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A superfluid characteristic length has consistently emerged from a variety of independent experiments on
helium thin films. Both the magnitude and the temperature dependence of this quantity are now quite well
defined within relatively narrow limits. This length appears to consist of two parts: the thickness of solid
blanketing the substrate underneath the liquid film plus a pseudolength deriving from supplementary
excitations in the system. The first contribution is directly calculated, and the results appear to fit experiment
quite well. For the remaining pseudolength we estimate the parameters necessary for a surface-roton-excitation
hypothesis to fit experiment. %'e find, using the analysis presented, that the quantitative features of a surface-
excitation spectrum may be deduced with considerable precision from presently available experimental data

I. INTRODUCTION

Recent experiments on the disappearance of
superfluidity in thin films of liquid helium have
produced a wealth of detailed data on the subject. '
In what follows a theoretical picture is offered
which has the following features. The experi-
mental results can be understood in a relatively
elementary and traditional way, and quantitative
conclusions are possible. In particular, hypothe-
sizing surface excitations as a contributing factor,
and demanding that theory fit experiment allows us
to determine some detailed features of the hypoth-
esized surface-excitation spectrum.

II. NATURE OF THE PROBLEM

In bulk, liquid helium exhibits its superfluid
properties below a characteristic temperature-
known as the A. temperature T~. The pressure de-
pendence of this temperature constitutes the A. line
on a pressure versus temperature (P —T) phase
diagram (cf. Fig. I}. In the two-fluid picture the
"extent of superfluidity" present in the system is
measured by p,—the superfluid density (effective
mass of superfluid per unit volume). The remain-
der of the fluid is "normal. " Hence if the total
density of the liquid is p, then the density p„ofthe
normal fluid is determined by

thicknesses d greater than about twice the char-
acteristic length L, it has been demonstrated ex-
perimentally that the variation of o, with d follows
the form '

o, = p, (d- L} .
For all d less than I it is experimentally found that
o, =O. If the helium in the film exhibited just its
bulk properties then we should ideally expect that

+ ideal
p (d If 4)

where H* represents the depth of nonsuperfluid
helium which must necessarily underlay any film
of liquid. (cf. Sec. IV following). Hence the de-
parture from bulk ideal behavior is given by

o, —o,'4"'—= 5o, = p, (L —H4) =——p, l .
The behavior with temperature of the charac-

teristic length L has been carefully studied experi-
mentally, and reasonable agreement among the
measurements has been obtained employing a va-
riety of distinct and independent techniques over an
extended temperature range. The results are nice-

Solid

pn+ ps= p

If, now, our system consists of a very thin film
of helium (of thickness ranging between a submono-
layer to about 20 "layers" ) covering the surface of
a substrate, then an appropriate measure of its
superfluid content is a„the effective mass of su-
perfluid per unit area. Again, if the total mass of
film per unit area is o, then the nonsuperfluid con-
tent is accounted for by o - os4

The essential experimental results to which we
address ourselves are the following: For all film
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FIG. 1. Liquid- He phase diagram: idealized Sche-
matic
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Both its conceptual simplicity and its striking
successes have produced universa pl acce tance of
the Landau theory ' as the basis for understanding
superfluidity in bulk helium. Although the founda-
tion for this theory has been questioned by some,
we accept its quantitative triumphs as the motiva-
tion for extending its application to the case of
thin films. We feel, in view of its accomplish-
ments, that to abandon this theory when dealing
with thin film helium is philosophically unsatisfy-
ing. (Those with less confidence in the bulk theory
would naturally disagree with this viewpoint. ) On
this basis we redirect our attention away from the
characteristic length l. Rather, we view the ex-
periments as indicating an alteration in the excita-
tion level in the system. In the Landau theory p„
reflects the density of elementary excitations in
the system. The superfluid density p, is simply
the difference between the total physical density p

I ' st this spirit we interpret the experi-
mental observations summarized in Eqs. ~ &-, as
follows: The "superfluid content, "as seen in thin-
filrn-helium experiments, is apparently reduced

such a system, there must be an increased density
of exeitations 5a„because

(5)50„+Ger, =0 .
Any estimate of this increased density of excita-
tions (5a„)immediately yields a characteristic
length l through Eqs. (4) and (5).

—Ocr, 50„s rl

ps ps
(6)

Vapor Helium

-:Liquid Helium.

P(yj

I ' r~
Solid Helium

p(T) p (T) P/////Substrate (Absarbate)//////~

FIG. 2. Schematic view and coordinates to describe
the adsorbed helium film.

ly summarized in Ref. 1.
se in what follows is to construct aOur purpose

'

theory which will yield just the observed behavior
exhibited in Eq. (2) and will, in addition, repro-
duce the magnitude and the temperature dependence
of both L and l over the range of temperatures ex-
plored.

III. BASIS FOR THE SOLUTION

It then remains only to consider the various pos-
sibilities for such an increased excitation density
and to calculate 5o.

„

for each of these. In conjunc-
tion with reasonable estimates of the thickness H
of nonsuperfluid helium in the film, one ean employ
f as derived from Eq. (6), to deduce a theoretical
value of L. The latter may be compared directly
with experiment.

Essentially none of the elements of the program
outlined above are new. In disjointed form they
have appeared in the literature at least since
1958. However, in no case have theoretical values
of L ever approached the magnitude of the experi-
mental ones. Nor has H* been directly calculated.
In many cases even the temperature dependence of
l (usually calculated rather than L) is manifestly
incorrect. In others, the temperature dependence
has been judged correct even though the magnitude
was too small. Theory has never produced too
large a result, only too small a one. This fact
suggested that the fundamental notion embodied in
Eq. (6) may indeed be valid, but that the dominant
contribution to the increased a„had not been iden-
tified. Before proceeding on to consider the pos-
sible mechanisms to account for l we turn our at-
tention to the calculation of K.

IV. THICKNESS (H,H*) OF THE NONSUPERFLUID FILM
COMPONENT

In order to estimate the thickness of solid helium
under the liquid we employ precisely the same
principles by which the total film thickness is esti-
mated. The idea incorporates two admittedly
tenuous assumptions. The first is that the inter-
faces are ideally flat (cf. Fig. 2) and the second is
that one can describe the state of the helium film
in terms of local thermodynamic variables even
on a length scale comparable to the average inter-
particle spacing. We proceed in the face of these
weak links on the following bases. First, the ex-
perimental results (estimates of d) summarized in

Eq. (2) are themselves already predicated on these
assumptions (cf. Ref. l and the citations listed
there). Secondly, we accept the conclusions of
R f 11 where strong evidence is offered on thee. we

Ul-empirical confirmation of these assumptions.
timately, however, the validity of the analysis
must rest upon the success of its predictions.

The argument is as follows: Owing to van der
Waals forces, the substrate produces a potential
energy field u( y) in which the helium adsorbed on
the substrate finds itself (Fig. 2). A fundamental
principle of thermodynamics applies when, in a
single component system ( He), particles are in-
terchangeable among the phases. This is a eThis is that the
total chemical potential p, * is independent of posi-

The total chemical potential is the sum oftion y. e
a "bulk"the bulk potential )t, (P, T) as obtained from a u
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ul(T)+&(0) = Po(T)+&(D), (8}

but the difference p~(T) —)JQ(T) is directly deduci-
ble from the thermodynamic data on a substance.
In particular, in the case of relatively incompres-
sible fluids, i.e. , p, —po«po as for helium, this
chemical-potential difference is easily estimated
as

40 = [Ps(T) —Po(T}]=
1 2P, (T)
p pa+ pg

(9)

where P~(T) represents the solidification-lique-
faction pressure and where the average density is
taken as the mean of the vapor-pressure liquid
density po and the solidification liquid density p, .
For helium, p. , —po rises slowly from about 8. O'K

per atom at T = 1.2 'K to a value of about 11.2 K
per helium atom near the A. point.

We are concerned here with the limit of large D.
In this limit, Eq. (8} is just the statement that the
solid-liquid boundary locates itself where the van
der Waals attractive energy is just equal to the
chemical-potential difference between solidif ica-
tion and vaporization of the liquid.

Turning now to the van der Waals potential u(y},
we note that customarily it is assumed to be of the
form

(10)

where m is the mass of one helium atom and tra-
ditionally the value Do is taken as 3.6 A. This
corresponds to the mean distance between helium
atoms under normal vapor-pressure conditions
and is hence used as the yardstick by which sta-
tistical layer thicknesses are measured. The
parameter 8 is a constant characterizing the sub-
strate-helium interaction strength. In the litera-
ture (cf. citations and discussion in Ref. 1) values
of 8 vary between 15 to about 90 K. The exponent
3 seems to provide an adequate fit to data, in many
cases but values up to 4 and down to 2 have been
discussed" as well as a continuous variation of the
exponent with position y.

Anticipating that we mill be comparing our theo-
retical result with the data offered in Ref. 1 we
may estimate the thickness H of the solid layer

phase diagram (Fig. 1) plus the external energy.
This principle yields the equilibrium pressure in-
crease P( y} as the substrate is approached.

g(P(y), T)+u(y) = p, * (g* independent of y). (7)

Next we note that at y = D, the bulk chemical po-
tential g = p(PO, T) = go(T) corresponds to that on

the vapor pressure curve. The vapor pressure is
Po(T), and at y = 0 the chemical potential must be
that of the solidification curve p, (T). Hence we
find from (7) that

under an infinitely thick film as follows: We utilize
Eq. (9) from which p, —tu, ~ 9 K per atom in con-
junction with the value 8=27'K employed in Ref.
1. The theoretical expection for these experi-
ments is then found to be H/Do = (g2)' = 1.44.
This is to be compared with the "bottoming" value
of 1.47 exhibited in the data.

It should be noted that the length scale in Ref. 1

depends upon the choice of 8 in just exactly the
same way as our estimate of H. Hence, should the
value of 8 be revised both our value for H and the
scale of Ref. 1 will be altered in the same way.
The agreement between our H and the bottoming
value of Ref. 1 is independent of the choice of 8.

We take the foregoing as strong evidence that at
low temperatures the observed characteristic
length L is essentially entirely due to the solid
thickness of helium under the liquid film, i.e. ,
l(T)=0, T&0.8'K. This conclusion gives yet
further weight to our resolution of L into two parts,
one of which reflects excitations [Eq. (6)]. This
is because all calculations of I, via Eq. (6) and Eq.
(18) to follow, yield an l which vanishes at suffi-
ciently low temperatures, i. e. , supplementary ex-
citations fail to be excited at low temperatures.

The idea that the measured L at low tempera-
tures is entirely attributable to the solid undercoat
has been assumed by some but certainly not by all.
Without a clear theory of how to subtract out the
solid layer, however, the estimates of the inter-
esting excitation part l of the measurements is not
reliable. For example, the traditional assumption
that the solid layer is exactly Do thick leads one to
conclude that there is a residual E at low tempera-
tures. To deduce E by subtracting out the "con-
stant low-temperature bottoming-out" value at all
temperatures, is also not valid. In fact H varies
with temperature. In Fig. 3, the actual variation
of the expected solid layer thickness H with tem-
perature is exhibited in detail. This is obtained
by utilizing the known values of the parameters in

Eq. (9) in conjunction with Eqs. (10) and (8) in
the thick-film limit (D large). For the case of
thinner films (D not large}, the solid thickness
varies somewhat with total film thickness. This
variation is easily estimated from Eq. (8).

Because the )( line is not vertical (Fig. 1) it is
not always true that the nonsuperfluid helium is
just equal to the underlying solid. Above 1.77'K,
where the A. line meets the solidification curve, a
thin region of He I must also be expected.
denote by H* the thickness of the entire quantity
of nonsuperfluid helium in the adsorbed film, then
it is H* that ought be subtracted from L to arrive
at I, rather than H.

E=L —H* .
The thickness of both the solid plus the He I to-
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L 7-
Do

„(T)From T. C. Padmore
+ J.D. Reppy Phys. Rev. Letters
33, 1410 (1974 )

f„(T) From C. G. Kuper
Physica 24, 1009 (1958)
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FIG. 3. Some character-
istic lengths as functions of
temperature. The points
are experimental determi-
nations of L as reproduced
from Ref. 1. The curves
are theoretical determina-
tions of the thickness of
solid (H), the thickness of
nonsuperfluid (H ), and
two theoretical estimates
of l(T) plotted from data
in the literature cited.
Everything in units of Do
=3.6 A..
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o = (Tg+ pp(d —2 Dp) (12)

In Ref. 2, rather than oz, the quantity o, /poDO de-
rived from it is given where

Oi = &a —po Do (13)

because, with the conventional wisdom of the time,
just exactly the first layer was held to be solid.
Now if we retain the Brunauer-Emmett-Teller re-

gether constitutes H~. (Below 1.77'K, of course,
H=H*. ) This quantity is obtainable in just the
same way as K One employs Eqs. (8)-(10) again
but, between 1.77'K and T~, the values p, and P,
are replaced by the corresponding quantities char-
acterizing the X line in the phase diagram (Fig. 1).
The plot of H* vs T is also exhibited in Fig. 3.

Though not appreciated at the time of publica-
tion, confirmation for the value of H comes from
an entirely independent source. In Ref. 11 is ex-
hibited (Fig. 6 of this reference) an experimental
determination of the van der Waals energy as a
function of adsorbed mass per unit area. From
this figure the energy of 9'K per atom corresponds
to an adsorbed mass of about 1.2x10 g/cma
= 2. 3 ppDp.

In the same series of experiments which yielded
this result an estimate was obtained of the mass
density of the bottom layer of adsorbed atoms.
As explained in Ref. 2 this estimate was founded
on the notion that Brunauer-Emmett- Teller iso-
therms' yield the amount of mass in the first
two statistical layers of helium. Simply put
Brunauer-Emmett-Teller isotherm plots yield the
quantity az where

suit but refrain from insisting that of the first two
layers one be solid and one be liquid then we may
proceed as follows to find the extent of solid.
Commensurate with Eq. (12}we may also express
the total adsorbed mass per unit area as

o = os+ pp(d —H) (14)

where o& represents the adsorbed mass of solid
(experimentally os = 2. 3 poDO) and the density be-
yond the solid is taken to be roughly that of the
vapor pressure liquid. Combining Eqs. (12) and

(14) it follows immediately that H is given by

H oar — o~ 1 = +~ — +~ 2
Dp pp Dp pp Dp pp Dp pp Dp

Since o, /poDp is, from Ref. 2, approximately 1.8,
we arrive at the same value H= 1.5 Do. We note
that this result arises independent of any assump-
tion regarding 8 or the form of the van der Waals
energy [Eq. (10}].

We now turn to the discussion of the physically
more interesting quantity l and its interpretation
[Eq. (6)] as arising from supplementary excita-
tions not evident in the bulk.

V. SOME SUPPLEMENTARY EXCITATION MECHANISMS

Mechanisms which could conceivably alter the
effective normal fluid content are the following:

(i} Film local Pressure e-ffect. It is well known

that the local pressure rises steadily with depth
proceeding inward from the free surface to the
substrate (cf. Sec. IV). Hence between this sur-
face and the solid-layer depth the normal-fluid con-
tent must exhibit an enhancement commensurate



SOME CALCULATIONS REGARDING THE CHARAC TERISTIC. . . 1073

P,.t..(3) = P,.t..(")exp[ V(3)/-&T] . (i7)

Since V(y) is independent of T and decreases in
magnitude with increasing y, unless something
rather exotic is envisioned for V(y), Eq. (17)
yields a characteristic length which decreases with
temperaturel In addition, if one envisions rotons
as microscopic vortex rings, a negative 5o„is ob-
tained because such rings repel —not attract —their
wall images.

(iii) f3iscrete nature of the excitation cvave vec
for k,. It is evident that in sufficiently restricted
geometries the use of a continuous spectrum of
wave vectors is invalid. Periodic or rigid bound-
ary conditions at y = 0 and at y = D, for example
(cf. Fig. 2), modify the values of k, available to
the system. This and related points of view have
been discussed extensively by Padmore. ' A direct
plot of the results obtained with this viewpoint as
presented in Ref. 8, is exhibited in Fig. 3 to-
gether with the experimental points. The magni-
tude is clearly too small.

(iv) Surface excitations: Liquid vapor hydro-
dynamic regime. The liquid helium in a thin film
is characterized by two surfaces-the liquid-vapor
"free" surface and the liquid-solid "bottom" sur-
face. As is well-known classically, surface waves
may propagate along these surfaces. Much has
been calculated and measured with regard to the
surface tension waves propagating along the "free"
liquid-vapor boundary. And, in fact, just the con-
tribution of this mechanism to Ger„was presented
by Kuper in 1958 in his Eqs. (3. 13) and (3. 14) of

with the range of high pressures encountered.
This notion may be summarized by noting that p„
= p„(y) = p„(P(y)) so that

D

I p.(P(3)) p—.(PD)] dy
0

The vapor pressure of the liquid at the tempera-
ture T is Po = Pa(T), and of course P( y) refers to
the pressure at position y as shown in Fig. 2. As
is clear in this figure, the liquid extent of the film
is represented by D=d —H. This mechanism, be-
sides contributing too little, can never produce the
observed effect that o, =0 for a finite range of D& 0
(Eq. 2).

(ii) Roton image attraction. It has been sug-
gested that rotons see their images in the sub-
strate "mirror" and that they are attracted by these
images. This would increase the "bulk" roton
(excitation) density near the substrate boundary
giving rise to a 5o„. This view amounts to a posi-
tion variation of the roton energy gap. It is equiva-
lent to a potential energy of roton interaction V( y)
(roton-image attraction energy) added to the con-
stant gap. In the case of D-~ this is readily
shown to imply that

Ref. 7. (His p, „„

is exactly our bo„.) This con-
tribution is exhibited graphically in Fig. 3. As
noted by Kuper himself it is clearly too small.

(v) Surface exci tations: Liquid so-lid hydrody
namic regime. One may envision the possibility
of surface waves propagating along the liquid-solid
interface. In fact such waves should be present.
We have calculated the excitation spectrum (&o vs
k) for interface waves in the hydrodynamic regime
(k much greater than the interatomic spacing).
Employing the assumption that there is no mass
transfer (melting solidification) between the phases
and taking account of the presence of shear stress-
es in the solid and their absence in the liquid we
have found that ru rises with k considerably faster
than for the liquid-vapor case. This immediately
implies that 5o„from this cause will be even
smaller than what Kuper calculated for the "free"
liquid surface. %e therefore reject this mecha-
nism,

VI. SURFACE ROTONS

For an isotropic system whose wave vectors k
a.re restricted to only two components (k„and k, in
our case) a direct application of Landau's original
reasoning on p„for bulk, yields for the two-di-
mensional case

k3 dk

where, with K as Boltzmann's constant,

(19)

and n is the Bose-Einstein distribution function for
massless particles

n=(e' —I) '.
In general the upper limit; b represents some ap-
propriate terminal wave vector for the system.
On the simple basis that the number of degrees of
freedom per unit area in a single layer of surface
atoms should equal the number of permissible sur-
face modes per unit area one arrives at 5 —1.8
A '. As one might expect this corresponds quite
closely to a minimum wavelength of just the inter-
atomic spacing for the high density liquid-solid re-
gion.

To estimate bo„from Eq. (18), only the spec-
trum m= u(k) for the surface excitations is needed.
Mechanisms (iv) and (v) of Sec. V were evaluated
employing spectra calculated for the hydrodynamic
regime. The extrapolation of the dispersion law
(&o vs k) into the short-wavelength regime is, of
course, not valid. Generally, however, for spec-
tra obtained in the hydrodynamic regime, the
large-wave-number extrapolated frequencies are
so high that their contribution to the integral is
negligibly small regardless of the value of b. (Us-
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ually b is taken to be infinite. ) The content, then,
of points (iv) and (v) in Sec. V is that the extra ex-
citations produced by the long-wavelength part of
the dispersion curve, for either surface of the
liqiud helium, is insufficient to account fox the ob-
served 50'~.

%e now consider the possibility that the disper-
sion curve does not continually rise monotonically
as it does in the hydrodynamic regime. %e sup-
pose, instead, that the curve of m vs k exhibits a
dip in the region of some short wavelength corre-
sponding to k= w= 1.8 A" . This is the direct ana-
log of the dip in the bulk-helium spectrum. Be-
cause in the bulk this part of the spectrum is called
the "roton dip, " the analogous two-dimensional re-
gion has been termed the "surface-roton" region.
However, that this reflects some form of "two di-
mensional smoke-ring" excitation is not meant, of
course, to be implied.

A roton dip in the surface excitation dispersion
curve has been proposed previously. ' '6 Reut and
Fisher' postulated its existence for the free (liq-
uid-vapor) surface. The rotons proposed by them
were employed to better adjust the correspondence
between the Atkins' theory of the liquid-vapor
surface tension and the experimental measure-
ments on this quantity. Reut and Fisher decided
that the surface roton gap 1 ought to be about
1.95'K and that &=0.5 A, from which they con-
clude that the surface-roton effective mass is of
the order m* = 0. 019m (m is the mass of one helium

atom).
A recent publication of Padmore' examined a

two-dimensional array of helium atoms for roton-
like behavior in its excitation spectrum. He found

such behavior, but at normal densities the gap ob-
tained (9.3'K}did not differ significantly from the
bulk gap. Fuxthermore, the connection between
this model and the fundamental problem of excita-
tions of the interface between two media is yet to
be established.

Recently, a very astute publication of Edwards
et al. ' has provided us with at least one substan-
tial theoretical basis for expecting roton behavior
in a surface excitation spectrum. Simply put, this
paper shows that features of the bulk excitation
spectrum of any system are necessarily always
projected into its surface excitation spectrum. In
particular, then, the bulk-helium roton spectrum
does find its counterpart in the surface spectrum.
Unfortunately it can also be shown, through the
same mathematical structure, that the projection
of roton bulk behavior onto an inherently monotonic
surface excitation cannot produce an energy gap
significantly lower than the bulk one —of about 9 K.
The calculated curves exhibited by Edwards et al.
demonstrate just this behavior. Only if the short-
wave part of the surface spectrum exhibited its

own inherent rotonlike behavior could a smaller
energy gap arise. To the best of our knowledge,
no suggestion has been advanced as to what would

yield such an inherent true surface-mode roton
behavior.

The effect of surface rotons in the present case
is easily estimated. The roton part of the spec-
trum is taken, in analogy with the three-dimen-
sional case, as

K&o= I"+ (0 —«)

This spectrum is inserted into the integral (18) and
the calculation is performed in exactly the same
way as Landau's original one. The result, valid
for temperatures T&1/K, is

1/3
eo„=a~' e r/E~ .

egKT

With this result, in conjunction with Eqs. (6) and

(11},we may inquire into what parameters I' and
«'(m*)' will provide a good fit to the experimental
data. The entire curve must be fit both ln mag-
nitude and form. It happens, in the present case,
that the choice for each of the parameters, I' and
«(m*) are independent of each other, i.e. , 1'

determines the general shape of the curve and the
magnitude of the effect is adjustable with «(m~)'» .
It is easily demonstrable that a choice of I" which
deviates by more than about + 15% from the value
I"=4. 5 K can never fit the data regardless of the
choice of «'(m*)'» . Once fixing F at 4. 6'@ though,
the experimental magnitude of the effect then de-
mands that

(D,«)' (m+/m)"' = 122 . (23)

Taking g to be of the order 1.8 A ', the effective
mass value is found to be m*=0. 20m. (The corre-
sponding three dimensional parameters are 1.9
0

A and 0. 16m. ) The resulting theoretical curve
is exhibited with the experimental data in Fig. 4.
On the same figure (curve If-E) the equivalent re-
sult is shown when the parameters of Reut and
Fisher are employed. Contrary to intuitive ex-
pectation, the contribution from their 2'K liquid-
vapor surface rotons is much smaller than from
our 4. O'K rotonsI This xesults from their very
small effective mass (large curvature) and small

Although a 2 K dip would, in genexal, yield
more excitations than a 4. 5 K one, the amount of
phase space (k space) occupied by the dip is quite
restricted in their case. Hence the Reut and Fish-
er rotons produce too small an effect compared
with the observed experimental result. In fact, as
already pointed out, neither the 2 K of Reut and
Fisher nor the 9 K of Edwards et al. could ever
fit the experimental result regardless of adjust-
ments on m* and x. It is interesting to note, how-
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L 7-

FIG. 4. Points: experi-
mental data reproduced
from Ref. 1. Upper curve:
L(T) as calculated from
surface roton excitations
with a gap of 4.5 'K. Lower
curves (R-F): L(T) as cal-
culated from the surface
roton excitations proposed
by Reut and Fisher (Ref.
16).
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ever, that with the parameters suggested these
possibilities produce results which are too small
to account for the observed characteristic length
I as do all the other mechanisms explored (cf.
Sec. V).

VII. CONCLUSION

The characteristic length for the disappearence
of superfluidity in helium films is a quantity well
explored experimentally. We have outlined a par-
ticular point of view regarding a theoretical ex-
planation of the experimental data. The character-
istic length is the sum of two parts: the thickness
of nonsuperfluid abutting the solid substrate plus
a pseudolength arising from supplementary excita-
tions. We have calculated the nonsuperfluid thick-
ness and find that this accounts for the entire ef-
fect observed at sufficiently low temperatures.
With regard to the pseudolength it appears that all
possibilities previously explored produce too
small a result. We have estimated the effect that
surface rotons might produce. And we find that
the experimental data can be fit quantitatively quite
well with surface rotons much like the bulk ones
except with a roton energy gap only half as large.
Whether the surface rotons obtain at the vapor-
liquid surface or at the solid-liquid surface (or
both} is not clear. If the calculations of Reut and

Fisher regarding the roton contributions to the
liquid-vapor surface tension are valid, then the
present surface rotons must be presumed to be ex-
citations of the solid-liquid surface boundary.

Some physical implications regarding these re-

suits are the following:
(i) The theory presented here suggests that a

large part, if not all, of the characteristic length
obtained in thin-film experiments is connected only
with the substrate side of the helium film. Hence
a free (liquid-vapor) surface would have a signifi-
cantly smaller characteristic length. Therefore
appropriate experiments done in floating two-di-
mensional systems —as in "space, " for example—
should exhibit "bulk" behavior down to submono-
layer sizes. Similarly, experiments confined to
the free surface alone —far removed from a sub-
strate —also ought to yield a far smaller charac-
teristic length. On the other hand, systems totally
constrained by solid surfaces and without a "free"
surface ought to have an enhanced (x2) charac-
teristic length.

(ii} If a correspondence is supposed to exist be-
tween the present offering and the Ginzburg-Pi-
taevskii healing length, then the foregoing sug-
gests a set of boundary conditions for the order-
parameter g. Depending upon which surface does
exhibit the 4. 5 K roton gap, a correspondence
might obtain if P went to zero only at this surface.

(iii) Unexplored here, but clearly implied,
must be implications regarding surface specific
heats.

(iv) A definite prediction can be deduced from
the proposed dispersion curve with regard to a
surface scattering structure factor. Such a quan-
tity could conceivably be measured by neutron
scattering in geometrically prepared severely con-
strained systems.

(v) The theory outlined here suggests a possible
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resolution to the problem of Kapitza resistance.
The central issue in this problem is to unearth
possible mechanisms to explain the relatively ef-
ficient heat transfer through the helium-substrate
boundary. Phonons are observed to penetrate this
boundary better than is theoretically predicted.
This is especially so for short-wavelength phonons.
The following question is therefore suggested: To
what extent does the presence of low-energy
(4. 5 'K) surface excitations enhance the phonon
transfer process'? One expects that the surface
excitations might have the effect of relaxing the
momentum and energy constraints limiting the
transfer process in their absence thus providing
an enhancement mechanism.
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