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Spatial variations of the order parameter in superconductors con +ning a magnetic impurity
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The spatial variation of the superconductor order parameter in the presence of a classical spin has been

analyzed by solving self-consistently the Gorkov equation for the one-particle Green's function. In the vicinity

of the impurity the deviations from the bulk pair potential 5 is of the form EA(T)sin kFr/(k~r)', where A(T)
is a temperature-dependent factor. At large distances from the impurity, r & $0 ($0 is the superconductor
coherence length at zero temperature), h(r) varies like 1Ir near the transition temperature, as is expected
from the Ginzburg-Landau theory. At low temperatures the spatial dependence is oscillatory and decreases as
1/r '.

I. INTRODUCTION

The problem of magnetic impurities in super-
conductors has been of interest for a long time.
The presence of magnetic impurities in a super-
conductor breaks the time-reversal symmetry of
the electron system and prevents the formation of
Cooper pairs. As a consequence the phase-tran-
sition temperature and the discontinuity of the spe-
cific heat are reduced, and gapless superconduc-
tivity, critical concentrations, and reentrant phase
boundaries at larger impurity concentrations have
been found. In 1960 Abrikosov and Gorkov' de-
veloped a theory, in which the basic features are
correctly described. Their treatment does not
consider the Kondo effect, and several authors ex-
tended their calculation to include Kondo properties
of the system within all known approximation
schemes. Only a few of the papers are relevant
and are able to explain a reentrant phase boundary
as well as the spin-fluctuation limit. 2 4

The presence of a magnetic impurity in a super-
conductor breaks the translational invariance of
the system and causes a change in the order param-
eter 4. There is a homogeneous change in b, ,
which can be neglected if we are dealing with very
small impurity concentrations, and also a spatial
variation of the pair potential b, is induced. It is
originated since the pair breaking, caused by the
electron-impurity interaction, is a function of po-
sition; it is large in the vicinity of the impurity
and it vanishes far away from the scattering center.

Three characteristic distance scales play a role
in the problem. The smallest one is I/kz, k~ be-
ing the Fermi momentum, which arises from break-
ing the translational invariance of the Fermi gas.
The largest one is the superconductor coherence
length at 0 K, $0= @+/hoke, where er is the Fermi
energy and bo is the bulk order parameter at zero
temperature. The third one is q=a~/&u~kz, ~~
being the Debye energy, which is originated from
the cutoff of the electron-phonon interaction.

There exist several calculations of the spatial

dependence of the order parameter due to a mag-
netic impurity. The first attempt is due to Tsuzuki
and Tsuneto, 5 who calculated n(r} near the transi-
tion temperature for distances from the impurity
much larger than $0, the superconductor coherence
length at 0 'K. With some approximations they ob-
tain a spatial variation, which decreases like (1/
r ) exp( —r/t'0) and is in contradiction to the I/r
dependence expected from a Ginzburg-Landau theo-
ry. A more careful treatment of the dependence
of 4 on r is due to Heinrichs. 7 His calculation is
restricted to the first Born approximation in the
electron-impurity spin coupling and to tempera-
tures near the transition temperature. He obtains
the correct 1/r dependence for large distances and
numerically a useful result for intermediate dis-
tances. The work of Heinrichs was then extended
by Kitamura to include some Kondo divergencies.
Kuroda discussed the variation of the order pa-
rameter for a classical spin in connection with an
isolated bound state inside the energy gap of the
superconductor. A more detailed calculation of
n(r) for a classical spin in a superconductor has
been presented by KQmmel. ' His analysis is valid
for the whole temperature regime. KQmmel ap-
plied to the problem the method of Bardeen, KGm-
mel, Jacobs, and Tewordt'~ for spatially varying
superconductivity. The Bogoliubov equations are
transformed into spin-decoupled equations and
these are formally solved using a WKBJ approxi-
mation. It seems to be a hard task to calculate
n(r} self-consistently within this scheme. His re-
sults are valid for r«$0, since for r» $0 the spa-
tial dependence has to be obtained self-consistently.
For small r the main contribution to n(r} comes
from the s-wave pair breaking; for larger dis-
tances, however, all partial waves play an impor-
tant role. His result is not analytic in the elec-
tron-impurity coupling; this can be seen to be a
consequence of approximations made in his calcu-
lation.

The motivation for the analysis of r (r) in the
earlier works was to estimate the corrections to
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the decrease of the transition temperature due to
spatial inhomogeneities. These corrections have
been found to be small and can be neglected. For
the calculation of the spin relaxation of a Kondo
impurity in a superconductor it was thought that
the spatial variation of 6 near the impurity plays
a significant role. A satisfactory result for d, (r)
for all temperatures with the correct coupling
parameter dependence was desirable. It turned
out, however, that the spatial variation of 4 con-
tributes to the spin relaxation only in higher orders
of the coupling parameter than the usua1 direct re-
laxation process, and may be neglected.

In Sec. II the basic equations are formulated.
The Gorkov equation~'~~ with electron-impurity
scattering should be solved self-consistently with
the gap equation. Introducing a t matrix for the
impurity scattering, the problem is reduced to the
solution of Gorkov's equation for the "free" one-
particle Green's function solved self-consistently
for the pair potential h(v'). For the sake of sim-
plicity the present calculation is restricted to the
case of a classical spin. The treatment can be
easily extended to a Kondo impurity by using the
approximate t matrix derived in Ref. 4. In Sec.
III the solution of Gorkov's equation for a transla-
tional-invariant pair potential is used to give a
first estimation for the spatial dependence of 4.
The self-consistent solution is presented in Sec.
IV for distances of the order of 1/kz and larger
than $0.

II. FORMULATION OF THE PROBLEM

The spatial dependence of the order parameter
of a superconductiag metal containing a magnetic
impurity at the origin can be expressed by the
anomalous thermodynamieal one-particle Green's
function G,z(r, r'; z):

Qlg)

A(r) = X —tanh —G',z'(r, r; (2})
Qjg 77

=22TI oz(r, r; z }—2] —0('(r, r; z}
n~0 aug

N

=2&TQ G,z(r, r; z„),

(2. la)

(2. lb)
n~o

where G"(v) denotes the discontinuity of G(z) on
the real axis, & is the coupling parameter of the
BCS interaction, && is the Debye cutoff and z„=i~„
= tvT(2n+1) are the thermodynamical fermion poles.
The last equality in (2. lb} is only approximate and
Nis determined from the condition (d„=zT(2N+1)
—(dg,

%'e will assume that the interaction between the
magnetic impurity and the conduction electrons is
given by the contact exchange Hamiltonian

H„=J5(r)S (2, (2. 2}

(JS/2}zG~(0, 0; z)
I —(JS/2) G (0, 0; z}

(2. 6)

The problem then consists in solving self-con-
sistently the coupled system of equations given by
(2. 1), (2. 3), (2. 5), and (2. 6).

III. FIRST APPROXIMATION

As a first approximation we will evaluate h(2 )
neglecting the impurity perturbation F(~) in Fq.
(2. 5), i.e. , without taking care of the self-con-
sistency condition. This is equivalent to consider
the excitation spectrum of the superconductor (giv-
en by G') as not affected by the impurity. Here,
only s electrons are scattered by the impurity and
contribute to the spatial dependence of b, . By cal-
culating G' self-consistently with A(r} also other

where J is the s-d exchange coupling parameter,
S is the impurity spin, and o is the spin density of
the conduction electrons. Only s waves with re-
spect to the impurity site can be scattered by a
contact potential, and hence t}2(r) will have spheri-
cal symmetry. The one-particle Green's function,
in a 2 x2 Nambu-matrix notation, expressed in
terms of the t matrix for the electron scattering
off a contact potential, yields

G(r, r'; z) = Go(r, r'; z)+ Go(r, 0; z)t (0, 0; z)GO(0, r'; z),

(2. 3)
where 6 is the Green's function of the supercon-
ductor calculated self-consistently with the spatial-
ly dependent pair potential d.(r) Go. is the solution
of the Gorkov equation

[zI —(V /2m+zan)7&+A(r)%2]G (r, r; z) = 5(r —r'}I,
(2. 4)

where Tg and ~~ are Pauli matrices, I is the iden-
tity and zz is the Fermi energy. It is convenient
to rewrite this equation by extracting from the
left-hand side (lhs) the perturbation due to the im-
purity

[zI —(V /2m+zan)7'g+&7g]G (r, r';z)
= 5(r —r')I + EF(x}t&G (r, r'; z) . (2 5)

Here, F(r) = 1 —t2.(r}//t and A is the pair potential
of the pure superconductor, which is reached at
very large distances from the impurity. It is as-
sumed here that the change of the bulk order pa-
rameter due to one impurity is negligible. The
lhs of Eq. (2. 5}is obeyed by the Green's function
for the translational invariant system, i.e. , the
pure superconductor without impurity.

It is a very hard task to calculate the t matrix
for the Kondo scattering, "~ and in fact to the
present no satisfactory result is available. There-
fore, the present discussion is confined to the case
of a classical spin. The t matrix for a classical
spin has been exactly calculated by Shiba':
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partial waves are scattered and give rise to spatial
variations of 4. Since the probability of finding
non-s-electrons near the impurity is very small,
this first approximation is expected to be reason-
able in the vicinity of the impurity (r & I/kr), but
it gives the incorrect behavior for larger and in-
termediate distances compared to the coherence
length.

For the translational invariant superconductor
[E(r}= 0] the solution of E41. (2. 5) is given by

where f, = —(m/2v) e4'"4'/r and k = [1P t(nz z&)»2/

ez]' . We use the notation G0(r, z) = G0(r, 0; z)
=G (0, r; z}. The term in Eq. (3.2) proportional
to 7;, arises from the asymmetry of a parabolic
band around the Fermi level and since no band-
width cutoff for the electronic states was included.
This term is irrelevant for the discussion of this
first approximation and will be neglected in this
section. The density of states of the supercon-
ductor is obtained when r = r'

(2')

(""
xi

z —g~
(3.1)

G'(r, r; z) = G'(0; z) = —[,p/(nz —z')"'](d -nr ),
(3 3)

and the t matrix for the classical spin [Eq. (2. 8)]
yields with a =vZpS/2

1 &z(nz z)1/z }'"'('"'

+ t(&'- ~)"' r3[f.(r)+f (r)D, (3.2)

Integrated for a parabolic band e, =kz/2m, one ob-
tains

GD(r; z) = —[i/2(b, z —z )
/ ]([zI—t47, ][f,(r) —f.(r)]

—74/99(1 —nz)] . (S.4)

Working out explicitly the products for the
Green's function of the complete system, given by
Eq. (2. 3', , one obtains for the anomalous compo-
nent

G4q(r, r'; z) = Gqz(r, r'; z) + G«(r, 0;z)t«(z)G4z(0, r'; z) + G,4(r, 0; z) t~z(z)Gzz(0, r'; z)

+ G~z(r, 0; z)tz, (z)G~z(0, r'; z) + G4z(r, 0; z)tzz(z)Gzz(0, r'; z) .
For r=r' we have

mph n~ 6 z'(3+ nz} + nz(1 —a')
4~p (b — } (1

and substituted into Eq. (2. lb) we arrive at

F, r)=2vvTn' ', Zz sin kyar ~ exp( —(k&r/e&}[t9,'+zzT (2n+1) ]") (3+ oz}[vT(2n+ 1}]z—(1 —nz}nz

(kyar) „0 [6 +v T (2n+1) ]~/ (1+n ) [zT(2n+I)] +(1+n )n

3+ o sin kFr d Cos(k/xr&/zr)
(1+o')' (krr)' .'„ur

(S.5)

(S.8)

(3. 7)

Here, EQ(r} denotes F(r) without self-consistency.
The integral in (3. 7) yields the cosine integral
Ci(kr r(u/9/4r ).

At low temperatures [temperatures for which
tanh(n/2 T) = 1] the infinite sum in (S. 7) can be
converted into an integral using the relation

00

2zTQ g(&u„)- drub(&o)+14m'T'g'(0)+O(T4),
n=0 "0 (3.8)

and after some transformations one arrives at

p sin kr 3+@ . Qfg b,
FD(r) = Ape z z z Ci kyar +K0 kr—r

krr) 1+ n ) Ep

z 1 —n' "
exp[ —(kyar/zr)x]

(1 o2)4 (x 2 n2)1/2

1x. . . ,. ,/ I, T«9; . (9.9)
x -46 n /'(1+u

Here, Ko is the modified Bessel function of zeroth
order.

For temperatures near the critical temperature,
T & T„we have A(T) «T„and the expression
(3.7) can be reduced to

3+ a sin kJ;~
(I + Qz)z (k r}z

(';-—" ~ z' [-"'"""'"i,
2n+1 ] '

T& T, , (3. 10)
where y is Euler's constant and $0= zr/krt4(T=O)
is the superconductor coherence length. The in-
finite sum in (3.10) can be carried out yielding

F ~
3++ sin k~x

0( }- o
(1 z)z (k )z

x Ci k~~~ —lntanh
2
—,T$T, .

(3.11)
Finally, we want to discuss the behavior of E(r)
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for the special cases of small and large distances
from the impurity site compared with the super-
conductor coherence length $0. For r«$0 we ob-
tain from Eq. (3.9) for T«T,
Eo(r}

nz
z 2&us arc sin[2o. /(I + uz)]

sin2k~r"
(k r)' kyar«&on/n, (3.12)

{3.15)

Hence, in this non-self-consistent approximation,
Eo(r) is an oscillating function and decreases like
($0/r)' for large distances and for all tempera-
tures. The oscillations are due to the cutoff of the
superconductor coupling at ~s. The I/rz depen-
dence does not agree with the long-range Ginz-
burg-Landau result; this breakdown for large
distances is not surprising since the self-consis-
tent determination of n(r} is fundamental here.

It should be noted that the dependence on the cou-
pling parameter o =zJpS/2 is analytic and that the
result can be expanded in even powers of e. This
contradicts the result obtained by KQmmel, ' where
E(r) is a function of the absolute value of n. This

I

and for T g T, from (3.11}

E( ) ~ z 3+&
I

2~ |~sink r
(I+o')' n& (k )''

T 5 T„kyar«&us/n. (3. 13)

It can be seen from expression (3.7) that the
variation of 6 with r for small distances from the
impurity is governed by the factor sin

krr/(kyar)

for all temperatures.
Since s waves should give the main contribution

for small r, this is essentially the behavior in the
neighborhood of the impurity. It will be shown in
Sec. IV that contributions coming from a self-con-
sistent treatment are very small in this region.

For r»(0, on the other hand, we have for all
temperatures

3+ cP sin k~rEo(r)=&pa {1 „z, „cikyar, r»(0.
Cg

(3.14)
The cosine integral behaves asymptotically like

different dependence on the coupling can be under-
stood by calculating n.(r) through (2. la} with the
discontinuity of (3.6). There are two contribu-
tions: one coming from the bound state within the
gap and one from the continuum spectrum 4 ~ co

The continuum contribution has an analytic
part and one which depends on the absolute value
of the coupling parameter. The latter has similar
characteristics as the Khmel result, but this
nonanalytic term is exactly canceled by the contri-
bution coming from the pole residuum of the bound
state in the gap. Hence, if for the evaluation in Fo
approximations are made, these may destroy the
exact cancellation of the two nonanalytic terms.

IV. SELF-CONSISTENT CALCULATION

In this section the effects of the spatial depen-
dence of &(r) on the "unperturbed" Green's func-
tion G are considered. F(r) will not be neglected
in the rhs of Eq. (2. 5) and is determined self-con-
sistently through Eq. (2. 1). The s electrons are
scattered by the s-d potential and originate the
spatial variation of &(r) calculated in Sec. III.
This pair potential is able to scatter also non-s-
partial waves, and this scattering gives rise to
new contributions to &(r).

First we rearrange Eq. (2. 5) in the absence of
impurities. For the translational invariant system
the solution is given by the expression (3.2). Re-
writing Eq. (2. 5) into equations for the function

f,(r), we have

[& /2m + zsri(& —z ) z]f,(r —r', z) = 5(r —r'),
(4. 1}

which is the usual differential equation of a Green's
function for a problem with spherical symmetry.
If an impurity is present at r = 0, we need the com-
plete expression (2. 5), which expressed for the
analogous functions to f,(r), y, (r, r'), yields

I'V
+ zan+i(n'-z')'" p, (r, r'; z)

2
= 5{r—r') + F(r) +i

( z z)~~z q, (r, r'; z)

~

~ ~

Z2—z+i
( z z),~z y, (r, r';z) . (4. 2)

Integrating these coupled differential equations, we
obtain

2

y, (r, r';z)= f,(r-r';z)+i
{ z z),lz ds f,{r-s;z)E(s)rp,(s, r';z)

Z2—z~i (, z),~z dsf, (r-s;z)E(s)y, (s, r';z) . (4. 3)

%e will assume that the perturbation due to the
impurity is small. This is equivalent to state that

I

the effect of F(r) in Eq. (4. 3) is small and only
linear terms in E(r) need to be taken into account.
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&[f.f.){P}=I 2„p»l ip k'(dz, z) e/, ', l

The Green's function | is obtained by inserting
y, into Eq. (3.2}. Inserting into Eq. (2. lb}, we
arrive at the equation

F(p) = E,(p) I - i&p
mm 1 1

E n~O n P

4k'+ [ip —kr(& —z„)' '/cr]
4k' + [-iP —kr(&' z„')'"/—er ]'&

E- iP —kg(& —zn)

where Fo{p) is the Fourier transform of Eo(r) cal-
culated in Sec. III. The expression (4. 7) should be
Fourier antitransformed in order to get the spatial
dependence of &. This is a hard task and we will
consider only the special cases of large distances
from the impurity and the vicinity of the impurity.

A. Large distances from the impurity

The behavior at large distances from the impu-
rity is given by the small-p behavior of Eq. (4.7).
Expanding the denominator in powers of p, we ob-
tain

E(P) =E,(P)/[A(T) + (P&.)'B(T)],
with

N

A(T) = Xp2vT g I z z~ggz
n=O 4 Znl

and

(4.&)

(4.9)

OO z2
B(T) = —Xp ', vT(vT, e ") g z

—
s Slz ~ (4.10)..o n -zn

Both constants A(T) and B{T)are positive. Trans-

We can replace y, in the in the rhs of Eq. (4.3) by
the unperturbed function f,{s-r';z). For r =r' the
spatial integrations in the rhs of (4.3) are single
convolutions and the Fourier transform of 5y, =y,
f, b—ecomes

Q2
5 p~(p, z) = +i (nz zz)lg2 P[f~](p)

~

~

z'—z + i
( z z)f/z l r[f,f,)(p) F(p),

(4. 4)
where 5' and F are the Fourier transforms of 5y
and F(r), respectively, and F[g] denotes the Fou-
rier transform of g. The evaluation of P[f,] and
P[f,f,] is straightforward:

. m' +ip+2ik, -k {~'-z')'"/e,"f ' p =' 2.p'" —.p. 2fk, -k, (n —.*) ~/.,
{4.8)

and

formed to real space, Eq. (4. 8) leads to an equa-
tion of the Ginzburg-Landau type extended to all
temperatures:

[ B(T-)(P' +A(T}]F(r)=ED(r) . (4. 11)

T «T, . (4. 16)

The interesting solution is the inhomogeneous
one, since for Fo = 0 no perturbation from the im-
purity exists and F(r) should vanish identically.
Defining 0 = [A(T)/B{T)) ~z/$0, the Fourier anti-
transform of Eq. (4. 8) yields

1 r ao

F(r)=, , dxxF, (x)

x (exp[- Q
l
r —x

l ] —exp [-Q
l
r + x

l ]}.
(4.12}

Near the critical temperatures, T g T„one sees
from (4. 9) thatA(T) vanishes like (1 —T/T, ) and
B(T) reaches the value B(T,) =~zXpe zf(3), where
g is the Riemann zeta function. Since 0 vanishes,
w'e can perform a Taylor expansion in powers of 0
in Eq. (4. 12)

F(rt=~ p I~
— dxÃ'P, (x) ~ 'I dxiFlx)), ,

c air~0
T & T, , (4. 13)

Fo(x) is given by Eq. (3.11). The fast oscjllations
of Fo(r) with period v/kr are not essential for large
distances and sin2kzr can be replaced by its spatial
mean value 2. Now Eq. (4.13) can be integrated
yielding

z 3+a 1 1
(I+ a')' l(3) (k,gg'

w
& ~$ @ cos{k~r~l/ee)

4 r (kyar (osier }'
T 5T„r»g, , (4. 14}

for the leading terms. The dominant term de-
creases like 1/r as is expected from a Ginzburg-
Landau theory and as it has been derived by Hein-
richs.

For small temperatures, such that tanh(d/2T}
=1, on the other hand, we obtain from (4.9) A(T}
=Xp and from (4. 10) B(T) Xp/9. Hence, 0 =3/$0
and Fo(r} is given by Eq. (3.9). The factor sinzkrr
will again be replaced by its spatial average &,
since these fast oscillations do not play a relevant
role for distances larger than the coherence length.
Only the cosine-integral term of Eo(r) is impor-
tant; all the other decrease exponentially for large
r. Neglecting exponentially small terms, we have
then for E(r}

3+ a 1 z«& sinh(3x/(p)&tri = s& (1+a ) (Orkr .0 x
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T«T, , ~»$, . (4. 16)

Hence, for small temperatures, F(r) is an oscil-
lating function which decreases as 1/r'.

B. Vicinity of the impurity

The spatial dependence in the vicinity of the im-
purity is mainly given by the large-p behavior in
Eq. (4. 7). Expanding the denominator of Eq. (4. 7)
for large p, we have

&p(kz/CE) 27ITgE p(& 'z )
F(P) =Fo(P)+Pa

& (k /& }z2vT~N (nz s)x/zFO(P)

(4. 17)
Calling

2 N

Q2 ~p ~ 2vT Q (4()42 z2)1/2
Kp ff=0

we have that the Fourier antitransform of (4.17}is

F(r) =F0(r) (Q+/8r} dxxFo(x)(exp[- Q ~r -x
~
]

Jp

—exp[- Q(r+x)]] . (4. 18)

The coefficient 0 has only a small temperature
dependence and its value is approximately 02
- Xp(&oo/ez}g. Hence, Q«kz and the expression
(4. 18) can be reduced to

0 1
E(r) E,(r) ~—— dxxz=E, (x) ~

~

dxxE, (x)e ') .
4 p

(4. 19)

Expression (4. 19) shows that the corrections to
Fo(r) coming from the self-consistency condition
contain the factor (Q/kz)z, a.nd are negligibly small
(several orders of magnitude) compared to Fo(r) in
the neighborhood of the impurity. Assuming that
Fo(r) behaves like Fo(r}=A(T) sin kyar/(kyar) for all
r, the integrals in (4. 19) can be overestimated

The integrals can be estimated approximately using
the fact that a function g, which equals Xre ""'
for x ~ 0 and equals 0 for x &0, approaches a 5(x)
function as r tends to infinity. Neglecting terms,
which decrease exponentially, we arrive at

3+cd 42 $ r (o 'I
F(r}= 8 o.' (1+ (P)z zzz

V. SUMMARY AND CONCLUDING REMARKS

f (z) = k(z)/[i G(0, 0; z)SC(z—)],
with

(5.1)

The spatial variation of the superconductor order
parameter in the presence of a classical spin has
been analyzed for large distances from the impurity
and in its vicinity. The distortion in the supercon-
ductor due to the impurity is expressed by the local
deviations of the order parameter from the bulk
value rdF(r}. The Gorkov equation for the one-
particle Green's function has been solved self-con-
sistently with the "gap" equation by taking only
first-order effects in F(r) into account. This is
equivalent to assume that the distortions due to the
impurity are small.

The electron-impurity interaction has been as-
sumed to be given by a contact s-d Hamiltonian.
Only s electrons are scattered by this potential.
The s-wave scattering generates a spatial varia-
tion of the pair potential, which induces a scatter-
ing of other partial waves. This non-s-electron
scattering is taken into account by solving the Gor-
kov equation consistently with the spatial-dependent
pair potential.

In the vicinity of the impurity only s waves are
important and corrections due to a self-consistent
treatment of Gorkov's equation are negligible. The
deviation from the bulk pair potential 4 is of the
form &F(r) =&A(T) sinzkzr/(kryo), A(T) being an
analytic and even function of the exchange coupling
(for a classical spin). The general expression for
A(T) is given by Eq. (3.7).

Far away from the impurity, r» $o, on the other
hand, the spatial variation of &(r) is determined by
the scattering of all partial waves and a self-con-
sistent treatment of &(r) is fundamental. Near the
transition temperature the deviations from the bulk
value vary like 1/r as is expected from the Ginz-
burg-Landau theory. At low temperatures the
variation is oscillatory with period 2x(Q/&os and
decreases as ($0/r)3.

Finally, it should be pointed out that qualitatively
the same results are expected by including the
Kondo effect. For instance, the approximate t
matrix for a Kondo impurity in a superconductor
derived in Ref. 4 can be used

sinzkzr Q 1 1 sin2kzr 4g
(k r}z 4kz 2 4 kgb Qz

K(z) =G (0, 0;z)R(i(& —z )'/ }/vp

and

(S.2}

1
+ [Ci(2kzr) —y —inkier] (4. 20) R(z) =-Z'pw z S(S+1} 2

4 3 g

1+ . T(Jp,z}—
~ 2

F(r) = Fo(r) =A(T) k„r)' '
6g

(4. 21)

As mentioned before, the corrections are negligi-
ble and finally

where

dde )4 —4
——4

J
—1'(—,de, z)I, {4.1)

D 1 . g't 1
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I} " r(2z)
4~rT r(z)r(I+&}

&&F(1, 2x; I+a; 2+iz/4wT) . (5.4)

Here, 1', P, and I' are the gamma, digamma, and
hypergeometric function, respectively, and D is a
cutoff for the electronic excitations. The only
change in Fo(r), given by Eq. (3.7), is obtained by
equating e = z p R(i(& -z„}i ) and by taking a as
frequency dependent. Hence, the spatial variation

of 4(r) in the neighborhood of the impurity is still
given by sin kyar/(kyar) and the only change is in
the factor A(T) and in its temperature dependence.
In the same way it can be seen through Eq. (4. 12}
that no qualitative change is expected for large dis-
tances (r» $0).
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