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We show that the presence of a static charge density wave (CDW) should have pronounced effects on the

NMR spectrum of a metal, such as potassium. With a thermally fluctuating CDW, the effects are averaged

out, but may leave a residual contribution to the linewidth. Observed NMR spectra in potassium metal rule

out the presence of a static CDW, but do not rule out the existence of a thermally fluctuating CDW. Our

linewidth data combined with spin-lattice relaxation data of others require that the axis of the charge density

wave be parallel to the applied field and that thermal fluctuations be rapid enough to produce correlation

times less than 1.3 X 10 ' sec at 1.5 K. We are able to account for our linewidth (0.215 ~ 0.015 6) with

interactions characteristic of the uniform-density conduction-electron state.

I. INTRODUCTION

The usual first approximation for the electronic
state of a simple metal is a nearly-free-electron
gas with uniform charge and spin density through-
out the metal. . However, Overhauser" has con-
sidered sinusoidal variations from the uniform
model. We are here considering the case of a
charge-density wave (COW), whose theory he has
developed. ' ' Such an electronic state has been
px oposed for potassium to explain experimental
observations which the uniform-electron-density
model is thought unable to account for. The exper-
imental results supporting and disagreeing with
the CD% explanation have been discussed else-
where, ' ' as have other possible explanations. "

In this paper, we consider the effect of a CDW
on the NMR spectrum of potassium. We first pre-
sent the nature of the electronic state proposed by
Overhauser. We show that a static CDW should
have marked effects on the nuclear resonance due
to the electric quadrupole and hyperfine couplings
between the nuclei and the conduction electrons.

Thermal fluctuations of the static CDW have also
been proposed" ' to explain experimental data.
%'e find that even in the presence of fluctuations,
the CDW can influence the NMR spectrum by pro-
ducing broadened linewidths, provided the fluctua-
tions are not too severe, and contributing to spin-
lattice relaxation.

%e present potassium nuclear resonance line-
width data, and examine it for evidence of a CDW.
No clear evidence is found for a CDW in K, and we
are able to account fox the linewidths with conven-
tional broadening mechanisms. We discuss spin-
lattice relaxation measurements of Narath and
%eaver' and of Kaeck." The NMR data do not
rule out the existence of a CDW in K, but do place
restrictions upon its orientation and the thermal
fluctuations which must necessarily accompany it.

Since Overhauser' s first proposal of the possi-
bility of CD%' s they have been found in the transi-
tion-metal dichalcogenides. They were first seen
by Gossard and Ehrenfreund" in NbSe, as quadru-
pole splittings of the Nb ' NMR, and subsequently
have been seen in electron diffraction by Wilson

l3
and diSal.vo in a variety of other such layer ma-
terials. The general, considerations in our paper
concerning the possible ways CDW' s might mani-
fest themselves in NMR should apply to those com-
pounds as well. This fact has given us added in-
centive to publish our negative results.

II. ELECTRONIC STATE OF CDIRT

Overhauser has considered an el.ectron gas with
a sinusoidal oscillation in the electron density;
for point r in the metal, '

p(r) =p, [1+pcos(Q R)], (1)

where po is the average el.ectron density, P is the
amplitude of the oscillation relative to p0, and Q
is the wave vector of the oscill.ation. He has shown
that this oscillation of p(r) requires an oscillatory
potential in the one electron Hamiltonian of the
form

V(r) = —G cos(Q r),

and has used this potential to do a self-consistent
Har tree-Fock calculation.

The quantities p, C, and Q are treated as param-
eters. Their values are chosen by requiring
self-consistency of the calculation and by minimiz-
ing the total electron energy. This results in rela-
tions bebveen the parameters. The CDW wave
vector is slightly larger than the diameter of the
Fermi surface, and is given by

Q = 2k'(1+ G/48~),

where k~ and &~ are the Fermi wave vector and
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bility and ( ) s denotes an average over the Fer-
mi surface of $(R)l, the conduction-electron den-
sity at nuclear site R. Unl. ike the normal para-
magnetic conduction-electron state, a CDW would

be expected to give a different shift at different
nuclear sites.

The wave functions for the CDW state are given
by'

cos g 8 g k r + sin g & 4 (k + Q). r

FIG. 1. Proposed Fermi surface for potassium with a
charge-density vrave. There is slight conical distortion
at points 4 and B (k, =+ 2 Q). The average over the
Fermi surface of

l $(A}lt is approximated by averaging
over the shape of radius k z.

energy. The oscillation amplitude P is related to
G by

P= 1+ ln

where

u -=Q/2k» = 1+G/4E».

The effect of the oscil. latory potential is to give
a mixing of plane-wave states with wave vectors
k and k +Q. For k =+ &Q, the potential produces
a band gap of width G. Let Q be in the E, direction.
The gaps occur at two planes in k space given by
k,, =s

~2 (see Fig. 1). Minimization of the total
electron energy results in a slightly nonspherical
Fermi surface with conical. distortions along the
z, axis just touching the two energy gaps. Using
optical data to obtain an energy-gap value of 0.62
eV for potassium, Overhauser'4 obtains p =0.17
for the fractional amplitude of the electron density
osc il lations.

III. EFFECTS OF STATIC CDVf ON NMR SPECTRUM

A. Knight-shift variations

The Knight shift (K) due to the conduction-elec-
tron spin susceptibility has been shown to be given
byl5

sin8cos&=G/4(p, 'z', + —,'G')' ',
}i=-k Q/2m,

and &g is defined in Fig. 1. To account for the
Bloch character of the wave function near a nucle-
us, we multiply (I)~ by a Bloch function u~:

4 (r) = s& (r)4~ (r).

We shall. be evaluating g~ and u~ at nuclear sites
r =R; we make the assumption that we can neglect
any k dependence of u~ on the Fermi surface, and

that it is the same for all nuclear sites. We denote
its squared absolute value by lu(O}l'. The quantity
we are interested in is

le. (R)I'= ls(»l'
x[1+2 sin8 cos 8 cos(Q ' R)]

The first term gives the average Knight shift as
for normal metals; the cos(Q R} term is a modu-
lation of this shift which depends upon whether the
particular nuclear site is in a valley [cos(Q.R)
= —1]or a peak [cos(Q R) = + 1] of the electron
density wave.

Instead of averaging over the conically distorted
Fermi surface, we use a sphere of radius k„as
shown in Fig. 1. The modulation from the conical
caps can be shown to contribute a very small frac-
tion of the charge-density oscillations; averaging
lP(r) l over the sphere s volume can be shown to
give the -1'Po modulation stated by Overhauser. ' '
To average, we integrate the quantity times the
increment of surface area dms = 2n'k~esin6 d4. Then
using z, =k»(1 —cos5), the integral needed is

w/2 2wk~~sin6 d6

[g ka(1 —cos 8) + —G ]&~a

for integration over the left half of the Fermi sur-
face (the right half gives the same result). To ob-
tain the average, we divide by the area of the left
hemisphere, 2@k~. The resulting average is

(2 cos 8sin8) s
ff=&v& I q(R) I').,X.',

where X, is the conduction-electron spin suscepti-
G, 4+(4 G'(44'4;)")

2~» G/2@k»
(10}
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v~cos (Q R).

One then obtains a normalized frequency distribu-
tion in an applied field Ho

S(v —vr) = r '[I —[(v —vr)/v„]'] '~', (14)

where

2w vr =—y(1+ Ko}HD

is the center of the distribution and

2n v„=0.23 yKoHo

is the amplitude of the sinusoidal variation. This
distribution is shown in Fig. 2.

To measure the width of this distribution, we
use the observed" Knight shift, Ko= 0.26/o. In an
applied field Ho=60 ko, the average Knight shift is
KP', = 156 G, and the modulation amplitude is
0.23 K+0= 36 G, giving a distribution of Knight
shifts with a full width of - 72 G.

B. Electric quadrupole perturbations

FIG. 2. Nuclear intensity distribution for a Knight shift
E{R)=Ep+K~cos(Q'R). The shape of the function is
correct for any nuclear shif't ~ cos{Q ' R).

For potassium, Overhauser' ' uses G =0.62 eV
and E~ = 2.1 eV. Then from (3), Q= 2k+(1+0.0'I4),
and G/2pkv =0.068, giving (2cos8sin6}z = 0.23.
The Knight shift at nuclear site R is then expected
to be

K(R) = )van, (u(O)('[1+0.23 cos(Q R}].

It is predicted to vary with crystal position of the
nucleus, having a sinusoidal modulation about an
average value,

cK dR,
dv dR dv

(13)

The first term is the number of nuclei per unit
length in the crystal. The second can be evaluated
using

(12)

In this treatment, we have assumed that the spin
susceptibility is the same for all electrons at the
Fermi surface regardless of their position on the
surface. This is acceptable since the electron
scattering time is expected to be less than the
spin-lattice relaxation time of the electron spin
susceptibility (7'„( T, ~,~).

The sinusoidal distribution of Knight shifts gives
a distinguishing lineshape. We obtain it from

A second perturbation of the NMR spectrum
comes from the electric quadrupole interaction
with the electric field gradients set up by the
CDW's oscillatory charge distribution. We treat
the electric field gradients as being due to two
sources: the oscillatory conduction electron
charge distribution and the ion cores, which would
relax from their cubic symmetry sites to partially
cancel the electric fields of the first source.

1. Calculation of electric field gradients

dE d2V
eq =—=—,= —4 happ, cos(Q r), (16)

where V and & are the electrostatic potential and
electric field due to the oscillatory charge density.
The distribution of electric field gradients has a
sinusoidal variation with a maximum value q,„
=4nPpo/e Using lattice .parameter data" to com-
pute po gives q =3.00&&10" cm '.

b. Ion cores. The ion cores are expected to be
shifted from their cubic symmetry positions to
partially cancel the electric fields of the conduc-
tion electrons. The displacements which would
cancel the electric fields are given by'

u(L)=(PQ/Q') sin(Q L),

a. Conduction electrons. The oscillatory charge
density of the CDW is given by

&p =Pp cos(Q r}. (15)

A one-dimensional model gives for Poisson's
equation
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for an ion associated with cubic site L. The max-
imum value for this displacement is

i ui „,„=P/Q = 1.055 xl 0 ' cm. (18)

To estimate the ions' electric field gradients,
we use the gradient in the radial. direction from an

ion of cha, rge &:

dE 2e
(19)

The maximum gradient will come when the ion is
displaced along this radial direction from the point
in question: r = I + g.

To obtain an upper limit on the gradient, we use
this approximation for each lattice site. Then
{for u/L«1)

—=—1*3— (20)

The first term is the gradient of the ions in their
undisplaeed sites. The cubic symmetry of the un-
displaced lattice gives zero for this term when
summed over all lattice sites. It is the displace-
ment term which produces the nonzero electric
field gradient of the ions. In summing this term
over lattice sites, we neglect the tensor nature of
the true problem to obtain an upper limit. Then

R
& tons (21)

To estimate the lattice sum, we use the contri-
butions from the first neighbors (s =8, I.=4.525
X10 'cm} and second neighbor" (s =6, 1.=5.225
X10 Bcm). This gives q;,„,& 1.72X1022 cm '. This
value is comparable to the electron contribution,
but is overestimated.

The total q woul. d be a tensor sum of the two con-
tributions, and would have a magnitude which is
l.ess than the arithmetic sum. Since the expected
ion contribution to q is less than that of the con-
duction electrons, we take the contribution of the
electrons as an estimate of the total electric field
gradient.

We need finally to take account of the Bloch na-
ture of the conduction el.ectron states, and of the
fact that the nuclei which sample the gradients are
at the center of potassium ion cases. The pres-
ence of electric field gradients distorts the core
and causes the gradient at the nucleus to be am-
plified by (1+y ), where y is the Sternheiner
antishielding factor, estimated" to be (1+y') - 18.2
for gradients due to charges outside the 'K ionic
radius. In treating electric field gradients in cop-
per metal, Kohn and Vosko'9 find important con-
tributions from excess charges inside the ionic

radius where y = 0 However the Bloch nature
of the true conduction electron states amplifies
the gradient experienced by the nucleus. Their
work corrects the field gradients computed from
plane wave states by multiplying by an ampl, ifica-
tion factor e which they estimate to be -25.6 for
copper. Since such core amplification factors are
expected to increase with increasing nuclear
charge (as do Knight shifts in metals, for in-
stance), we scale their factor with Z(=19 for po-
tassium, 29 for copper) to obtain a - 17 for potas-
sium. This then gives

~nuclear 5 1 ~ 1023cm-3

2. First-order quadrupole shifts

When treated as a first-order perturbation on

the nuclear transitions of the I= & potassium nu-
cleus with quadrupole moment Q, the central
transition (-,' ———,') is unaffected, but the outer two
transitions {s —,

' —s —,') are. The first-order
shifts" go as 2(3 cos'8 —1), where 8 is the angle
between the applied field Ho and the field gradient
direction. Considering 8 = 0, the transitions are
shifted by + v where

vo-—3e'qQ /2f (2f —I)h.

Using Q' =0.07&&10 "e cm' gives v"~ =6.26&10'Hz,
or using 1.987 MHE (10kG) for "K gives a sphtting
of -3100 G. Since q(R) =q,„cos(Q 8), the distri-
bution of field gradient shifts of the outer 3 K tran-
sitions would have the shape functions of Fig. 2,
but wiih infinities at -+ 3100 G {for 8 = 0).

There is evidence which indicates that if a CDW
is present in potassium, its wave vector Q (and
hence the direction of q) attempts to align along
Ho. If it does not align, a continuous distribution
of angular orientations would be present in a pow-
dered sample. A first-or der quadrupole powder
pattern would then have to be weighted with the
above distribution of electric fieM gradients to ob-
tain the NMR line shape. In either case, we have
demonstrated that a CDW should have a marked
effect on the outer "K transitions; they should be
"wiped out" of the central transition.

3. geeond-order quadrupole»ift

The strength of the field gradients calculated
in Sec. IIIB1 requires considering second-order
perturbation theory. If we assume that Q~ (H, and
that the electric-field-gradient tensor has axia. l

symmetry (q =0) at all nuclear sites, then the cen-
tral transition (+ —,——~} remains unaffected by
the electric field gradient. " To have q =0 would
presumably require H, (and Q) to be in the [100]
directions for the bcc potassium lattice.
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If the principal gradient direction does not lie
along H~ but is random, the central transition wiLL

be spread into a powder pattern. " Again, we
would weight such powder patterns by the distribu-
tion of el.ectric field gradients. To obtain a mea-
sure of the width of the resulting line shape, we
use q"",'„"'" (most nuclei in the sample have
q-q"",'„"") and a powder pattern with q =0 for sim-
plicity (the width of the pattern is roughly the same
for all q). At a frequency of v0= 12 MHz (-60 kG),
this pattern has a width of -90 G for the nuclear
resonance intensity.

The previous treatment assumes a static CD%;
the interaction parameters experienced by a nu-
cleus are assumed not to change during a time of
the order of several times the inverse of the split-
ting frequencies predicted. However, in explain-
ing experimental results on potassium, Over-
hauser has assumed thermal fluctuations "~
(called phasons) of the CDW. The perturbations
of a given nucleus then fluctuate between those of
a maximum in the electron density and those of a
minimum.

The effects of time modulating a CD%' wiLL ap-
pear in both the linewidth and the spin-lattice re-
laxation time T, . We use the Iesults of Narath
and Weaver'0 and of Kaeck" on Tx ~

It has been shown that the residual Linewidth of
an interaction of width &to,.„,(=-co,.„,—u;„,) when ran-
domly fluctuating between + &(d;„, and —~(d,„,about
its average value ~,„, is given by

'
+~ =n~mA+~inpc)~ (23a)

where 7, is the average time between fluctuations.
&„ the correlation time, is the time over which
the interaction appears to be static. Equation
(23a) assumes «u;„p', & 1; as this quantity ap-
proaches 1, ~~- 4(d,.„,.

The spin-lattice relaxation time arising from an
interaction ' should go roughly as

1/T, ~,„,= (4~,.„,)'r, /(1+ uPv', ), (23b)

(23d)

In the l.atter case T, = T,.
In treating a thermally fluctuating CD%, we

shall have to consider several possibilities. The
first question involves the alignment of Q: we
treat the case of Q (~H, (Sec. IVA) and the case of

where ~0 is 2n times the Larmor frequency. Typi-
cally either ~0&', is very much larger or very
much smaller than 1 giving us

(23c)

random orientation of Q (Sec. 1VB). Within either
case, we must consider three perturbations: (i) the
Knight shift, (ii) first-order quadrupole, and (iii)
second-order quadrupole. Finally, we must con-
sider whether the resonances observed contain all
three transitions of the I= —,

' nucleus, or whether
the outer transitions (+2 —+—,') are "wiped out" of
the observed resonance, either by the CDW's
quadrupole intexactions, or by strains and lattice
imperfections as in copper.

n, u&,„,= y(0.23K,)H, . (25)

This wiLL produce a contribution to the motionally
narrowed linewidth which is proportional to 0,.

An isotropic Knight shift is equivalent to adding
a field parallel, to the applied field. Hence a fluc-
tuating isotropic Knight shift does not induce spin
flips and thus does not cause spin-lattice relaxa-
tion.

If there is an anisotropic component, it can pro-
duce spin-lattice relaxation providing it is not
axially symmetric about the Ho direction. For
Q~ ~H„however, we expect that axially symmetric
case.

2. QtlNdPQpoleklt8McAoN$

For Q~~H„our model assumes that the direction
of the largest component of the electric-field-gra-
dient tensor is parallel to HD. For an assumed
axially symmetric tensor, the quadrupole Hamil-
tonian is then diagonal in the mI levels of the nu-
cleus. The frequency of the central. transition
(+ —,

' ———,') is unaffected by the quadrupole inter-
action and given by Eq. (24). The outer transitions
(+ —,

'—+-, ) are shifted by + vo, respectively. There
is no effect on the spin-lattice relaxation time
since the quadrupole matrix elements are diago-
nal.

Considering all three transitions, the average
frequency shift due to the quadrupole interaction
is zero. The outer transitions wiLL have an aver-
age interaction width given approximately by

+~tnt= 2&" q

A. gItH,
I. Knight shift

The theory of the oscillatory Knight shift does
not involve the direction of Q, and yields the same
result for both Secs. IVA and IVB. Furthermore,
it is correct whether or not the outer transitions
are within the observed linewidth. The Knight shift
will shift the average resonance position to a fre-
quency

4&;„i = 2»v» = y(1+K )Ho0 (24)

and wiLL have an interaction width given by



1022 D. FOLLSTAEDT AND C. P. SLICHTER

The quadrupole interaction for this alignment of

Q will produce a contribution to the narrowed line-
width which is independent of applied field.

The above treatment assumes that the outer
transitions occur within the observed nuclear res-
onance linewidth. If they are "wiped out" by
strains and lattice imperfections, or by a CDW
which is not rapidly fluctuating, the quadrupole
interaction will contribute to neither an average
frequency shift nor to a residual linewidth.

B. Random orientation of Q

1. Knight shift

2. First-order quadrupole perturbation

For a random orientation of Q, most of the pow-
der sample crystallites are perpendicular to the
applied field (the distribution of orientations goes
as sin8d8, which peaks at 90'). At this orienta-
tion, an electric field gradient with strength v+
produces a shift of approximately

4v;« ——2 (2 v v ~q"). (27)

As before, due to the opposite shift directions
of the (+ -,' + 2) and ( ——,'- —&) transitions, first-
order perturbation theory produces no net shift «
the resonance position.

Again, (23b) describes the spin-lattice interac-
tion with 4&v,„, given by (27).

Second-order quadrupole perturbation

As discussed in Sec. III B3, the nuclei per-
turbed by q

~ produces a powder pattern -90 G

wide at vo =12 MHz. We would thus expect

A&o„, (at 12 MHz) = y x (45 G) . (28)

Since this perturbation goes as Hp ', it would pro-
duce a linewidth contribution proportional to Ho'.

In second-order perturbation theory, the quad-
rupole interaction yields a net average shift of
the resonance position. For a nucleus where
principle quadrupole axis makes an angle 0 with
respect to H„Cohen and Reif" give the second-
order shift of the central transition for I= 2 as

The theory of the Knight shift remains as dis-
cussed in Sec. IVA. Again, we stress that it holds
independent of whether or not the outer transitions
fa11 within the experimentally observed linewidth.
For the isotropic component there can be no T,
contribution. An anisotropic term will be expected
to contribute. Probably a reasonable upper limit
for the anisotropic term is 30%%uo of the isotropic.

When averaged over a sin~ d~ distribution of orien-
tations, we obtain

v'" = —v&/10v, = —(v&~)'/10v, . (30)

We might then expect to see a shift of the reso-
nant position which is proportional to H, ', even
in the presence of thermal fluctuations. We have
considered the effect of a thermally fluctuating
quadrupole interaction upon the frequency of the
central transition using density-matrix formal-
ism. The results depend upon the product +0&',.

a. &',~', » 1. In this limit, the quadrupole in-
teractions appear static and produce the expected
shift proportional to H 0'.

b (A@7'& ~( 1 In this rapid fluctuation limit, the
quadrupole interaction produces a shift propor-
tional to Ho, but also produces nuclear relaxation,
giving line broadening. The broadening is much
larger than the shift, which would then go un-
detected.

Hence unless the CDW is static, i.e., &, is long
with respect to a Larmor period, we do not ex-
pect to see frequency shifts as predicted by Eq.
(30).

V. EXPERIMENTAL METHOD

A. Samples

B. Spectrometer

Samples were prepared by forming a dispersion
of small "beads" of potassium in mineral oil.
This technique has been used in previous NMR
studies of alkali metals. The potassium metal
was purcha, sed from Mine Safety Appliances (5-g
ingot, 99.95'%%uo purity). It was heated and melted
in 200 cm' of degassed, lightweight mineral oil
(a lightweight oil is needed so that the metal par-
ticles can be separated from the oil by centri-
fuging). With 0.5 cm' of oleic acid added to act
as a dispersing agent and to prevent coagulation,
the components were stirred with an apparatus
made and described by Asik. " The resulting dis-
persion was viewed under a microscope and was
found to consist of small "silver-colored" spheres
of potassium metal, approximately 10 p. in diam-
eter.

The dispersion was centrifuged and the potas-
sium residue put into cylindrical nylon coil forms.
To diminish the line broadening due to magnet
inhomogeneity, small sample sizes (8 in. diam,
8 in. length, and ~ in. diam, —,

' in. length) were
used.

v'" = (- 3vo/16v, )(1 —cos'8)(9 cos'8 —1) .
(29)

A hybrid junction spectrometer" was used to
measure the potassium linewidth. For the fre-
quencies studied (4.45-12 MHz), a capacitor-
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divider tuning arrangement vras used. The elec-
tronics of this spectrometer are described else-
mhere. 2' To connect the capacitor-divider to the
sample coil, a -1-m length of Microdot cable
(No. 275-3932}was used. The magnet was a
Westinghouse superconducting solenoid vrith a
liquid-helium sample chamber. This allowed
mea. surements at 4.2 and 1.5 K (obtained by
pumping on the helium).

C. NMR measurements

Since only a single narrovr resonance is observed
instead of the structure predicted in Sec. IIIB2, me
ean only hope to obtain information on a possible
CDW state through its motionaBy narrowed re-
sidual linemidth. Since the residual linewidth due
to the Knight-shift variation mould be expected to
go as 00 and the residual second-order quadrupole
broadening as H, ', we have studied the linewidth
as a function of IIO.

Vfe utilize the spin-lattice relaxation data of
Kaeck" and of Narath and %'eaver. '0 Kaeck found

T,T = 23.3 see K, whereas Narath and Weaver got
T,T=2V +1 secK. Both vrorked in the temperature
range 1.1-4.2 K. There does not appear to be any
particular difference in the experiments except
that Narath and Weaver vrorked at higher frequen-
cies vrhere they should have had a somevrhat better
signal to noise. For simplicity, me use the Narath
and Weaver number. In their analysis, these
authors point out that their result agrees rea-
sonably mell with values predicted from the Kor-
ringa relation, indicating there is no reason tr
believe the T, 's arise from any cause other than
the usual eonduetion electron spin-flip mecha-
nism.

In a continuous wave measurement of the line-
midth, vre must take care that the measurement
itself does not broaden the resonance. The first
source of such broadening is field inhomogeneity,
but me must also include possible effects due to
modulation (amplitude and frequency), phase of
the signal [we want complete absorption (lt"}],
saturation, and lock-in time-constant effects.

The measurements were begun at 8 MHz (-40
kG ). The field was varied until the resonance
vras found. Then the supereonducting solenoid
mas put into the persistent mode. The variable
rf phase of the spectrometer vras adjusted for an
antisymmetric derivative signal (dlt" /dH). The
signal height vras studied versus rf level to ob-
serve saturation. The rf level vras then set- —10 db below saturation (a factor of 3 in H,).
The modulation amplitude mas varied in factors
of 2 and the linewidth measured each time. When
no difference in linemidth was noted between two

such measurements, the lovrer amplitude was
used. To avoid modulation sidebands, the modu-
lation frequency for all final measurements vras
4 Hz (equivalent to 0.02 G for potassium). The
sweep rate mas similarly varied by factors of 2

to insure that the lock-in time constant vras not
broadening the resonance. Time constants of 1
and 3 see mere used vrith final sweep rates slow
enough that there vrere greater than ten time con-
stants between the derivative extrema.

Five parameters could be varied to minimize
field inhomogeneity: axial position of the sample
coil for correcting gradients in this direction, shim

coil corrections for gradients in directions perpen-
dicular to the solenoid axis (dH, /dx, dH, /dy}, and

a shim coil for second-order corrections in the z
direction (cPHO/dz ). The Ilnewldth was first
studied Rs R function of sample posltlony Rnd R

minimum obtained. Then the previously set pa-
rameters were checked to see that they were not
contributing to the nevr width. The position vras
then reehecked to see if the minimum position
had changed.

The shim coil currents were then varied (with
both current polarities) until the minimum line-
midth vras obtained. Again, the previously set
parameters vrere checked after each shim coil
vras optimized to obtain the narrovrest possible
line, and the optimum shim current rechecked
afterward. When all settings had been optmized,
it was found that no current was needed in the
dH, /dz shim coil, which confirmed our position-
ing of the sample.

To obtain numerical results for the linemidth,
the sweep vridth vras calibrated by changing the
spectrometer frequency. The resonance vras ob-
served on the same sweep at three frequencies to
check sweep linearity.

The linemidth vras measured between 22.25 and
60 kG. The optimum shim coil currents vrere
found to scale with field as expected.

VI. RESULTS

The result of these measurements at 4.2 K is
shovrn in Fig. 3. Most vrere taken vrith the —,

' -in.
sample, but at 22.25 and 60 kG, data were taken
with the 4-in. sample. Note that the larger sample
locates -23=8 times as much sample in the more
inhomogeneous regions or field (away from the
sample center) than the v -in. sample. If we as-
sume a field-independent linemidth, we extrapolate
to zero field, giving additional pxeference to the
lovr-field data and the larger sample. We then ob-
tain ~~, = 0.215 +0.015 G peak to peak. With the
same shim settings as for the —,'-in. sample, the
measured linemidth for the —,

' -in. sample at 60
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kQ is 0.292 +0.012 Q. This is -M2 times the
zero-field value. If we add the true sample line-
width and the inhomogeneity linewidth contribu-
tion as the sum of squares to obtain the squared
observed linewidth, we obtain an inhomogeneous
width of -0.2 G at 60 kG for the —,'-in. sample and
-0.009 6 at 22.25 kG for the —,

' -in. sample, thus
adding confidence to our zero-field value.

We have also measured the linewidth at 1.5 K
for the z -in. samples. The results were the
same as 4.2 K.

VII. COW ANALYSIS

We are unable to clearly distinguish a compo-
nent to the linewidth which is proportional to IIO

or Ho . The high-field linewidths of Fig. 3 are
broader, but the increase is of the order of the
error bars and of the scatter in the points. A

linear dependence, possibly due to a slight bit
remaining field inhomogeneity is not ruled out.
We, therefore, assume that any field-dependent
CDW broadening of the resonance is less than the
observed linewidth and is undetected. We ean then

analyze the observed width for the cases discussed
in Sec. IV.

l. Knight shift

The Knight-shift variation at 60 kQ gives 4up&, &

= (36 G) x y = 4.5 && 10' sec '. Then setting d &o'„,T, '

& y~~,»o gives r, & 1.3 && 10~ sec from linewidth.
Utilizing r~ 1.3 x 10 gives ((do&~) & 100. Thus

either (23c) or (2M) apply. If we assume there to
be an anisotropic Knight shift which is 30% of the
isotropic one 4+„,=0.30 X 4.5X 10 see"'=1.4
X10' sec '. If (&o,r,)'» 1, Eq. (23c) gives &,
= 3.7 see. This result is too short compared to
the measured time, butif h&o„, is even smaller,
the T, would be longer so that &,& 1.3 &10 ' is
possibl.

If we assume +0~,«1, the fluctuating aniso-
tropic part would make &, ~ 2 x 10 '0 sec. But a
weaker anisotropic value permits &, to be longer,
(up to r, I/a&0 = 1.3 x-10 ~ sec).

All told, then, we conclude ~, & 1.3 && 10 '.

2. First-order quadrupole perturbation

B. Random Q

i. Knight shift

The Knight-shift analysis of See. VIIA applies
to random Q as well. We stress that its results
hold independently of quadrupole broadening by
either CDW or sample stains. It gives 7', ~ 1.3
X 10 ' sec.

2. First-order quadrupole perturbation

Most randomly oriented Q's fall at xight angles
to H, and reduce 4+„, by a factor of 2 from the
value in Sec. VIIA2. This gives values for 7',

of 7', & 7.2 & 10 'o sec from linewidth if we assume
we are obsexving all transitions.

Using this r, we get (&o,r,)2«1. Thus the spin-
lattice relaxation time obeys (23d). For ~„,
=3.6X10' and T, & 24 sec we find 7', & 3.2X10""
sec. We find it hard to believe 7', could be that
short for such a process, and thus conclude that
if there is a charge density wave with Q not par-
ellel to Ho we are not obsexving all the transi-
tions.

3'. Second-order quadrupole perturbation

The linewidth was observed at frequencies as
low as 4.45 MHz. If we scale the results of See.
IV 8 3 to this frequency and set h(d'„, ~, less than
the observed linewidth, we obtain 7', & 1.2 x 10 '
sec. Such a value makes (&u,r,)'« I, and puts us
in the case of (23d). We can then look at the effect

D
QP

CL

O
0.I—

l3
4P

CL

If we assume that the outer transitions are pres-
ent in our signal (they account for 0.6 of the total
nuclear resonance intensity), then the predicted
3100-Q first-ordex' quadrupole spread is used for

We then obtain &,& 1.8x 10" see.

I I I I I I

0 I0 20 50 40 50 60
Ho(kG)

FIG. 3. Peak-to-peak linemidth of 39K (potassium
metal) resonance as a function of applied field Ho.
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on T„concluding as above that 7', & 3.2X 10 "see,
an unreasonably short time.

We ean therefore conclude that if a CD% exists
in K, its axis is parallel to H, and it has a &,
& 1.3 x 10 ' sec as deduced from Knight-shift con-
siderations.

VIII. CONVENTIONAL LINEVfIDTH ANALYSIS

A. Dipole-dipole interaction

%e can attempt to account for the observed
linewidth in texms of the nuclear dipole-dipole
interactions. The expression for the second mo-
ment for this interaction is~'

M, = yN~'iII+1)$ rg

where r» connects the j th nucleus wi.th the sur-
rounding nuclei of the crystals. Gutowsky and

McGarvey" have done the lattice sum for body-
centered eubie cells and obtain

r P»
= 29.03/c',

where a is the cubic cell length. Putting in the
numerical values for potassium gives

Ma = V.VO x 103 sec ' .
Two types of line shapes are often discussed in

NMR: Gaussian and Lorentzian. To see which
more nearly applies to potassium, we examine
the ratio of the following two widths of the ab-
sorption derivative signal: (peak-to-peak separa-
tion)/(full width at half-maximum). The ratios
are O.V9 and 0.40, respectively, for the Gaussian
and Lorentzian shapes. Examining this ratio for
the potassium xesonances at the various values
for Ho gives a value of 0.5. Thus the potassium
line shape appeax s more nearly Lorentzian than
Gaussian.

For a Gaussian line shape, the second moment
is finite and is related to the peak-to-peak line-
width by

~„~,.„., =(3/y)MM,

agreement with the second-moment calculation.
We shall return to the diserepaney between his
linewidth results and ours.

&h "(Hfo)' (34)

The sealed rewQt for potassium is B;,-0.14 Hz,
which corresponds to -10"~ G, which is a negli-
gible linewidth contribution.

An additional source of line broadening is the
lifetime of the nuclear levels. %e use the T, of
Narath and Weaver'0 at 4.2 K to calculate (l/y)(l/
&,) =0.0007& G, a negligible contribution.

C. Lattice imperfections

The weak-field dependence (if any) of the line-
width leads us to consider an additional line-
broadening mechanism, field-independent, first-
order quadrupole broadening due to lattice im-
perfections. Abragam" gives the effect on the
linewidth due to lattice imperfections producing
electric field gradients which decrease radially
as x '. For a body-centered cubic lattice, a
concentlat1on 0 of imperfections produces a
Lorentzian distribution with a width given by

(e2@i/bs) a

B. Electron-nucleus coupling

To explain our additional observed linewidth,
we consider other couplings of the nuclei. Pseudo-
exchange coupling between like nuclear species
does not lead to an increased second moment.
Pseudodipolar coupling, however, does inexease
the second moment. To estimate its magnitude
in potassium, we use the results of Poitrenaud'
on Cs, which give a coupling constant of Bz'~x-35
Hz. Since pseudodipolar coupling is a second-
order effect mediated by the contact interaction
between the nuclei and conduction electrons, we
can scale its value according to

=0.14 G (33)

for potassium. For a Lorentzian line shape, the
second moment diverges; we would then expect
the peak-to-peak linewidth for a nearly Lorentzian
line shape to be less than that predicted by Eq.
(33). However, our measured linewidth is greater
than the above predicted width.

The potassium resonance has also been observed
by Kaeck. " His free-induction decay study places
an upper limit of M„~0.1 G, and gives a Lo-
rentzian line shape. This result gives better

for the broadening of the outside transitions of an
I= -', nucleus, b is the first-neighbor distance, Q'
is the nuclear electric quadrupole moment, and
e is the amplification factor. v, is the quadruyole
frequency due to an imperfection with charge e
located at, a first-neighbor site. For potassium,
we obtain a peak-to-peak Lorentzian width

2F= 1.4 x 10 t.".
Setting this width equal to 0.215 G gives c -15 ppm.
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This small concentration is easily realizable. A

typical analysis supplied by Mine Safety Appli-
ances for their high-purity potassium gives traces
of many metallic impurities, the largest concen-
trations being Si(-25 ppm), Ca(-8 ppm), and
Na(-15 ppm). In view of the above calculations,
it seems fortuitous to obtain such a narrow line-
width with this level of impurities.

Assuming first-order quadrupole broadening in

our sample, two explanations are then possible
for the difference in linewidth between Kaeck's
measurement" (& 0.1 G} and this study (0.215
+0.015 G}: (i}Kaeck's samples were purer than

ours and had less first-order quadrupole broaden-
ing. (ii) Our samples are purer than his, with his
having sufficient impurity concentrations to com-
pletely wipe out the (+-, —+ —,') transitions, leav-
ing only a nonguadrupole broadened central (+ —,

'
——2) transition.

IX. SUMMARY AND CONCLUSIONS

A. Static CD%

We have examined the effects of a static CDW in
a metallic sample upon the metal's NMR spectrum.
The spectrum is greatly influenced through mag-
netic hyperfine and electric quadrupole interac-
tions with the conduction electrons.

For a sample with an incommensurate CDW
wavelength, there is a continuous distribution of
Knight shifts and electric field gradients between
the two extremes of minimum and maximum elec-
tron density. The high probability of finding nuclei
at these extremal positions tends to split the reso-
nance line shape into two peaks.

A substance with a CDW which is commensurate
mith its lattice periodicity mould have a finite num-
ber of unique sites, each with a unique resonance
frequency. The nuclei near the electron density
extrema would presumably be the most influenced
by the CDW.

Regardless of the field dependence of the orienta-
tion of Q and of the particular nuclear transition
being observed, the oscillatory Knight shift is ex-
pected to cause differential shifts proportional to
H, between the resonant frequencies of the dif-
ferent nuclear sites. First-order quadrupole in-
teractions provide field-independent shifts for
noncentral transitions (nuclei with I& ~), but the
shift depends upon the orientation of the electric
quadrupole tensor axes and Ho. Finally, if the
axis of the largest electric-field-gradient com-
ponent does not align with H„ the field gradient
can cause a second-order shift of the (+ 2 —2)
transition. This shift would vary as IIO', and
would depend upon the exact orientation of the
quadrupole tensor axes with respect to H, .

B. Thermally fluctuatm3, CD%

Even in the presence of thermal fluctuations,
the CDW's broadening of the NMR line shape may
not be entirely eliminated. Each of the three above
mentioned perturbations would leave a residual line-
width contribution given by 4co = 4v'„,&„ where
4(d„, is static shift and 7„the correlation time,
is an average time between thermal fluctuations.

Depending upon the length of ~, , this residual
width may become comparable to the resonance
linewidth due to other broadening mechanisms
(dipole-dipole, impurity broadening, etc.} and be
detectable. Since the residual width goes as
6(d'„„each perturbation mould have a distinguish-
ing field dependence for its residual width; Knight
shift: 4(d H'„ first-order quadrupole: ~ = const,
and second-order quadrupole: 4~ ~Hp'.

A thermally fluctuating CDW will contribute to
spin-lattice relaxation unless it is axially sym-
metric with the axis aligned along H, .

C. Results for potassium

The large discrepancy between the observed
NMR spectrum of potassium and that predicted by
a static CDW immediately show that if a CDW
exists in potassium, it must be fluctuating. Other
experimental evidence supports this requirement
also."' '

None of the distinguishing field dependences pre-
dicted for the residual linewidth can be clearly
demonstrated for our linewidth measurements on
potassium. We can therefore only place upper
limits on ~, .

Of the three interactions considered we place
more confidence in the Knight-shift perturbation
since its average value can be measured, and our
calculated variations of this shift for high and lom
electron density regions can be normalized to the
measured shift. The calculation holds for any
relative orientation of Q and H„and regardless
of which nuclear transitions are being observed.
Requiring its residual width to be less than our
measured linemidth gives &, & 1.3 x 10 ' sec.

Assuming Q()HO, we can set the first-order
quadrupole residual width to be less than our ob-
served linewidth (this further assumes that we are
detecting these transitions in our resonance). This
requires ~, & 1.ax 10 " sec. For this orientation,
we do not expect second-order quadrupole shifts of
the central transition.

For a randomly oriented Q, first- and second-
order quadrupole interactions on the linewidth
enable us to conclude (doer & «1, which in turn can
be applied to the formulas for T, . From T, we find

&, would need to be unreasonably short. Thus me
conclude that if there is a charge density wave it' s
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Q must be parallel to Ho.
Thermal fluctuations of the CDW have been used

to predict a new type of noise in potassium wires. '
The failure to detect such noise"' casts doubt on
their existence and hence on the existence of a
CDW in potassium. Our measurements are con-
sistent with the usually accepted uniform-density
electron state, though they do not rule out the
existence of a CDW. If it is present, our mea-
surements require that it fluctuate fast enough
to produce correlation times at least as short as
v, & 1.3&10 ' sec at 1.5 K.

O. Other applications

Similar predictions of a CDW have been made
for cesium metal. Its presence might be detect-
able with NMR at low temperatures. Since its
Knight shift (1.57%) is -6 times that of potassium,
its residual width would be expected to be -36
times larger. However, the cesium metal must
be of very high purity so that impurity-induced
line broadening (~HO) from the Knight-shift os-
cillations around the impurities does not dominate
the linewidths.
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