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Theory of the excitation spectrum of liquid 4He
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A critical review of the theory of a Bose liquid at T = 0 as given by Beliaev, Hugenholtz, and Pines and by
Brueckner and Sawada is presented. An improved solution of Brueckner's nonlinear integral equation for the
vertex functions is proposed. Such a solution is based on a proper parametrization of the angular-momentum

dependence of the Green's function. The experimental excitation spectrum is very well reproduced by the

theory in the range of linear momenta 0 & q & 2.3 A '. Remarkably, the calculated density is in exact accord
with the experimental value.

The theory of liquid 'He at 7.
" =0 as proposed by

Beliaev" and subsequently improved, among
others, by Hugenholtz and Pines' is closely con-
nected with quantum field theory. To start with,
the one-particle Green's function, defined, in the
interaction representation, as a time-ordered
product of the boson fields {t)(x), (}) (x) and the 8
matrix,

fG(x —x') =(TQ(x)4'(x')S/}f&»,

is considered.
In (1) the expectation value is taken in the ground

state of the noninteracting particl. es which has all
the particles in the condensed phase (N~, =0,
NO=K, N being the number of particles).

In order to take properly into account the deple-
tion of the condensed phase, due to the interaction,
Beliaev splits (1) into two parts to describe the
propagation of a particle in and outside the zero-
momentum state, respectively. The former is
evaluated exactly, while the latter Green's func-
tion obeys an equation entirely analogous to the
one original. ly proposed by Dyson in quantum
electrodynamics.

The solution can be given exactly in terms of
three vertex functions, customarily denoted Z„(f)),
ZO2(p+ p, )2 a)ld Z2o(p+(u), and of the clle111lcal po-
tential l(, and reads (p is the four-momentum of the
particle)

P +~s+~l.i.
—&

[P' ——,'(Z,', —Z22)]' —[e',-+-,'(Z,', +Z22) —P, ]'+Z20Z02+i5 '

where c;=p /2m and Z,'„=Z„(sP).
The poles of G{P+p, ) near the real P axis give

the energies of a quasiparticl. e of momentum p.
To proceed further the vertex functions, i.e.,

the irreducible parts in the expansion of the
Green's function, must be determined. Of these
Z»{p) describes the process of the forward scat-
tering of a particle outside the condensate with a
zero-momentum particle, while Z»(p+ l), ) and

Z»{p+ l). } describe the absorption into and the
emission from the condensed phase of two particles.

Therefore one sees that the Dyson equation does
not allow for the free propagation of the Helium
atoms: on the contrary, the interaction with the
condensed medium is always present.

The vertex functions can be obtained, with a
proper specification of the variables, from the so-
called "effective potential" I'(l2, 34}which in
Beliaev's theory obeys the following integral equa-
tion:

1'(ll;34)=(((1—2)il(l —3)3(2 —4) (f (((1 —2)

&& Go(1 —5}G (2 —6)1"(56; 34}d x, d x„,

where U is the interaction potential and
G'= (P' —e';+f5) ' is the free one-particle Green's
function.

E(luation (3) sums up all the ladder diagrams of
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FIG. 1. One of the many ladder diagrams summed up
in Eq. (3}.

the type illustrated in Fig. 1. We emphasize that
the particles propagate freely, with momentum
different from zero, from one vertex to another
along the borders of the ladder. This is inconsis-
tent with the original equation for G(P+ g), where
the propagation of the particl. es with nonvanishing
momentum is always affected, as already noted,
by the interaction with the zero-momentum parti-
cles.

The solution of Eq. (3) can be expressed in terms
of the two-body scattering amplitude f(p', p) in
vacuum [the quantity f(p', p) becomes the usual
scattering amplitude (apart from a factor -4v)
when i p'i =

i pi] as follows:

('(i7; «; «) f(«'«) f «t)=f(«', t,))f'(«, t))

1
~0-Q' + g5 p —Q' + s~

f,(p', p) = -'[f(P', p) +f(- p', p)], (5')

and no is the density of the condensed phase, which
appears here explicitly because of the previously
mentioned separation of the one-body Green's fune-

mhere p and p' are the relative initial and final
momenta of the two interacting particles, P is
the total four-momentum of the interacting pair,
and K' = I« ——,'Il'.

If only the first term in the right-hand side of
Eq. (4) is retained [this is not just the first itera-
tion of Eq. (3)J, then one gets immediately for the
excitation spectrum

~(p) =([«, + 2n.f.(«p, -'p) —n.f(0, o)]'

-"lf(P, 0}l')'"
where the symmetrized scattering ampl. itude is de-
fined by

tion (1) into two parts.
Formula (5) actually is quite general and holds

whenever the p dependence of the vertex functions
can be ignored. Beliaev' then considers the model
of a gas of hard spheres of radius —,a. Keeping
only the s-wave interaction, (5) becomes (p= ~p ():

(u(p) = (6.06/a')f[x'+ 6p(3 sinx/x- 1)]
x [x'+ 6P(sinx/x —1)]]"', (6)

where x=pg, p=n, (&ma'), and the factor 6.06 is to
convert from units of A to 'K. Formula (6) can-
not reproduce the experimental data. The sound
veloci'ty associated with Eq. (6) is

c = (6.06/a)(12}'"[P(1—)6)]'" .

So when the density of the condensed phase be-
comes larger than & of the close-packing density
p„(= 6/va' for hard spheres of radius ~a) no

phonons will propagate into the system. Also the
maximum value of c given by (7) (corresponding
to P = —,') is 5.25'K A (with a= 2 A), to be compared
with the commonly accepted experimental. value of
18.3 'KA.

We believe these shortcomings of the Bel.iaev
theory to be mostly due to the lack of self-consis-
tency, rather than to the approximations made in
solving Eq. (4} or to the neglect of the interaction
in higher partial waves.

When viewed in the framework of this formalism,
Brueckner"s theory" amounts essentially to the
use of a more realistic integral equation for the
vertex functions in order to deal better with the
probl. em of the propagation of the partiel. es with
nonvanishing momentum.

In fact in Brueckner's theory the excitation spec-
trum is given by a formula identical to (5) but with
the "t matrix" in place of the two-body free scat-
tering amplitude, i.e.,

(d(q) =f[q'/2m+fq(t~ „+f„,—f„)]'
~«f«

The suffix zero labels atoms in the condensate,
and fq is the number of particles. Since (6) in-
volves f(j; while (5) has no, Brueckner theory
does not explicitly take into account the deple-
tion of the condensate. This depletion will occur
in higher-order terms, together with the contribu-
tions of the particles excited out of the condensate.
This seems physically reasonable.

The integral equation for the t matrix is now

12 «34 12 «34 12 «56656 56 «34

where, in the two-body propagator

G(q) = —(2[q'/2m+fan(t~ ~+to, ,o —t~ ~)]+i6j
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the interaction with the particles in the condensed
medium is taken into account through the expl. icit
self-consistency term IV(t„„+to, ~ —t,o ~). In
terms of diagrams, the particles on the border of
the ladder of Fig. 1 are now allowed to interact an
infinite number of times with the zero-mome&turn
particles.

As a, result the integral equation (9}becomes
highly nonlinear, the price to be paid to account
for higher-order diagrams neglected in Beliaev's
treatment.

The question then arises if these higher-order
processes are the important ones to be considered.
One may try to answer this question by comparing
the theory with experiment, having first solved
Eq. (9).

If an infinite hard-core two-body potential is
used then scattering theory gives

t(q) tQe, oa toe.co 00,00

higher partial waves to the t matrix and conjec-
tured for al. l, the waves higher than 1 =0,

G, (a, a) =G,(a, a)/A(t'+ 1+1),
which permits a closed analytic expression for the

summation (11), i.e.,
&t(q) = &((I -A)[1 —2j', (-,'qa)]

[jo(qa)+cos(qa)+ 3(qa)2]) .

Inserting (16) and (1S) into (8), one gets

~(q) =6.06[(q'+6((1-A)[1—2j', (
—', qa)]

—2A. [j,(qa)+ cos(qa)+ -', (qa}'])) '

62j2(qa)] 1/2

where 6 =X/G, (a, a).
The experimental data in the range 0 ~ q ~ 2.3

A ' are now reproduced exceedingl. y well for the
values

= —2 Q (2t+1) '(' )+ ( )

j', (-,'qa)

even

5=-5.483 A', a=2.019 A, (18)

t~, , = [-1/G, (a, a}]sin(qa)/qa, (12)

where the G, (a, a), the tth partial waves of the
two-body Green's function in configuration space,
a.re still. unknown. The j,'s are the standard
spherical Bessel. functions.

Assuming, as Brueckner does, G, (a, a) =G,(a, a),
the expansion (11) can readily be summed:

as can be seen from Table I and Fig. 2. The cor-
responding y' is 9.415, which is entirely accept-
able for a three-parameter fit to 23 data points.

Incidentally, Eq. (I'I) provides the same sound
velocity, namely c=6.06(-26)", as Eq. (14). The

TABLE I. Dispersion curve in liquid He given by our
Eqs. {17){column 1V) and {24) {column V) compared with

the experimental points o~ Ref. 5.

t(q) = —[1/G, (a, a)] sin(qa)/qa . (IS)

The resulting spectrum is quite simple because
of the exact cancel. lation of the quadratic terms
in (8):

(q)=s.osq(, ~ c —',sin(qa)
Q fttQ

(14)

where P. = —Na'/Go(a, a) and g =2m =1. The cor-
responding sound velocity is c =6.06k&2/a.

Equation (14) displays the roton minimum for X

Large enough and has the correct analytic proper-
ties, ' i.e., branch cuts in the compl. ex q pl.ane with
the rea, l part set by the roton minimum and imag-
inary part decreasing as the density becomes
Larger.

These features indicate that Brueckner"s theory
indeed contains the essential dynamical aspects of
liquid 'He. Neverthel. ess it has been shown' that
(14), as it stands, cannot quantitatively reproduce
the experimental data with any choice of a and A.'.

In order to obtain a better solution of Eq. (9) we
relaxed the crude approximation G, = G„which
strongly underestimates the contribution of the

%ave
vector
e{~ ')

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2~2
2.3

Kxpt.
energy

{'K)

3.700
5.650
7.400
9.150

10.750
11.750
12.650
13.150
13.550
13.800
13.750
13.500
12.950
12 ~ 200
11.200
10.250
9.250
8.700
8 ~ 950

10.000
11.650
13.550

0.50
0.20
0.20
0.20
0,20
0.20
0.20
0.20
0.25
0.30
0 ~ 25
0.25
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.25
0.25

3.956
5.829
7.577
9.165

10.559
11.734
12.667
13.341
13.749
13.887
13.762
13.3S8
12 ~ 791
12,010
11.109
10.184
9.385
S.923
9.037
9.883

11.459
13.650

3.956
5.828
7.576
9.164

10.559
11.733
12.666
13.340
13.748
13.886
13.761
13.386
12.789
12.008
11.108
10.184
9.389
8.931
9.047
9.889

11.449
13.612

Error Theor. I Theor. II



THEORY OF THE EXCITATION SPECTRUM OF LIQUID 'He 1083

24

22

-20
e

c9~18
hJz
tLJ

~160
I

—14
M
UJ

Il

/

FIG. 3. Typical multiple-excitation diagram. Note
that only one value of q is involved. Dashed lines repre-
sent particles in the condensate.

1.0 3.0

sen'x
(2x)', [[a'cu(q)/6. 06]'+X'j',(x))"' '

(21')

FIG. 2. Dispersion curve in liquid He as given by
our formula (17) (solid line) compared with the experi-
mental data taken from Cowley and Wood (Ref. 9).

Q s in'(qa)
Go(u, n) =(2 }3 q (qn)2

G(q) (19)

where Q is the volume and

G(q} = —-[q'+ N(t i„„—t„„}]'. (20)

radius of the hard core, even if somewhat small. ,
is reasonabl. e.

The propagator (10) is the distinguishing feature
of Brueckner's theory. Its poles near the real
axis in the complex (d plane fail to give the quasi-
particle spectrum because of the presence of the
extra term N'P~, , under the square root in (8).
This term describes the multiple excitation of
pairs of particles out of the condensed phase, as
illustrated diagrammatically in Fig. 3, and its in-
clusion is essential for a proper description of the
excitation spectrum.

To test the choice (10) and therefore, in a sense,
the validity of Brueckner's theory, we consider

which, with the values (18) for 5, a, and A, gives
for the density (1/45. 8) A ', in exact accord with
the experimental value. This connection between
the density and the excitation spectrum is specific
to the Brueckner theory, with its explicit self-
consistency term in G(q).

So with the correct &u(q) one gets the right density
from (21'): a strong indication that multiple excita-
tions and self-consistency are quite relevant and
correctly handled in Brueckner's theory. The
exact agreement with the experimental density also
justifies ignoring the depletion of the condensate.

In Fig. 4 the quantity A. = —5a' is displayed as a
function of pa'. it appears that the sound velocity
(proportional to A) increases with the density up

0
to a maximum value c,„=30'K A which is
reached when pa'= 6/m.

This behavior is radically different from (7). In
the complex q plane the relevant singularities of
(8) are branch points located at q = q, + iq, = 1.91
a i0.31 A ', in agreement with the analytic struc-
ture found in Ref. 7.

We have also investigated the following conjec-
ture for the partial-wave Green's function (except
for 1 =0):

From (19) and (20} one gets G, (a, a) =Go(a, a)/A(2l+1) . (22)

3
PQ

(2v)

sin x
([~(q)/6. 06] '+ N'P~ (21)

In this case also a closed analytic expression for
the summation (11) is obtainable, i.e. ,

Nt(q) = 5(2(A —1)j30(~ qa) + 1 ——,'A [jo(qa)

+ cos(qa)+qa Si(qa)+ @AC,(qa)][, (23)
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50-

40

coincide with those of Eq. 17.
Even if a theoretical deduction of the link be-

tween G, a, a an, a,d G (a a) is difficult to achieve
in general, one may proceed as follows. From
the partial-wave decomposition of the Green's
function

+1
G, (r, r') = —,

' dg P, (p)G(r —r ),
1

(26)

30

where the P, (p, ) are the Legendre polynomials,
taking the simplest expression

g -I r-r' I (effoa) i~2
rnQ e
4 (27)

20
after some nontrivial manipulations one gets

G (a a) = — f„„,(8vpa 3 1/2fc 8&p&3)i/2
4~a ''

10

(28)

d K are the Bessel functions ofwhere I„», an f i/2
nd secondurely imaginary argument of first and secon

kind respectively. Exploiting their asymptotic
representation we get

.8 1. 1.2 1.4 1.6.2 . 4 .6
ga

~2 =-M =-[N/FIG. 4. Solution of Eq. (21 ) giving
Gp (a,a)]a as a function of pa

where Si(qa) and X,(qa) are, respectively, the
sine integr anal d the Struve function of order

10

Inserting again (23) and (13) into (8, one gets

&u(q) = 6.06 [(q'+ 5[2(A- 1)j',(-,'qa)+ 1

—~A[jo(qa)+ cos(qa) + qa Si(qa)

+ vX, (qa)]])' —5' sin'(qa)/(q&) l"
(24)

From Table I it is seen that the experimentaental data' =9 540, in thecan be reproduced very well (y =9. , in

range 0 ~q &2.3 A ' for the values
0

5 = —5.482 A a = 2.021 A,
(25)

A=0. 101 .
Note that (24) provides the same sounound velocity as

namel c = 6.06(- 25)'". Also, inserting (24)
with the values (25) in (21') one ge s ag
perimental density.

(~18,lue (25) for A is larger than the value 1The value ,'or i
m hasizesas it should be since the ansatz (22) emp a '

less ras icad t lly the role of the higher partial
waves. e r nTh branch points characterizing ( )

G, (a, a) —= 2Go(a, a)/(2l+ 1), (29)

w ic suh' h supports the ansatz (22).
Our analysis suggests that off-energy-er -shell ef-
t nd the phonon-phonon interac tion do notfec s an

ectrumplay a signi scanf' ant role in the excitation sp
of liquid 'He.

'
n ne lected inThe intermediate-range attraction, neg ec e in

the present treatment, seemms to be of importance
e ar ed froml in the low-q region, as can e a gu

the fact that our sound velocity c=
is abou t 10%%u larger than the experimental value

ccounted for18.3 KA. This discrepancy can be accounte
b attrac ive ort forces as discussed in Ref. [8].

Of course attractive forces are essential for the
binding energy of the system (7 'K per particle).
Too in in inOm' b' d n from two-body clusters, t,«,

t be negative. But then &o(q) becomes imag-
inar for small q, indicating an instabi i y.
fore, as mentioned by Brandow, re-
higher clusters s ouh ld be significant for the bind-
ing of liquid ~He.

ccurateIn conclusion our analysis shows that an accura
f E . (9) is most essential for a proper

account of the liquid 'He dispersion relation. is
also remarka e a ible that if the fit to the experimental

th l dyd ta ' extended to higher values q, thof then a rea ya is ex
=2.4 A ' one gets a sensible worsen gin offor qmax on

e new ele-the ',=14.2); an indication that some new
ments come into play, in particu ar, p
hybridization with the two-roton branc ."
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