
a collective mode of the thermal phonons, which
Maris further proposes is the second-sound mode.
This explanation would, however, then require
that the phonons sustain collective oscillations to
frequencies usually thought of as well into the
ballistic or single-phonon regime co~)~ +1. The
calculations we report here do show this behavior.

In Sec. II we present a model phonon Boltzmann
equation containing a sequence of wide-angle re-
laxation rates which can be explicitly solved for
the collective-mode dispersion relation. In Sec.
III the phase velocity and attenuation length of
second sound are evaluated as functions of fre-
quency at T =0.25'K, for a set of relaxation rates
which follow from Maris's proposed form for the
phonon anomalous dispersion in superfluid helium.
At low frequency the second-sound velocity ap-
proaches (v, )/v3, where (v, ) is a thermal average
of the phonon group velocity and is weakly tem-
perature dependent, due to thermal averaging of
the weak q dependence of U if the phonon disper-
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sion is anomalous. This temperature dependence
of the hydrodynamic second-sound velocity has
been derived previously by Saslow' and Brooks
and Donnelly. ' With increasing frequency, we find
a secon&l-sound velocity increase from (U, )/&3
to (v, ) spread over four orders of magnitude in

frequency below ~&II =1, in agreement with Maris's
results. We also find second-sound propagation
continuing up to ~~II = 3000, with velocity essen-
tially equal to the thermal-phonon velocity (v, }
and with an attenuation length longer than the
phonon mean free path (U, )r«. These results can
be qualitatively understood by distinguishing be-
tween small- and wide-angle phonon scattering
(Sec. IV).

to converge to 1/r&, as l-~. As outlined in the
Appendix, a model Boltzmann equation including
these features is

(i &d —ik (v, ) cos 8)&I&(q)

tl(q)- Q 1-—'

y,.(q) —y... q
II gtn

where

y,.(q) =R(q)Y;(11),

R (q) = [(15/16«')(P bc,)'r«]'k q/sinh(-, '
P bc, q),

with normalization.

II. MODEL PHONON BOLTZMANN EQUATION

We shall describe a collective disturbance of
the phonons in superfluid helium in terms of a
nonequilibr ium phonon distr ibution

N(q, r, t) =No(q) + [No(N'+ 1)]'kP(q, r, t)

=No(q) +g(q, r, t)/2 sinh( —,'PI&d, ),
0( t}= &I'(}

and

—~it'~m~'
&

1

(~,) = —' dqq'IR(q}l'u, ,
Il O

d 4)q
co = lim (v, ) =lim

T~O K e~O

(4}

where ru, is the phonon frequency, P = (kzT) ', No(q)
is the equilibrium Bose distribution, and co and
k are the frequency and wave vector of the wave-
like disturbance. g(q) is taken to obey the phonon
Boltzmann equation, with superfluid motion ne-
glected and with the linearized three-phonon colli-
sion integraP ' C(f)

(i&d —ik v, cos8)g(q) =C(g); (2)

8 is the angle between k and q, and v, =d~, /dq.
As discussed in the Appendix, it is possible to

write C(&)t) formally as a sum of projections of

g(q) onto eigenfunctions of the completely con-
tinuous part of C. We shall retain only those col-
lective modes which arise from projections onto a
limited set of slowly relaxing eigenfunctions,
whose angular parts in q space are spherical har-
monics Y& (Q}; 0 denotes the angular variables
of the wave vector q. The projection onto a spher-
ical harmonic Y

&
relaxes at a rate 1/T, , a rate

characterizing coupling of phonons over an angle
8- «/l between a maximum of Y

&
(excess phonons)

and an adjacent minimum (too few phonons). Ener-
gy and momentum conservation in phonon colli-
sions imply 1/T, =1/T, =0. We denote by 1/r« the
inverse lifetime of a thermal phonon due to three-
phonon scattering. For small anomalous disper-
sion, this is small-angle scattering. ' In contrast,
1,~T, for small t describes wide-angle scattering
resulting from many successive small-angle scat-
terings, and the sequence 1/~& we shall take later

A model Boltzmann equation of the same form as
(3) but including superfluid motion has been used
by Wehner' to discuss first sound in superfluid
helium.

Equation (3) may also be written as

(z —cos 8}&t(q}

z = (i &u~, &+1)/ik(v, )w&,

(5a)

(6)

or for z not on the real axis between -1 and +1:

(5b}

The model equation (5a) or (5b) is identical in
form to model equations occurring in rarefield
gas dynamics and neutron transport theory. ""
One can distinguish two problems: forced vibra-
tions (&u real and given) or free vibrations (k real
and given). Either problem has two classes of
solutions, collective modes and ballistic phonon
modes. Collective modes arise in the following
way: For z not on the real axis between -1 and
+1, the equation has solutions only at isolated
points z, (&d) or z,. (k), For each such solution z;,
Eq. (6) then provides a dispersion relation relating
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(v and k. For each given (v (or k), there is also a
continuum of ballistic phonon modes, correspond-
ing to solutions for every z on the real axis be-
tween -1 and +1, z =cos8, say. The solution (l((q)

of (5a) then contains an additive term &&(cos8
—cos8, ), and (5a) determines the value of &,

rather than determining a dispersion relation';
the only relation between (v and k is [from (6)]

((g = k (v+) cos 8o + g/T((,

Thus given any temporal (or spatial) variation in

the phonon density, such a disturbance may always
be partially carried by a single beam of phonons
moving with group velocity (v, ) in an arbitrary
direction 6,. All such beam solutions have the
same lifetime T(( slid attenuation length (v, )T((.
These are "ballistic thermal phonons, " and the
approximations inherent in the model Boltzmann
equation (3) are thus to replace the wave-vector-
dependent single phonon scattering rate I'(q) and
group velocity v, by their thermal averages 1/T((
and (v, ). Thus the only real way that anomalous
phonon dispersion is retained in (3) is in its in-
fluence on the phonon scattering —the values of the
1/T, .

One technique of solution of (3), discussed by
Case and Hazeltine, " amounts to taking inner
products of both (5a} and (5b) to construct the
moments

1
d(cos8)P, (cos8}P,(cos8)/(z —cos8)

2 -1

=Pg((z) Qg, (z),
where l( (1&) is the smaller (larger) of l, l', and

P, and Q, are Legendre functions of the first and
second kinds. ] Case and Hazeltine write (7a} as

p, (k, (v) = hg(k, (d)p (k, (d),

(l+1)h„, +lh, ,

(8)

(2 l + 1)[z (1 T ((/T g )/ g k (v ) T]((kg
= 0 (9)

A, -=O, h =1.
An approximate dispersion relation valid for
(vT((«1 results from recursing (9) for l =1,2, . . . ,
L+1 and assuming the moments truncate:
hz„(k, (g() =0 is then an I th approximation to the
dispersion relation for collective modes. Naris's
discussion4 of collective modes in superfluid 4He

involves an equivalent approximation. The Case-
Hazeltine method, valid for all frequencies, is to
substitute (8) into the right-hand side of (7b) for
l'=0, and rearrange to obtain

p, A(k, (v} =0,

A(k, (v) =1 —(ik(v, )T(() '

x g (2l +1)(1—T((/Tg)(j)g(z)h, (k, (d).

( ((, )-=gt„E(' (g) —, ( ., g)

dqR(q) P, (cos 8)gl((q) .1

~ll

p (k, (d) is proportional to the Fourier transform
of the energy density fluctuation. (5a} then gives
the recursion relation"

(l + 1)pg pg + lpg

(2l +1)[z (1 T (/T )(/i kg(v )T((]pl =0 (7a)

while (5b} gives the coupled set of equations

p, =(ik(v, )T(() '

xQ (2l+1)(1 —T„/T, )P, (z)Qg (z)p, . (7b)

[To obtain (7b) one may evaluate an angular inte-
gral

(10)

The zeros of the dispersion function A(k, (v) in the
z-plane cut from -1 to +1 thus give the dispersion
relations for collective phonon modes. By com-
bining (9) with recursion relations for Qg(z), Case
and Hazeltine show that (10) may also be written

A(k, (v) = lilnAz (k, (gg),
gaz oo

AL (k, ~) = (L +1)[hz+g (k, (v) Qz (z )

—h, (k, ~)Q&.,(z}].

III. COMPUTATION OF SECOND-SOUND DISPERSION

RELATION

The effect of anomalous phonon dispersion on the
phonon scattering is contained in the wide-angle
relaxation rate spectrum 1/T„but at present an
explicit connection between the phonon frequency
(v, and 1/T, has been given only for small l,' so
we shall resort to Maris's numerical computation
of 1/T, . We examine the phonon dispersion rela-
tion

by using the rotation theorem for the spherical
harmonic, to obtain the integral

.1- (q/q~}'
1+(q/q, P

with p 1 11 A
y P~ 0 5418 A

p Qgy 0 3322 A

(12)
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This is Maris's dispersion relation D, which he

shows is consistent with measured neutron scat-
tering, phonon viscosity, and ultrasonic attenua-
tion, at saturated vapor pressure. '' For T
=0.25 K and l ~ 15 we use Maris's numerical com-
putations of I/r, for this dispersion relation
(Fig. 2 of Ref. 4). For I &15 we use

I/T, = —(1 —e '"' ~') (T=0.0269,
~ll

107—

I

IJ
4

~A

10e
I

Ih

z0
I
4

10s—
IL

—= 32.9—(u+I} (ksT/@co)',
1

II

(14)

with Griineisen constant u, liquid density p, and

velocity co as in Refs. 2-4. The thermal phonon
lifetime v'„due to small-angle scattering has been
calculated as in Ref. 5 and 9. The form for 1/T,
is as suggested for 1» 1 by Wehner, ' who observed
in the somewhat unrealistic case u&, =c,(q+yq')
that v may be interpreted as a mean scattering
angle for small-angle phonon collisions. It seems
plausible that a similar interpretation holds for
the phonon dispersion (12), in which case o is
calculable from (12) somehow. Here we simply
observe that the form (13) roughly approximates
Marie's calculated I/v, for I ~ 8, and o =0.0269
results from fitting to Maris's calculation for
I =15 (see Fig. 1).

For this relaxation rate spectrum, the second-
sound dispersion relation was determined as fol-
lows. We consider the problem of forced vibra-
tions, so that &u is real and k complex in (5} and

(6). For fixed ~, each of the Az defined by (11)
and (9) is analytic in the z-plane cut from -1 to
+1, and has isolated zeros. As ~ is varied, each
zero moves along a continuous path in the z-plane;
each such path corresponds by Eq. (6) to a dis-
persion relation k =k(&u) for a different collective
mode. The second-sound modes are the two paths
on which the phase velocity &u/Rek- s(v, )/v 3 as
u-0. As L is increased, old paths are deformed,
and new paths corresponding to more highly
damped collective modes appear. For L =5,
points on the path of second-sound zeros were
computed by iterative numerical solution of A, =0.
For each frequency considered, the L =5 zero
was then used as a starting approximation in itera-
tive numerical solution of A, =0, and so on up-
wards in L until convergence of the phase velocity
and damping to better than 1% was achieved. We
found this procedure free of instabilities and able
to follow the second sound mode zero unambiguous-
l.y.

Figure 2 shows the second-sound phase velocity
ru/Rek and inverse attenuation length n =Imk de-
termined in this way for dispersion relation (12) at
0.25'K. At a maximum frequency curII-=2749 the

I I I I I I I I I I I I I I I I I I I I I I

2 4 6 8 10 12 14 16 18 20 2 2
ANGULAR MOMENTUM

FIG. 1. Relaxation rate spectrum at 0.25 'K. Points
denote Maris's caLculations Q,ef. 4). See text, Sec. III.

second-sound zeros in the z plane pass onto the
branch cut and the collective mode breaks up into
a beam of ballistic phonons. In Fig. 2, this maxi-
mum frequency is very nearly (but not exactly} the
frequency at which the attenuation length 1/n has
decreased to equal the phonon mean free path

(v, )r~~. It is possible to give a formal continuation
of the dispersion relation to higher frequencies by
following the zero across the cut onto a second
Riemann sheet of the dispersion function, and this
has been done in Fig. 2.

The method of upward recursion of the sequence
A~ shows directly how sensitive the dispersion
relation is to the entire spectrum of relaxation
rates I/r, . In fact the phase velocity is at all
frequencies given to better than ~% of its "final"
value by stopping at L =15, which in effect retains
only the rates 1/ro through I/v» and lumps all
higher rates together at the limit point I/r~~. The
same L =15 approximation gives the attenuation
e to at worst about 3% of its final value, for
~vI~&1. However, in the high-frequency region
4)TII +& 1 the attenuation is very sensitive to the
details of the spectrum for large I, and conver-
gence to 1% at the highest frequencies requires
L =120. Since Eq. (13) for 1/7, for large l is not
much better than a conjecture, our results for
the attenuation in the region mII»1 should then
be considered qualitative.

IV. DISCUSSION

The second-sound dispersion relation in Fig. 2

has the following features:
(a) The low-frequency hydrodynamic regime,

in which the second-sound velocity is (v, )/v3, is
defined by uxr, «1; 7, is the viscosity lifetime. "
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FIG. 2. Velocity and damping of second sound at 0.25'K. The phase velocity v and inverse attenuation length & are
in units of thermal phonon group velocity and thermal phonon inverse free path.

The hydrodynamic velocity is weakly temperature
dependent, due to thermal averaging of the anoma-
lous, weak q dependence of the group velocity
v, =d&u, /dq At 0.25.'K, evaluation of (4) with (12)
gives (v, ) =1.015c,.

(b) As &u increases through a wide dispersive
region 1/7., s &us 1/7.

, ~, the slower wide-angle scat-
tering processes become unable to couple phonons
quickly enough, and the surplus phonons carrying
the disturbance from equilibrium gradually narrow
down to q's in a small cone along the second-sound
wave vector k. With this increasing collinearity
of the surplus phonons, the velocity of the dis-
turbance incr'eases toward the phonon velocity
(v, ). At 0.25'K, the dispersive region extends
over about four orders of magnitude in frequency.

(c) For &u~~~-1 collective second-sound propa-
gates with velocity within a few percent of the
ballistic thermal phonon velocity (v, ), but unlike
ballistic phonons the damping is still weak enough
to propagate second sound over macroscopic dis-
tances. Equation (14) gives v~~=5, 79&&10 ' sec at
0.25'K, corresponding to a ballistic phonon mean-
free-path 0.014 mm. In contrast, for u~(~ =1,
w =17 MHz, the second-sound attenuation length
from Fig. 2 is considerably longer: 0.94 mm.

(d) Collective second sound propagates far into
the regime cuT)~++1, with weaker damping than
ballistic phonons. This result may be qualitatively
understood as follows. At high frequencies, only
small-angle scattering is important, and the col-
lective disturbance consists of wavefronts of cou-
pled surplus phonons with q's in a narrow cone of

angular width o about k; o is the mean scattering
angle for small-angle scattering. For collective
propagation the surplus phonons must ride to-
gether on a wavefront for a long enough time 7

()

for them to couple to each other. Owing to the
finite angular width of the cone of surplus phonons,
those on the edges and those down the middle of the
cone have slightly different group velocity compo-
nents along k and traverse different distances along
the direction of propagation of the wave in time

For collective propagation this distance dif-
ference must then be small compared to the sec-
ond sound wavelength, or

( +v)rii (v+) cosoTg K 1/k k =Rek,

With coso =—1 ——,'o' this gives k'(v, )r~~ ~ 2/g', or,
since to lowest order in o the second-sound phase
velocity ~/k'= (v, ),

mr~I 6 2/o

With v=0.0269 as in (13) above, this gives an~,

& 2800 as a criterion for the existence of collec-
tive second sound, in agreement with the value
cue~, = 2749 at which the second-sound zero in the
z plane disappears into the branch cut, signaling
the breakup of the collective mode into ballistic
phonons.

We stress again that the dispersion relation of
Fig. 2 probes the phonon frequency anomaly
through a spectrum of relaxation rates 1/T„
1/7„. . . , 1/7~~. Narayanamurti, Dynes, and
Andres" in an analysis of their experimental work
on heat pulses examine a model dispersion rela-
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tion with all phonon-phonon scattering lumped into
a single rate I/r». That model predicts a second-
sound velocity approaching c,/v3 for err»& —,'o

and c, for wT»~ 10, i.e., a dispersion extending
over only about two orders of magnitude in fre-
quency, in contrast to the behavior of Fig. 2. The
frequency dispersion was not directly measured;
rather Narayanamurti et al. measured the tem-
perature dependence of the velocity of heat pulses
at fixed pulse central frequency, and determine
T»~ T '. This temperature dependence is weaker
than that of both v, and ~,I,

"and is we believe an
artificiality resulting from use of a single phonon
scattering rate. The present calculation suggests
a temperature dependence of pulse velocity ex-
tending from the temperature where &ur, (T) =1
down to that where ~v, ~(T)=1. The very different
magnitudes of r, (T) and Tg(T') make this tempera-
ture range wide, and in order to duplicate this
wide interval by ranging a single parameter (di»
from -—,'o to 10, v» needs to vary artificially
slowly.

Two problems remain to be solved before a real
comparison with heat pulse experiments is possi-
ble. First, a theory of the temperature depen-
dence of the wide-angle scattering rates I/~, is
lacking; approximations have been given only for
small l.' Second, in this work a single collective
mode of the phonon Boltzmann equation has been
examined, while a real heat pulse in superfluid
'He might be expected to couple to all collective
modes plus ballistic modes. This aspect has been
formulated as a boundary-value problem and dis-
cussed by Maris4; in the present context it in-
volves study of the full response function I/A(k, &u),

rather than a single one of its poles as above.

where I'(q) is the wave-vector-dependent single
phonon small-angle scattering rate, and P„, (q)
and 1 —A,„, are eigenfunctions and eigenvalues of
the completely continuous part of the collision
integral, ' with normalization

(A2)

The angular parts of Q„, (q) are spherical har-
monics

and the index n denotes the number of radial
nodes.

We seek those collective modes of the phonons
consisting of disturbances from equilibrium whose
radial distributions of surplus phonons are con-
served, or nearly conserved, in phonon-phonon
collisions. Such disturbances comprise the set
P» (q) of eigenfunctions with no radial nodes."
Thus:

(i) We assume that P(q) has projections onto only
the n =0 functions Q„, and restrict the sum over
n in (Al) to n =0.

(ii) Following earlier work, ' we write Xo, =r„/r„
where

fdq I'(q) q'/sinh'( —,
'

P Kc, q)

fdq q'/sinh'(-, ' pic, q)

is a thermal average of the scattering rate I'(q).
The set I/v. , comprises the spectrum of wide-angle
relaxation rates. '

(iii) We assume that I'(q} may be replaced in
(Al) by its thermal average I/r„.

(iv) We take the radial part R, (q) of P„(q) only
to zeroth order in the phonon. dispersion anomaly';
R„(q)-=R(q) as given following Eq. (3) above.
Under these assumptions, the Boltzmann equation
(2) may be reduced to (3) by equating projections
of both sides onto the subspace of n =0 eigenfunc-
tions.

APPENDIX

Previously it has been shown' that the linearized
three-phonon collision integral C(g} in the phonon
Boltzmann equation (2} has the formal spectral
representation

c(g) = -«'(e) (p(q) —E (« —« )e (««)N«'e „, PI}„,,. „...
nl fft

(A1)
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