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Theory of the excitation spectrum of liquid “He
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A critical review of the theory of a Bose liquid at T = O as given by Beliaev, Hugenholtz, and Pines and by
Brueckner and Sawada is presented. An improved solution of Brueckner’s nonlinear integral equation for the
vertex functions is proposed. Such a solution is based on a proper parametrization of the angular-momentum
dependence of the Green’s function. The experimental excitation spectrum is very well reproduced by the
theory in the range of linear momenta 0 < g < 2.3 A~'. Remarkably, the calculated density is in exact accord

with the experimental value.

The theory of liquid ‘He at T=0 as proposed by
Beliaev!'? and subsequently improved, among
others, by Hugenholtz and Pines?® is closely con-
nected with quantum field theory. To start with,
the one-particle Green’s function, defined, in the
interaction representation, as a time-ordered
product of the boson fields ¥(x), yT(x) and the S
matrix,

iG(x = x") =T (x)SH AS) (1)

is considered.

In (1) the expectation value is taken in the ground
state of the noninteracting particles which has all
the particles in the condensed phase (N;#o =0,
N,=N, N being the number of particles).

0 -
P0+€3+Eu—}l

In order to take properly into account the deple-
tion of the condensed phase, due to the interaction,
Beliaev splits (1) into two parts to describe the
propagation of a particle in and outside the zero-
momentum state, respectively. The former is
evaluated exactly, while the latter Green’s func-
tion obeys an equation entirely analogous to the
one originally proposed by Dyson® in quantum
eiectrodynamics.

The solution can be given exactly in terms of
three vertex functions, customarily denoted Z,,(p),
Ze(@+u), and Z,(p+u), and of the chemical po-
tential 4 and reads (p is the four-momentum of the
particle)

G = T = = — 2
P+ [po‘%(zu_211)]2"[596+%(E;1+211)—“]2+220202+26 2)

where €3=p%/2m and £} =2, (+p).

The poles of G(p+ 1) near the real p° axis give
the energies of a quasiparticle of momentum p.

To proceed further the vertex functions, i.e.,
the irreducible parts in the expansion of the
Green’s function, must be determined. Of these
2,,(p) describes the process of the forward scat-
tering of a particle outside the condensate with a
zero-momentum particle, while Z,(p+ 1) and
Zao(p+ 1) describe the absorption into and the
emission from the condensed phase of two particles.

Therefore one sees that the Dyson equation does
not allow for the free propagation of the Helium
atoms: on the contrary, the interaction with the
condensed medium is always present.

f

The vertex functions can be obtained, with a
proper specification of the variables, from the so-
called “effective potential” I'(12, 34) which in
Beliaev’s theory obeys the following integral equa-
tion:

F(12;34)=U(1—2)6(1—3)5(2—4)+z'f U(l-2)

XGO(1 - 5)G°(2 - 6)T'(56; 34) d*x, d*x, ,
(3)

where U is the interaction potential and
G°=(p° - €3+i6)7! is the free one-particle Green’s
function.

Equation (3) sums up all the ladder diagrams of
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FIG. 1. One of the many ladder diagrams summed up
in Eq. (3).

the type illustrated in Fig. 1. We emphasize that
the particles propagate freely, with momentum
different from zero, from one vertex to another
along the borders of the ladder. This is inconsis-
tent with the original equation for G(p + 1), where
the propagation of the particles with nonvanishing
momentum is always affected, as already noted,
by the interaction with the zero-momentum parti-
cles.

The solution of Eq. (3) can be expressed in terms
of the two-body scattering amplitude f(p’; p) in
vacuum [the quantity f('; ) becomes the usual
scattering amplitude (apart from a factor —47)
when |p’| =|Pl|] as follows:

@5 P =fF,0)+ [ d@F, D69

1 1
X(K?,—qzu'é _pz—q2+i6> ’ 4)

where P and P’ are the relative initial and final
momenta of the two interacting particles, P is
the total four-momentum of the interacting pair,
and K2=P° - 3P2

If only the first term in the right-hand side of
Eq. (4) is retained [this is nof just the first itera-
tion of Eq. (3)], then one gets immediately for the
excitation spectrum

w(®) ={[€} + 21, £,(3B, 2D) - 1, £(0, 0)]?

-ng| B, 0)| /2, (5)

where the symmetrized scattering amplitude is de-
fined by

fs(i;,’ﬁ) [f(*, -.)‘*' ( -,’, ﬁ)]; (51)

and 7, is the density of the condensed phase, which
appears here explicitly because of the previously
mentioned separation of the one-body Green’s func-

tion (1) into two parts.

Formula (5) actually is quite general and holds
whenever the p° dependence of the vertex functions
can be ignored. Beliaev® then considers the model
of a gas of hard spheres of radius 3a. Keeping
only the s-wave interaction, (5) becomes (p=|p]):

w(p)=(6.06/a*){[x*+68(3 sinx/x - 1)]
DIz, (6)

where x =pa, B= no-;na %), and the factor 6.06 is to
convert from units of A to °K. Formula (6) can-
not reproduce the experimental data. The sound
velocity associated with Eq. (6) is

c=(6.08/a)(12)""2[3(1 - B) /2 . (7)

So when the density of the condensed phase be-
comes larger than § of the close-packing density
P (=6/ma® for hard spheres of radius 3a) no
phonons will propagate into the system. Also the
max1mum value of ¢ given by (7) (corresponding
to B=3) is 5. 25°K A (with a= 2 A) to be compared
with the commonly accepted experimental value of
18.3 KA.

We believe these shortcomings of the Beliaev
theory to be mostly due to the lack of self-consis-
tency, rather than to the approximations made in
solving Eq. (4) or to the neglect of the interaction
in higher partial waves.

When viewed in the framework of this formalism,
Brueckner’s theory®'® amounts essentially to the
use of a more realistic integral equation for the
vertex functions in order to deal better with the
problem of the propagation of the particles with
nonvanishing momentum.

In fact in Brueckner’s theory the excitation spec-
trum is given by a formula identical to (5) but with
the “t matrix” in place of the two-body free scat-
tering amplitude, i.e.,

w(q) = { 2/2m+N(toa,oa+toa w0~ oo.oo)]2
_N, e (8)

x [x% +68(sinx/x —

The suffix zero labels atoms in the condensate,
and N is the number of particles. Since (8) in-
volves N, while (5) has n,, Brueckner theory
does not explicitly take into account the deplé-
tion of the condensate. This depletion will occur
in higher-order terms, together with the contribu-
tions of the particles excited out of the condensate.
This seems physically reasonable.

The integral equation for the ¢ matrix is now

t12,34=U12,34 + Uyz,56Gselss 34 » (9)
where, in the two-body propagator
G(@)=={2[g2/2m + Nllog 00 + toa.a0 = Loo.00) ] +20} 7,

(10)
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the interaction with the particles in the condensed
medium is taken into account through the explicit
self-consistency term N(ty,,00+ toq,c0 = to0,00). IN
terms of diagrams, the particles on the border of
the ladder of Fig. 1 are now allowed to interact an
infinite number of times with the zero-momentum
particles.

As a result the integral equation (9) becomes
highly nonlinear, the price to be paid to account
for higher-order diagrams neglected in Beliaev’s
treatment.

The question then arises if these higher-order

processes are the important ones to be considered.

One may try to answer this question by comparing
the theory with experiment, having first solved
Eq. (9).

If an infinite hard-core two-body potential is
used then scattering theory? gives

£(q) =t 44,00+ toa,a0 = too,00

_ jizqa) 1
__z’;m L ) G ) (11
and
boo,q-e =[— 1/Gyla,a)]sin(qa)/qa , (12)

where the G,(a,a), the [th partial waves of the
two-body Green’s function in configuration space,
are still unknown. The j,’s are the standard
spherical Bessel functions.

Assuming, as Brueckner does, G,(a,a)=G,(a,a),
the expansion (11) can readily be summed:

t(q) == [1/Gyla,a)]sin(qa)/qa . (13)

The resulting spectrum is quite simple because
of the exact cancellation of the quadratic terms
in (8):

geme)t gy

_ 2
w(q)=6.06q (q +2a p=

where A*=—Na®/G(a,a) and 7> =2m =1. The cor-
responding sound velocity is ¢ =6.06Av2 /a.

Equation (14) displays the roton minimum for A
large enough and has the correct analytic proper-
ties,” i.e., branch cuts in the complex g plane with
the real part set by the roton minimum and imag-
inary part decreasing as the density becomes
larger.

These features indicate that Brueckner’s theory
indeed contains the essential dynamical aspects of
liquid “He. Nevertheless it has been shown® that
(14), as it stands, cannot quantitatively reproduce
the experimental data with any choice of @ and A2,

In order to obtain a better solution of Eq. (9) we
relaxed the crude approximation G, =G, which
strongly underestimates the contribution of the

higher partial waves to the ¢ matrix and conjec-
tured for all the waves higher than /=0,

G,(a,a)=Gyla,a)/A(12+1+1), (15)

which permits a closed analytic expression for the
summation (11), i.e.,

Nt(q) =6{(1 = A)[1 - 24} (3qa)]
- 3A[jo(ga) + cos(ga) + 3(ga )]} . (16)
Inserting (16) and (13) into (8), one gets
w(q)=6.06[(¢2+0{(1 -A)[1 - 23(3qa)]
- 3A[jo(ga) + cos(qa) + 3(qa)*1}) 2
- 8%3(qa)) 2, an

where 6 =N/G,(a,a).

The experimental data® in the range 0 <¢<2.3
A"l are now reproduced exceedingly well for the
values

6=-5.483 A2, 2=2.019 A,
A=0.071,

(18)

as can be seen from Table I and Fig. 2. The cor-
responding x? is 9.415, which is entirely accept-
able for a three-parameter fit to 23 data points.
Incidentally, Eq. (17) provides the same sound
velocity, namely ¢ =6.06(—26)"/%, as Eq. (14). The

TABLE I. Dispersion curve in liquid ‘He given by our
Egs. (17) (column IV) and (24) (column V) compared with
the experimental points of Ref. 5.

Wave Expt.

vector energy

q (A (°K) Error Theor. I Theor. II
0.2 3.700 0.50 3.956 3.956
0.3 5.650 0.20 5.829 5.828
0.4 7.400 0.20 7.577 7.576
0.5 9.150 0.20 9.165 9.164
0.6 10.750 0.20 10.559 10.559
0.7 11.750 0.20 11.734 11.733
0.8 12.650 0.20 12.667 12.666
0.9 13.150 0.20 13.341 13.340
1.0 13.550 0.25 13.749 13.748
1.1 13.800 0.30 13.887 13.886
1.2 13.750 0.25 13.762 13.761
1.3 13.500 0.25 13.388 13.386
1.4 12.950 0.20 12.791 12.789
1.5 12.200 0.20 12.010 12.008
1.6 11.200 0.20 11.109 11.108
1.7 10.250 0.20 10.184 10.184
1.8 9.250 0.20 9.385 9.389
1.9 8.700 0.20 8.923 8.931
2.0 8.950 0.20 9.037 9.047
2.1 10.000 0.20 9.883 9.889
2.2 11.650 0.25 11.459 11.449
2.3 13.550 0.25 13.650 13.612
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FIG. 2. Dispersion curve in liquid *He as given by
our formula (17) (solid line) compared with the experi-
mental data taken from Cowley and Wood (Ref. 9).

radius of the hard core, even if somewhat small,
is reasonable.

The propagator (10) is the distinguishing feature
of Brueckner’s theory. Its poles near the real
axis in the complex w plane fail to give the quasi-
particle spectrum because of the presence of the
extra term N2t  _. under the square root in (8).
This term describes the multiple excitation of
pairs of particles out of the condensed phase, as
illustrated diagrammatically in Fig. 3, and its in-
clusion is essential for a proper description of the
excitation spectrum.

To test the choice (10) and therefore, in a sense,
the validity of Brueckner’s theory, we consider

Q .sin®(qa)
Go(a,a)=(§ﬂ—)3quWG(q), (19)

where Q is the volume and
G(q)=- %[qz‘*N(tm.oa*’toa ,qo"too.oo)]-1 . (20)

From (19) and (20) one gets

e
(2my?

§ sinZx
X-l; dx{[w(q)/6.06]2+N2z2 Ti7% 5 (21)

00, =qq.
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FIG. 3. Typical multiple-excitation diagram. Note
that only one value of g is involved. Dashed lines repre-
sent particles in the condensate.

o

sinx
dx{[azw(q)/G.OG]z +

AZ
9‘13:'(2_7”5 ’/; qug(x)}l/z ’
(21)

which, with the values (18) for 6, a, and A, gives
for the density (1/45.8) A3, in exact accord with
the experimental value. This connection between
the density and the excitation spectrum is specific
to the Brueckner theory, with its explicit self-
consistency term in G(q).

So with the correct w(g) one gets the right density
from (21’): a strong indication that multiple excita-
tions and self-consistency are quite relevant and
correctly handled in Brueckner’s theory. The
exact agreement with the experimental density also
justifies ignoring the depletion of the condensate.

In Fig. 4 the quantity A2= - da? is displayed as a
function of pa3: it appears that the sound velocity
(proportional to A) increases with the density up
to a maximum value ¢, =30°K A which is
reached when pa®~ 6/7.

This behavior is radically different from (7). In
the complex g plane the relevant singularities of
(8) are branch points located at g=¢, +ig,=1.91
+70.31 A“, in agreement with the analytic struc-
ture found in Ref. 7.

We have also investigated the following conjec-
ture for the partial-wave Green’s function (except
for 1=0):

G,(a,a)=Gyla,a)/A(21+1) . (22)

In this case also a closed analytic expression for
the summation (11) is obtainable, i.e.,

Nt(q) = 6{2(A - 1)j3(3qa) + 1 — 3A[jy(ga)
+cos(qa) + qa Si(ga) + 73C_,(ga)]} , (23)
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FIG. 4. Solution of Eq. (21’) giving A\2==6a2=—[N/
Gy(a,a)la® as a function of pa3.

where Si(ga) and ¥¢_,(ga) are, respectively, the
sine integral and the Struve function of order
_1.10

Inserting again (23) and (13) into (8), one gets
w(g)=6.06 [(¢* +5{2(4 - 1)3(39a) + 1
- 24[jo(qa) + cos(ga) + ga Si(qa)
+ 7., (qa)]})? - 6% sin®(ga)/(qa)?] 2,
(24)

From Table I it is seen that the experimental data
can be reproduced very well (x2 =9.540) in the

range 0s¢<2.3 A for the values
6=-5.482 A2, 4=2.021 A,

A=0.101.

b

(25)

Note that (24) provides the same sound velocity as
(17), namely ¢ =6.06(-25)2, Also, inserting (24)
with the values (25) in (21’) one gets again the ex-
perimental density.

The value (25) for A is larger than the value (18),
as it should be since the ansatz (22) emphasizes
less drastically the role of the higher partial
waves. The branch points characterizing (24)

coincide with those of Eq. (17).

Even if a theoretical deduction of the link be-
tween G,(a,a) and G(a,a) is difficult to achieve
in general, one may proceed as follows. From
the partial-wave decomposition of the Green’s
function

1 1 >
Gir )=t [ du PwIGE-F) (26)

=1

where the P,(u) are the Legendre polynomials,
taking the simplest expression

mQ eI (87pa) 1/ 2

GT-1')=- (27)

R . e )
47 |-r-r'|

after some nontrivial manipulations one gets

mQ
Ga,a)= —m[,+1,2(81rpa3)”2K,+1,2(81rpa3)”2 ,

(28)

where [;,,,, and K;,,,, are the Bessel functions of
purely imaginary argument of first and second
kind, respectively. Exploiting their asymptotic
representation we get

G,(@,a)=2Gy(a,a)/(21+1) , (29)

which supports the ansatz (22).

Our analysis suggests that off-energy-shell ef-
fects and the phonon-phonon interaction do not
play a significant role in the excitation spectrum
of liquid *He.

The intermediate-range attraction, neglected in
the present treatment, seems to be of importance
only in the low-¢q region, as can be argued from°
the fact that our sound velocity ¢=20.1220.2°K A
is about 10% larger than the experimental value
18.3°KA. This discrepancy can be accounted for
by attractive forces, as discussed in Ref. [8].

Of course attractive forces are essential for the
binding energy of the system (7 °K per particle).
To obtain binding from two-body clusters, ¢, o
must be negative. But then w(g) becomes imag-
inary for small g, indicating an instability. There-
fore, as mentioned by Brandow,!! three-body and
higher clusters should be significant for the bind-
ing of liquid “He.

In conclusion our analysis shows that an accurate
solution of Eq. (9) is most essential for a proper
account of the liquid “He dispersion relation. It is
also remarkable that if the fit to the experimental
data is extended to higher values of g, then already
for g, =2.4 A one gets a sensible worsening of
the x*(= 14.2); an indication that some new ele-
ments come into play, in particular, a possible
hybridization with the two-roton branch.!?
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