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Modeling Josephson junctions*
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The current-voltage characteristic of a current-biased junction is calculated using the Werthamer theory. In
contrast with the voltage-biased model large zero-frequency currents exist at O'K at all bias voltages below

the energy gap and the Riedel peak is directly displayed. The effect of capacitance on the I- V curve is

described and the form of the subharmonic energy-gap structure is calculated using the Mattis-Bardeen model

for the superconducting electrodes.

Interest in junction modeling stems from the
desire to understand the variable nature of junc-
tions from one sample to the next and the vari-
ability across the conventional categories of tun-
nel junctions, point contacts, and microbridges.
Observation of the subharmonic energy-gap struc-
ture in microbridges by Gregers-Hansen et g3. '

suggested a greater similarity with tunnel. junc-
tions and point contacts than previously supposed.
But discussion of similarities remains highly
speculative when the only available microscopic
model is for the voltage-biased tunnel junctionl
which, incidentally, does not display subharmonic
structure. Consequently we have evaluated the
Werthamer tunneling theory with finite external
impedances and for infinite impedance, the cur-
rent-biased case, The voltage-biased model has
served an important role as a standard for judg-
ing the quality of practical junctions. %e will
show, however, that ideal tunnel junctions (i. e. ,
without shorts or imperfections) can have quite dif-
ferent I-V characteristics-characteristics resem-
bling those of point contacts and microbridges.

In calculating junction current it is desirable
to avoid explicit spatial dependences of the cur-
rent density. Consequently the junction is as-
sumed to be small compared with all relevant
electromagnetic wavelengths and no largex than a
few Josephson penetration depths' as well as hav-

ing zero applied magnetic field. Under these
conditions the current is given by%erthamer's
Eq. (11}[hereafter referred to as Eq. W(11}]:

e(f) =—Im dp) dp)'[M((u)M*(p)')e ' '" " "
R

&&j, (P)'+ —,'P)p)+M(P)}M(P)')e ""'"""o"ja((u'+—,'P)p)],

(1)
where Werthamer's W(&u) has been replaced by
exp(- —,in) M(p)}. The only other change from
Werthamer's notation is that we have factored
&/R, with units of amperes, from j, and jp.

To formulate the problem for digital computa-
tion M(p)) is expanded harmonically about the
self-oscillation frequency coo:

M(p)) —=g M&5(p) + jp)p),
j ~co

where the M& are complex numbers. Combining
Eqs. (1) and (2) gives, after suitable shifting of
indlCe 8

The dimensionless complex harmonic current
amplitudes Ij and I2„are functions of j, and j~,
respectively. Harx"is's sign convention is used
for the j's. The detailed form of the zero-fre-
quency current equation is

Ip =g (M~M~* Imj, [(-k+ —,')p)p/p) ]
a Ce

+ Im(M„,M, ) Rej,[(k+ —,')p)p/(u, ]],
where v, is the enex gy-gap frequency given by
2e&/h.

By definition for the current-biased junction,
the total current must be zero for all n&0:

Ig„+I~ ——0, 0&n ~N.

If the harmonic expansion of Eq. (2) is truncated
at j=+N, then 2K+1 M,. 's must be determined
and, consequently, 4%+ 2 equations are required
for a solution. Equations (5) number 2N in all. '
An additional 2N+ 1 equations are obtained from
the fact that M(p)) is the Fourier transform of an
exponential function [Eq. W(10)] and normalization
of M(&o) requires e"e '" = 1. Setting the absolute
phase by the requirement ImMo = 0 gives the last
required equation.

Numerical solutions are obtained by specifying
p)p (i. e. , in effect the average junction voltage),
guessing a set of M&, and computing a first-de-
rivative correction matrix which provides the
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FIG. 1. Calculated I-V characteristic for a small cur-
xent-biased tunnel junction. The Riedel peak occurs at
a voltage of unity, and the odd subharmonic series are
present at voltages of 3, 5, and 7. The curve labeled
total is the sum of the quasiparticle fJmji{(d) ] and pair
fge j2{~)J contributions, as xequired by Eq. (4). To ob-
tain practical dimensions multiply I by 6/8 and V by 2A
where 4 is in volts and 8 is in ohms.

energy gap. To our knowledge the smallest val-
ue of RC/~ in the literature for the common form
of tunneling barrier (metal oxide) is ~0. 5. '0

For our purposes a more interesting case is
Huang and Van Duzer's" novel single-crystal Si
barrier for which we estimate RC/~, ~0. 1. As
expected from the present theory„ the experimen-
tal I Vcu-rve for this small value of RC/v~ ex-
hibits large currents below the energy gap; it
resembles the curves for "catwhi, sker" point con-
tacts. 3 Unfortunately the transverse dimensions
of the junctions in both of the above examples are
too large to avoid electromagnetic standing waves,
which are not included in our theory. Consequent-
ly detailed agreement with the theory is not ex-
pected.

Returning to Fig. 1, we see the Riedel peak
directly displayed in the pair current and the to-
tal current at a voltage of unity. Singularities
are also present at subharmonics of the energy-
gap voltage 1/m, where m is an odd integer, but
are not present for even m. This behavior is
understood by observing that the response func-

basis for a systematic iterative approach to a
solution. The converged set of M& are then sub-
stituted into Eq. (4) to obtain the zero-frequency
current which is displayed in Fig. 1. This solu-
tion has been checked using an independent time
domain formulation of the problem,

In sharp contrast with the voltage-biased case
there are large currents at voltages below the
energy gap. In this regard our model resembles
Stewart's low-frequency current-biased models
and the experimental curves from point contacts3
and microbridges. 4 It also illustrates hose the
voltage biased mo-del is not fundamental to tun

nehng theory but is only one case of the theory
Since it is well known from the Stewart model
that current-biased junctions generate harmonics
of vo, it is expected that a quasiparticle current
would be produced at voltages mell below the gap
by photon assisted tunneling' and that is observed
in Fig. 1. However it turns out that the major
current below the gap is not quasiparticles, but
pall s,

Before discussing the Riedel peak and related
singularities of Fig. 1, let us focus on the ob-
servability of large currents below the energy
gap, In Fig. 2 we illustrate the effect of shunt
capacitance added to the model. As the capaci-
tance is increased, generally the level of current
below the energy gap moves continuously down-
ward. Perhaps the most interesting aspect of this
is that for a value of RC/v as small as unity,
the I-V curve has essentially reached the voltage
biased case, i. e, , very little current below the

FIG. 2. Effect of shunt capacitance C on the I-V
curve. 8 is the junction normal state resistance and v~
is h/2ed. Each curve is plotted with a displaced origin
for clarity and with the zero-voltage current going ver-
tically from zero to l.57 in all cases. As the curves ap-
pxoach zero voltage from the right, an incxeasing num-
ber of harmonics are required and consequently the cal-
culations cannot be continued to zero voltage. Dotted
lines are used to visually connect the curves to their corre-
sponding zero-voltage current and to visually relate the
curves near the Riedel peak voltage of unity, when ap-
propriatei
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Fig. 3(a). For these calculations Eqs. (5) are
replaced by the following:

I,„+I2„+2(R/R„) (o/o„)„v„=0, 0 & n ~ N (6)

1.57

„=2'
(b)

FIG. 3. (a) Junction circuit model for the nth harmonic
including a Mattis-Bardeen (M-B) superconducting load.
The dc circuit requires the addition of a current source
and the deletion of the M-B load. (b) Calculated I-V
characteristics for a small area junction as a function of
R/Rg. Each curve is plotted with a displaced origin and
with dotted continuations as in Fig. 2. Structure is ap-
parent at both the even and odd subharmonics down to a
voltage of p.1

tion Rejig(&o) is singular as ~ -+ l. Equation (4)
then implies that the current is singular when
(k+ —,)~o/ar =+ l, a condition which produces the
odd series but not an even series. Werthamer
and others'2 have speculated that the even series
would be produced by interaction of the junction
electromagnetic fields with the superconducting
electrodes, but the argument has never been
given quantitative form. That can now be done
with the present model. The junction is thought
of as having an oscillatory component arising
from j~ terms and a shunting path represented by

j& terms. Bulk superconductor, represented by
the Mattis-Bardeen theory, ' is added to the cir-
cuit in series with the oscillator and in parallel
with the existing shunt. The circuit is shown in

where (o/s„)„ is the Mattis-Bardeen conductivity
at the nth harmonic and v„ is the corresponding
dimensionless complex voltage normalized to 2&.
The voltage is an explicit function of M, The
normal-state resistance of the Mattis-Bardeen
superconductor and the junction are R& and R.

Numerical solutions to Eqs. (6) are displayed
in Fig. 3(b) for several values of R/R„. As
R/R„ranges from zero to large values, the solu-
tions evolve from the current biased to the voltage
biased case. As anticipated the presence of the
Mattis-Bardeen superconductor does produce ad-
ditional structure in the curves, most notably a
broad rise in conductance near a voltage of —,'. At
large values of R/R„ this structure resembles
that first reported by Taylor and Burstein'4 and
interpreted'~ as multiparticle tunneling. Another
school of thought' favors a Josephson-effect ex-
planation. These calculations support the latter
position, particularly the curves for R/R» = 5

and 20. Quantitative comparison with experiment
is not possible at this time since the experiments
include spatial effects which are ignored here.
Furthermore capacitance is not included in the
circuit with the M-B l.oad because it introduces
additional structure which is beyond the scope of
this discussion. In practical experiments noise
effects will determine the actual transition point
for crossing subharmonic singularities and the
extent of the observed hysteresis due to the nega-
tive resistance regions.

A small broad peak at a voltage of —,
' is also

apparent in the curves for R/R„= 0. l to l. 0.
Since the structure at 2 and 4 has quite a different
appearance than the odd series, there is a tendency
to be unsatisfied with this explanation of the experi-
ments. Qualitative agreement between theory and

experiment might be achieved by including mecha-
nisms for rounding the Riedel singula. rity (recently
discussed by Hasselberg") or considering spatial
or more detailed circuit effects.
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