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The effect of lattice instability on the electronic properties of the tungsten bronzes, M,WO; (0 < x < 1), is
considered. A model of the free energy which describes the various phases as local minima in configuration
space is shown to provide a basis for understanding the structures observed and transformations between them
when M is an alkali metal. For the case of Na, WO, the effect on the superconducting transition temperature
of a phonon which is assumed to soften as a function of x is explicitly calculated. Tunneling between the local
free-energy minima is assisted by this soft phonon. Good agreement is obtained with recent experimental
observations of a dramatic increase in T, as x decreases and approaches the critical value for transition
between the superconducting and semiconducting tetragonal phases. Noteworthy features of this work are that
the structural transformation does not correspond to a simple condensation of the soft phonon, and also that
the phonon softening and configurational tunneling are considered simultaneously.

I. INTRODUCTION
The tungsten bronzes are a class of nonstoichio-

metric compounds with the formula M, WO; (0<x<1),

which are known to exist in cubic, hexagonal, and
two different tetragonal structures.! Some of
these materials have been found to be supercon-
ducting® in the hexagonal and one of the tetragonal
structures, and recently an increase in the super-
conducting transition temperature of the higher
composition tetragonal sodium tungsten bronze has
been observed as x is decreased toward the value
at which the transition to the lower composition
tetragonal structure occurs.® It was suggested in
Ref. 3 that this increase is due to softening of the
lattice mode which corresponds to a certain geo-
metrical operation® that transforms one tetragonal
structure into the other. In this paper we will in-
troduce a simple model of the composition depen-
dence of the free energy and the soft-phonon fre-
quency, from which the observed dependence of T,
on x can be obtained. The structural transition is
treated as a change in bonding configurations, so
that the model is similar to the two-well configura-
tion-space model utilized recently® to treat amor-
phous materials. In the present case the tunneling
between configurations is assisted by the soft pho-
non, which is itself treated in a generalization of
the anharmonic model® of lattice instabilities. We
find that as x is decreased toward x,, the critical
composition for transition between structures, the
phonon softening at first strongly enhances T.,.
Near x. however, the coupling between the soft pho-
non and the configuration change suppresses the
softening, and T, increases more slowly. In this
simple model, then the effect of the soft phonon on
T, is explicitly calculated for a system where the
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superconducting and structural transitions can
occur simultaneously.

II. MODEL

For values of x in the upper portion of the range
0 <x <1, many of the tungsten bronzes take on a
cubic perovskite-related structure. The matrix of
WO, octahedra for this structure is shown in Fig. 1.
The M atoms (not shown) would occupy the body
centered position in the cubic unit cell. For very
small values of x, a tetragonal structure with very
few M atoms present is found. The matrix of WOq
octahedra for this structure is illustrated in Fig.
2(a), where a view in the a-b plane is shown. The
other tetragonal structure is shown in Fig. 2(b).
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FIG. 1. Matrix of WOgz octahedra for the cubic perov-
skite-related structure of M ,WO;. Open circles repre-
sent O atoms, filled circles W atoms. M atoms (not

shown) would occupy the body centered position in the
cubic unit cell.
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FIG. 2. (a) Matrix of WO; octahedra in T2 structure,
projected on a=b plane. (b) Matrix of WO; octahedra in
T1 structure. Circles identify groups of octahedra which
have been rotated by 45° to change (a) to (b). Filled cir-
cles represent M atom sites, not necessarily all occupied.

There exists a simple geometrical operation* which
takes one between the two tetragonal structures.
This operation consists of the rigid rotation of each
of the groups of four circled WOgz octahedra by 45°
about the center of the unit, Hereafter we refer to
the rotated structure as T1 [Fig. 2(b)] and the
simple tetragonal structure as T2 [Fig. 2(a)]. The
M atoms occupy the “tunnels” between the arrays
of WOg octahedra, so that the essential difference
between T1 and T2 is the replacement of eight
square tunnels by four pentagonal ones and four
triangular ones per unit cell. Note that by rotating
neighboring groups of octahedra one can form hex-
agonal tunnels as well, so that many other struc-
tures in addition to T1 can be obtained from T2, as
pointed out in Ref. 4. The stability of a particular
structure will depend upon the free energy of the

M atoms in the tunnels found in that structure. For
example, if M is sodium, one might expect that the
sodium atoms would prefer the larger pentagonal
tunnels, since the Na-O distance in the square tun-
nels is only 1.95 A, " whereas the Na-O bond length
in NaWO;, is 2.73 A.® One may take this effect into
account by writing the free energy for a given con-
figuration {F;} of the octahedra as

F{F;}= W{Fi}"‘NZ no{Fit M,, (1)

where o is summed over square, triangular, pentag-
onal, and hexagonal tunnels, N is the total number
of (square) tunnels in the T2 structure, n,{%;} is

the fraction of occupied ¢ -type tunnels in the {F;}
configuration, M, is the free energy of the M atom
in an a-type tunnel, and W{F;} is the free energy of
the WOg octahedra, connected as in configuration
{F;}, and in the absence of M atoms. Now F{r;} is
to be minimized with respect to the constraint:

Znu{ri}=x- (2)
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We note that the M, will depend strongly on the

size of M. A small atom such as lithium will be
easily accomodated in the square tunnels. However,
for an atom as large as rubidium one would expect
the free energy in the hexagonal configuration to be
the lowest. Comparing the M-O bond lengths® found
in similar compounds with the size of the various
tunnels, " one can understand qualitatively the oc-
currence® (under ordinary conditions) of the lithium
tungsten bronze in only the cubic and 72 structures.
This fact is due to the small reduction in energy

N n T1}M, ~-NY (T2 M,

for Li, which cannot compensate for the larger in-
crease in the WOg octahedra configurational energy,
W{T1} - w{T2}. Similar reasoning explains why
sodium tungsten bronze occurs only in cubic, T1
and T2 structures, the potassium in cubic, 71, T2,
and hexagonal, and the rubidium in only hexagonal.
Moreover, from the constraint Eq. (2) one sees that
T1 cannot be stable for!® x >0.6 and that the hexag-
onal phase®! cannot be stable for x >0. 33.

F{ri}1

I X<XC

| | X >X

T2 T ()

FIG. 3. Compositional dependence of the configura-
tional free energy, F{r;}. The ordered phases T1 and
T2 shown in Fig. 2 are local minima. Intermediate con-
figurations are represented schematically as a quantum
barrier. The rotational modes depicted in Fig. 2 corre-
spond to specific excursions about the local minima in
F{t;}.
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For the remainder of this paper we will focus our
attention on the sodium tungsten bronze. In this
case, M,<M << M;. The triangular tunnels are
so small that n, can be neglected. Thus the free
energy takes the form

F{T1}= W{T1}+N[n{T1} M, +n{T1} M,]
(ng+n,=2x), (3a)
F{T2}=w{T2}+NxM,, (3b)

where W{T2}< W{T1}. For small values of x, T2

is clearly the stable structure, since the increase
in W energy will not be compensated by the M terms
in Eq. (3). However, as x increases, the energy
lowering obtained by increasing n, and decreasing
ng will at some point (x,) compensate the difference
W{T1} - W{T2}, as illustrated in Fig. 3. For values
of x >x,, but less than x~ 0.6, T1 should be the
stable structure. Experimentally, x, is found® to
be about 0.2, and x,,, about 0.5. To complete the
model, we note that the rotation shown in Fig. 2
takes one from 72 to T1 and vice versa. However,
the change in configurations requires the breaking
of both W~ O and M - O bonds, so that the transition
does not result from a simple condensation of the
phonon mode corresponding to the rotation. It fol-
lows, however, from the fact that F{F;} is linear in
x that this phonon frequency will soften in the man-~
ner

w§=c?x - x) (4)

as x approaches x,..'? Physically this corresponds
to the weakening of the force constants for the ro-
tational mode as the M atoms are depleted from the
pentagonal tunnels. x; is expected to be greater
than zero, since the rotation should be unstable at
x=0, when 72 is by far the low free-energy con-
figuration.

A general physical argument can be made in fa-
vor of compositionally-dependent mode softening
in “cage” or “tunnel” structures. Such structures
are characterized by holes in the lattice, a certain
number of which are filled at any given composition.
In the limit of low concentration (many empty holes),
one might expect to find low-frequency modes cor-
responding to the motions of the large groups of
atoms surrounded by the holes, and thus effectively
decoupled from the rest of the lattice. As the con-
centration of the atoms which fill the holes is in-
creased, these motions become restricted, the
lattice becomes stiffer, and the phonon mode fre-
quencies are no longer expecially low. This is pre-
cisely the effect which we are attempting to de-
scribe in Na, WO, with Eq. (4). This is analogous
to the usual anharmonic soft mode case, ® with two
notable differences. In contrast to the anharmonic
case, in this system one may obtain a softening
even in the harmonic approximation.!? Also, the
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parameter which determines the phonon frequency
is the M concentration rather than the temperature.

1II. PHONON-CONFIGURATION COUPLING

As one approaches x,, the two wells in F{f;} will
be close in energy, and tunneling between configura-
tions may occur, assisted by the wo phonon. In
fact, electron-microscope pictures of alkali tung-
sten bronzes!® show that local regions of T2 struc-
ture are sometimes embedded within a large T1
matrix. The effect of this tunneling process on the
phonon frequency will now be considered. For this
purpose we treat the two configurations as a pseudo-
spin- system and use the following model Hamil-
tonian:

H=woa'a +VES* + V(x) (S*a' +5 a), (5)

where wg is given by Eq. (4), AE=¢€(x —x,) is the
difference between the free energies of the T'1 and
T2 configurations (assumed to be linear in x), and
V(x) is the matrix element for the configuration
tunneling.!* This matrix element, which increases
as x approaches x* due to the flattening of the T1
well as w, softens, is assumed to have the form
V(x)=Voexp[—£(x - 0.2)]. The effect of the con-
figuration coupling term on the phonon frequency
may be obtained from the phonon self-energy, 15
according to

)= G g (©)
which gives for the phonon propagator®® (v >0)
D(w)=<w —clx —xp)t/2 - ) +it§l. %)
w —€lx —-x,)
Thus
Dlw)= (w —(ZJ:) (ch)x—-wx.c))+ 1) ®8)
where
w,=3[clx —x0)* 2 + elx = x,)] £ 3{[clx = x)* /2
—elx—x,)P+4V2 (x)}/2 . (9)

Equation (9) represents a simple linear coupling of
two modes, corresponding to the phonon and the
configurational change. The lower branch . will
be required to vanish at x=0.2, where the T1 to T2
transition is observed to occur. Since the transi-
tion is driven by the configuration change, rather
than phonon condensation, we have the condition
x9<x,%0.2. It is convenient to define two limits,
that of strong coupling [V(x) 2 c] and that of weak
coupling [V(x) «<¢]. The two branches given by
Eq. (9) are plotted in Fig. 4 vs x for both cases.
The residues of D(w) at w, are given by

A,=Res Dlw,)
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—l<1 clx =xp)t 2 —elx —x,)
T2\t {[c(x—xoj)/z—€(x—xc)]z+4V2(x)F/2> :

(10)
A, determines the amount of phonon character at
w, and is also shown in Fig. 4. The results of the
coupling are that the phonon softening is suppressed
near x=0.2, and that the amount of phonon character
in the w_. mode near x=0.2 in the weak-coupling
case is very small. This is to be expected, since
it is the configuration change, and not the soft pho-
non, which drives the transition.

IV. ELECTRONIC STRUCTURE

The electronic structure of M _WO; for M an alka-
1i metal can be considered as analogous to that of
SrTiO; for x=0 and ReO; for x=1. These materials
possess the same number of electrons/unit cell as
WO; and MWO;, respectively, and their band struc-
tures have been calculated.®!” Within a rigid-band
model, one can then view the increase of x in
M,WQ; in terms of the addition of electrons to the
ReO, conduction band calculated by Mattheiss.!’
This band is derived from overlap between the 7,,

d orbitals of the transition-metal ion and the p or-
bitals of the oxygen. Wolfram has shown!® that the
planar nature of the overlap results in a dependence
of the {,, conduction-band energy on only two com-
ponents of the wave vector. This leads to character-
istic structure, such as a very rapid rise in the
density of states at the band edge, which in the sim-
ple analytic approximation used in Ref. 18 is a dis-
continuity, and a very sharp peak near the center of
the band, which in the simple analytic approximation
is a logarithmic singularity. As a result of these
features the rigid-band model for M WO; would pre-
dict a more rapid rise of N(0) with x than the x*”
which would result from the usual E!/2 band edge.
Using the analytic expression for the ¢, -band
Green’s function given in Ref. 18, one can compute
N(0) vs x for M,WQ,, within the rigid-band model
and assuming that the Fermi level for x=1 is that
appropriate to ReO; (Ref. 17). The result is that
N(0) is linear in x over a wide range, but with very
small slope, and a reasonably large intercept, so
that within the 71 phase (0.2 <x <0.4) N(0) would be
almost constant. Recent calculations!® of the band
structure of NaWO; yield some differences from the
ReO; case, and the rigid-band model for Na, WO,
using these results also gives a linear relation be-
tween N(0) and x, but with larger slope and smaller
intercept.

The experimental data on both specfic heat and
suseptibility of cubic Na,WO, suggest® that N(0) is
indeed linear in x, but with practically zero inter-
cept. Preliminary susceptibility measurements in
the T1 phase also show this behavior.?® In addition,
recent x-ray photoemission studies® of cubic
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FIG. 4. Coupled modes described by Eq. (9): (a) cor-
responds to x¢=0.17, xc=0.1975, V;=0.19 meV, ¢ =10,
c=10 meV, € =200 meV, the weak-coupling limit. (b)
corresponds to x,=0.14, x,=0.17, V;=3.8 meV, £=1,
¢ =10 meV, € =200 meV, the strong-coupling limit. The
numbers above and below the curves indicate the amount
of phonon character to the mode. The coupled modes
depend little on the choice of £ from ¢ =1 to ¢ =10.
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Na,WO; are in essential agreement with predictions
based upon the filling of a #,, band, similar to that
of ReO,, by electrons donated by the sodium.

In the following we will treat the density of states
as linear in x, as observed experimentally. -2
We will also neglect any variation with x of the elec-
tron-phonon matrix element. The rationale for this
last assumption is that the rigid-band model based
on the characteristic shape of the {,, conduction
band in the d-band perovskites seems to account for
several features of the experiments®2%2! on Na,WOs;.
We thus feel that it is unlikely that the electron-pho-
non matrix element would vary strongly with x,
since such variation would imply large changes with
x in the electronic wavefunctions as well, and the
discussion above suggests that this is not the case.
We also restrict our treatment to the metallic phases
(x>0.2), and do not consider the metal-semicon-
ductor transition.

V. SUPERCONDUCTING TRANSITION TEMPERATURE

In Sec. I, we calculated the x dependence of the
soft-phonon frequency, taking into account the im-
portant effects of the configuration coupling near
the 7T1-T2 transition. We now investigate the ef-
fect of this dependence on the superconducting tran
sition temperature in the 71 phase, assuming that
this phonon makes the major contribution to the
variation of T, with x. For this purpose, we will
utilize McMillan’s formulation® of 7T, in terms of
the electron-phonon spectral function a*Flw). Ac-
cording to Ref. 22

_{w) [ 1.04(1+1)
Te=1.2 ¢ (X=p -0, szm*>’ (11)
where p* is the Coulomb pseudopotential,
© 2
7\=2f o Fw)de (12a)
0 w
2 (=,
(w)= X ), @ Flw)dw, (12b)
and o?F(w) is defined by?
1 - > - -
ozzF(w)E<- = > | Mk ~k+Q) [*ImD(Q, w)
©.Q
(13)

xa(eg,ame;)) /2 5(ep)

In Eq. (13) M is the matrix element for an electron-
phonon scattering to occur between electron states
K and K+§ on the Fermi surface, and D(Q, w) is the
is the propagator for a phonon of momentum Q.
Assuming, as explained in Sec. IV, that N(0)~ x,
and M is independent of x, and taking?* p*=0.15x,
we obtain for the x dependence of X and {w)

-__ax_ (A A
A= (x-xo)l;z(w‘ w.) ’ (142)
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(W) =B/ w, +A_Jw )},

where o and B are constants, and w,, w., A4,, and
A_ are derived in Sec. III. For x not too close to
0.2, A~1, A,~0, w_~wg=clx =-xy)'/2, so that
(neglecting for the moment p* and noting that X << 1),
T, will be of the form

(14b)

T x)=Alx =xo)* 2eB/* (x> 0.2). (15)

This is the prediction of a simple soft-phonon model,
neglecting the configurational tunneling. Since the
tunneling will decrease in importance as x increases
and one moves further from the 71 — T2 phase bound-
ary, we expect Eq. (15) to be a good approximation
at the high end of the range 0.2<x<0.4. Conse-
quently, we have plotted in Fig. 5 Shanks’s data®

on T,(x) for sodium tungsten bronze along with

Eq. (15), with A and B determined by fitting to the
two highest x data points, and for several values of
x9. The curves are both independent of x5 and seem
to fit the data reasonably well until one gets much
below x=0.3. For values of x very near the T1- 72
boundary (x=0.2), however, Eq. (15), for these
values of A and B, and any x;, is seen to seriously
overestimate the enhancement of 7,. We have also
studied the effect of changes in the constants A and
B on the fits, and find that for no values of the pa-
rameters can one obtain a good fit to the Shanks’s
data for the full range 0.2<x<0.4 with Eq. (15).

We do feel, however, that the physically most rea-
sonable procedure is to use the high-x data to de-
termine A and B, as in Fig. 5, since Eq. (15) is
expected to be valid for x far from 0. 2.

It is precisely in the region of x near 0.2 that the
configurational tunneling becomes important, so
that to understand the variation of T, with x in this
region one must go back to Eq. (14), and include
the phonon-configuration coupling. The effect of
this coupling will be to suppress somewhat the
strong enhancement of T, obtained from the bare
soft phonon near x=0.2, as can be seen from Fig.
4, where the phonon softening is suppressed by the
configurational tunneling mode. In Fig. 6, we show
numerical results for T, (x) vs x with the same sets
of values of the parameters as in Fig. 4. The con-
figuration-phonon coupling indeed suppresses the
enhancement of T,. In addition a maximum value
of T, is obtained. In the weak-coupling limit, Fig.
6(2), this maximum occurs very close to the tran-
sitional composition, is not shown, and may not be
observable. The choice of parameters of Fig. 6(a)
gives good agreement with the data of Ref. 3 for the
T1- T2 transition in Na,WO;. In the strong-coupling
case, shown in Fig.6(b) T (x) vs x develops a pro-
nounced maximum for x significantly larger than
the critical value (assumed here to be x=0.2).

One might speculate that the reason for the weak-
coupling behavior in the sodium case is that since
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FIG. 5. Numerical evaluation of Eq. (15) and the

data of Ref, 3 vs x. Parameters A and B in Eq. (15) are
determined by fitting the high-x end of the data points.

T2 is the most favorable configuration for the WOq
octahedra alone, the barrier illustrated in Fig. 3
should be large. For transitions between two dis-
torted phases, such as T'1 and hexagonal for ex-
ample, the barrier should be smaller due to the fact
that the WOq free energies of the two phases are

almost the same: Thus the strong-coupling behavior

illustrated in Fig. 6(b) might be expected for tran-
sitions not involving the T2 or cubic phases.®

VI. CONCLUSIONS

We have treated the 71-72 phase transition in
sodium tungsten bronze with a two-well configura-
tion-space model for the free energy. Tunneling
between the configurations is allowed via a partic-
ular phonon, which softens as x approaches the
critical composition.
tions involves a change in the bonding, the transi-
tion is not accomplished simply by the condensation
of the soft phonon as, for example, in the case of
the Peierls transition?® or the usual anharmonic
soft phonon.® Moreover, the phonon softening is
obtained here even in the harmonic approximation,
since the force constants depend upon x.? An in-
teresting feature of the tungsten bronze system is
that since the phonon softening occurs as a function
of composition rather than temperature, it is pos-
sible to have the superconducting transition and

Since the change in configura-
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lattice instability occur simultaneously. Also,
since the phonon involved is essentially a localized
excitation, it has a greater effect on T, than a soft
mode with a particular wave vector. In the latter
case only a small fraction of the phonon density of
states is involved in the enhancement of the elec-
tron-phonon interaction.

We have utilized a simple model of both the soft
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FIG. 6. Numerical evaluations of Eq. (11) for the sets
ofparametersused in Fig, 4. (a) Weak coupling as in Fig.
4(a), and (b) strong coupling as in Fig. 4(b). Data points
in (a) are again taken from Ref. 3. The results depend
little on the choice of £ from ¢ =1 to £ =10.
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phonon itself and of the phonon-configuration cou-
pling, and included the effects of this coupling very
near the transition. Within the simple model we
have explicitly calculated the dependence of T, on
x, and have obtained good agreement with the data
of Ref. 3 on Na,WO;. As x is decreased toward the
critical composition, the phonon softening enhances
T, dramatically, but this softening is suppressed
by the phonon-configuration coupling very near the
transition, and T, then increases more slowly, ex-
hibiting a visible maximum in the strong-coupling
case.

It should be noted that our model is a semiempir-
ical one, containing several parameters and assumed
functional forms, and that there is at present a
limited amount of data with which to make compari-
sons. For this reason, the good agreement be-
tween theory and experiment displayed above should
not be construed as a definitive confirmation of the
model. We rather view this as a demonstration of
the correctness of the gross physical features of
our picture of compositionally~-dependent mode
softening, as applied to Na,WO;. Detailed confir-
mation of particular features of the model, such as
the x dependence of w3, or the importance of con-
figurational tunneling, must await further experi-
ments.

A direct observation of compositionally depen-
dent mode softening in the tungsten bronzes is of
great interest and importance at the present time.
Earlier Raman scattering studies?” of metallic
tungsten bronzes were restricted to the higher fre-
quency range. While either light scattering or ul-
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trasonic attenuation and dispersion measurements
can in principle yield the desired information, there
are technical difficulties in performing these ex-
periments on alkali tungsten bronzes. Perhaps the
best opportunity is afforded by inelastic neutron
scattering. Indeed, the phonon spectrum of hex-
agonal K,WO, has already been measured®® with
neutrons for x=0.33 at room temperature. The
results show three regions of the phonon spectrum
with extremely flat dispersion. One of these cor-
responds to motions of atoms at opposite sides of
the unit cell in opposite directions in the a-b plane,
and would, in the T1 phase, lead to a shear force
which could produce the rotation of octahedra illus-
trated in Fig. 2. Clearly these inelastic-neutron-
scattering experiments should be extended to lower
values of x, and into the T1 phase. The results of
our calculations strongly suggest that softening of
the phonon spectra should be observed.
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