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We have measured the specific heat near the X transition of pure 'He and of five 'He-'He mixtures

up to a mole fraction of 0.39 'He in "He. Our data for 'He confirm the results of Ahlers revealing an

asymmetry in the exponents above and below T), when the specific heat is represented by a
simple-power-law temperature dependence. Our results for these exponents (a = 0.012 + 0.002 and
a' = —0.012 + 0.004) differ somewhat from Ahlers's. Our results can be reconc'iled with the

requirement of scaling (a = a') only by supposing substantial contributions to C are made by singular

correction terms to a simple power law. The measured specific heat of the mixtures richest in 'He

appears to be finite, continuous, and cusped at the X line. These qualitative features have been termed
"renormalization" by Fisher. An analysis of our mixture data with a power-law, temperature dependence
does not yield a fully renormalized exponent, but rather an effective exponent. We have calculated the
following derivatives at the X line: (gs/BT)[ ~ (g$/BT)) ~, and (dx/oT)( „We have . used these
derivatives to calculate the specific heat along paths of constant pressure and constant relative chemical
potential C». This specific heat behaves very much like C„of pure 'He supporting the idea of
universality for the specific-heat exponents, It is also true that the same asymmetry in the branches
above and below T), which is observed in pure He is retained in the mixtures. The persistence of the
asymmetry of C» as one moves along the X line towards increasing 'He concentration (at the
saturated vapor pressure of the mixtures) is analogous to the persistence of the asymmetry of C~ as
one moves along the X line towards increasing pressure in pure 'He. In both cases a unique
reconciliation of the asymmetry with scaling must await better predictions of the form of the
corrections to scaling. We have used our calculated Cr& to construct the derivative (px/gT)~~ &

hence

paths of constant $ on the x Tplane, as -well as the derivative (Bx/rP)~„, r.

I. INTRODUCTION

The superfluid or & transition of pure liquid 4He

is characterized by the mell-known nearly loga-
rithmic behavior of the specific heat at constant
pressure C~. The classic measurements of Fair-
band, Buckingham, and Kellers~ showed that as
close as 10 6 K to the ~ transition the specific heat
continues to rise and appears to diverge as lnj T
—T,(. In contra, st to the situation for pure He,
early specific-heat measurements at the super-
fluid transition of the 3He-4He mixtures showed no
divergence of C~ at the ~ line. These measurments
had been interpreted to mean that the ~ transition
in helium mixtures is a classical second-order
transition with the specific heat having a, discon-
tinuity. A review of the data available up to 1964
is given by Taconis and de Bruyn Ouboter. 3 More
recently, measurements of the composition of heli-
um mixtures in the liquid and vapor phases in equi-
librium have been made as close as 1 mK to T&. 4

Once again the experimenters concluded that the ~
transition is a classical second-order Ehrenfest
transition with discontinuities in C~„, dj/dT, etc.
(Here Cs, is the specific heat of constant pressure
and constant mole fraction of 'He, x. ) Contrary
to these conclusions, our specific-heat measure-

ments show that at fixed 3He concentration, C~„ is
continuous across the ~ transition. We also find
that C~„ is singula, r, reaching a finite value with
infinite slope at the & transition (see Fig. i). A

preliminary account of this work stating these
qualitative conclusions has been published. ' To the
preliminary account we now add a detailed descrip-
tion of our experiments and the analysis of our data
to accurately extract C~„. We also examine the be-
havior of C~„ in light of "scaling" and "universal"
descriptions of phase transitions. In order to do
this we have calculated C», the specific heat at
constant pressure and constant chemical potential
difference, Q = p.3 —p4. Our measurements extend
to a mole fra, ction of x= 0. 39 and do not explore the
region of the tricritical point where the line of su-
perfluid transitions meets the phase separation
lines. Specific-heat data, near the tricritical point
have been reported in Ref. 6.

The effect of 3He on the superfluid transition of
He can be viewed as an example of renormaliza, -

tion of a phase transition, a, concept first intro-
duced by Fisher. According to this the He is
viewed as a mobile impurity whose concentration
fluctuates in equilibrium with the He system un-
dergoing a phase transition. The impurity gives
the system a new degree of freedom but does not
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FIG. 1.. Specific heat
(at constant pressure and
composition) of some mix-
tures of He in He and the
constant-pressure specific
heat of 4He. The data are
shown on two different
linear temperature scales.
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participate in an essential way in the criti.cal na-
ture of the phase transition. The presence of He
depresses the ~ temperature and affects the coef-
ficients of the specific-heat singularity, but is ex-
pected to leave its asymptotic temperature depen-
dence unaltered; i.e. , the specific heat is ex-
pected to behave just like that of pure 4He. This
behavior is realized under the important proviso
that the measurements be made along a particular
thermodynamic path, which in this ca,se is that of
constant Q, the difference in the molar chemical
potential of the two components. Along the ther-
modynamically conjugate path of constant mole
fraction, x, the specific heat is "renormalized. "
Thus if C» diverges as I T T~(P, Q)I =— 8 ' wh-ere

n&0, then C~„ is finite, behaving as I T
—T„(p, x)I ~'~ ' = f'~" '. (By the symbol 8 we

mean the temperature difference between two equi. -
libri. um states of the helium mixture, one state at
temperature T, pressure p, and chemical potential
difference P, and a second state with the same val-
ues of P and &f& but at the & temperature. Similarly,
t is a temperature difference taken at constant P
and x. ) Our data support the applicability of the
ideas of renormalization to the & transition in heli-
um mixtures, particularly the assumed behavior of

C». Our data cannot be used to extract the asymp-
totic renormalized behavior. This difficult, if not
impossible, task arises from the very weakness of
the singularity in C~ and has been discussed in Ref.
8. Although the term "renormalization" was intro-
duced in a statistical-mechanics context, we shall
see that similar conclusions may be reached from

certain thermodynamic arguments. Indeed, Lipa
and Buckingha, m predicted the qualitative behavior
of C~„which we observe (Fig. l) from just such
a.rguments. Our results can also be considered an
illustration of the general considerations applying
to critical points in multicomponent systems, whi. ch
have been discussed by Griffiths and Wheeler. '

Prior to our measurements on the mixtures we
made control experiments on pure 4He, expecting
to obtain the results of Ref. 1. We actually found
ourselves in slight disagreement with the earli. er
conclusion of a, symmetric logarithmic divergence.
Ahlers has already reported" similar results from
his own measurements on 4He and has discussed
their implications for scaling laws. Our own mea-
surements are of a precision comparable to those
of Ahlers and tend to confirm his conclusions, al-
though differing somewhat in details. We find,
upon fitting to a simple power law data from the
branches of the specific heat C~ above and below
the superfluid transition temperature, the unequal
exponents n = 0. 012 ~ 0. 002 and n' = —0.012 + 0.004,
respectively. This exponent i.nequality or asym-
metry persists in the specific-heat C~, as one
moves along the ~ line towards increasing He mole
fraction. Such an asymmetry is in conflict with the

simplest interpretation of scaling, which predicts
n = n'; however, the persistence of the asymmetry
does support the hypothesis of "universality, " i.e. ,
that the functional form of the specific heat does
not change as an inert variable (such as 'He con-
centration) is changed. To reconcile the C» cal-
culated from our data with scaling, one must sup-



12 SPE CIF IC HEAT OF 'He AND 'He-'He MIXTURE S AT. . . 95

II. THERMODYNAMICS AND RENORMALIZATION

In the presence of He the locus of superfluid
transitions, which for the pure system had been a
li.ne in P-T space, becomes a surface. This sur-
face i.n P, T, x space can, however, be reduced to
a line if one considers the pressure to be fixed or,
as is usually done, the pressure to be the saturated
vapor pressure of the mixture. The complication
of the extra dimension can thus be avoided and all
of the thermodynamics developed for ~ lines' can
be used for the mixtures. Formally one can start
from the differential of the molar Gibbs free ener-

dg = —s d T+ v dP + p g dx + p 4 d(1 —x)

where s and v are the molar entropy and volume
and p, , and jU, 4 are the molar chemical potentials.
Introducing the relative chemical potential P one
has

dg= —sdT+ vdp+ p dx, (2)

with Q being the variable conjugated to the concen-
tration. At constant pressure, Eq. (2) becomes
analogous to the differential of the Helmholtz free
energy of a, one-component system with the identi-
fication Q to —p and x to v. One can then readily
write down a relationship between C~„and C» which
is implicit in the work of Ref. 12:

BT ptBT pt BT pt BT pt
BS Bx 8$

The partial derivatives at constant t are along a
path which at constant pressure is parallel to the
& line in x-T space. Equation (3) is a very conve-
nient way of relating an easily measured specific

pose that there exist singular correction terms to
the power-law behavior of the specific heat at the
& line. These terms must contribute significantly
to C» even in the temperature region closest to T&.

The rest of this paper is organized as follows.
In Sec. II we discuss some of the relevant thermo-
dynamics of the X transition for mixtures. Here
we also present the results of our computing de-
rivatives along the ~ line which were found neces-
sary for later analysis. In Sec. III we present de-
tails of our apparatus and the experimental proce-
dure. The data are then discussed and analyzed in
Sec. IV. Here we calculate the specific heat C~ for
pure 4He and the specific heat C~„ for 'He-4He mix-
tures. In Sec. V we calculate C» and discuss it in
terms of scaling and universality. In Sec. VI we
compute the derivatives (ax/aT)!~, ~ and (Bx/Bp)l~ r.
The paper ends with Sec. VIII, in which we sum-
marize our results.

heat C~„ to another, C», which is less accessible
via derivatives which have a weak temperature de-
pendence near the transition. Indeed, it is a good
approximation in a small enough temperature
neighborhood near T& to use the value of these de-
rivatives at t =0. We indicate these derivatives at
1=0 by the subscript &, i.e. , (Bs/BT) l~ ~. The
pressure is explicitly indicated as being constant
in Eq. (3). In practice, however, when calculating
the derivatives along the & line ("&derivatives")
one makes use of data obtained with liquid and va, -
por coexisting. If these data are taken (as is fre-
quently the case) as a function of temperature in a
constant-volume system nearly filled with liquid
but with the vapor phase present, the data are along
a unique path in T-P-x]gq 'd space. This path is
nearly a path of consta, nt x, fq„fd at saturated vapor
pressure, but not quite, because the vapor and
liquid concentrations differ, leading to a change in
liquid composition as the vapor pressure changes
with temperature. In our region of interest these
differences are unimportant. For instance in the
range of our measurements at any given concen-
tration the vapor pressure varied by about 1 mbar,
while the vapor pressure itself was about 50 mbar.
This small a variation has a negligible effect on
any of the thermodynamic derivatives. In Table I
we have listed estimates of these ~ derivatives. To
obtain (Bx/aT) l~ & we have differentiated the data on
the & transition as a function of concentration com-
piled by Sydoriak and Roberts. " For (as/a T) l~,
we have integrated the available heat-capacity
data. ' up to T& at several mole fractions. The
resulting entropy-mole-fraction curve was then
graphically smoothed and differentiated. For (B&f&/

BT) l~ ~ we have used the expression"

e(P, T, x) = po(P0, T) —pQ(PO, T)

+ RT ln [x/(I —x)]+ p (T, p, x), (4)

where p, o and LtLO are, respectively, the chemical
potentials of pure 'He and 4He evaluated at their
respective pressures corresponding to the temper-
ature T. The excess chemical potentials were ob-
tained from the work of Roberts and Swartz. " To
obtain (ap/BT) l~ ~ from Eq. (4) we used the identity

ap Bp ap aT ax
+ 5BT pg Bx pr BT p„ax pq BT

The relationship between C» and C~„of Eq. (3)
is also useful to examine the renormalization ideas
discussed in the Introduction. Except at x=0 where
(ap/BT) l~, diverges as 1/x, all the & derivatives
are finite along the ~ line. Furthermore, we note
that the coefficient of C~„ in the numerator of Eq.
(3) is always positive; hence the quantity

Bs ax Bp
max )t (5)BT p )t BT p gBT p
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TABLE I. Our estimate of the A,-line parameters at various mole frac-
tions. These are the parameters used in the data analysis.

0. 0110
0. 0997
0.200
0.301
0.39
0.53

2. 157
2. 027
l. 872
1.700
l.532
1.223

~X

B& p, x

(K )

—0.714+ 0. 007
—0.667+ 0. 006
—0.621+ 0. 006
—0.559 + 0. 006
—0.500+ 0. 005
—0.424' 0. 004

8$
B& px

(J mo]e K )

—1200+ 21
—140.7+ 2. 6
—69.7+ 1.6
-42.5+ 1.2
—30.1+ 0. 7
—16.6+ 0.5

~s
B& A.x

(Jmole" K )

—20. 9+4.2
—13.9+2.6
—7.6+2.3
—3.0+2. 2
+0.15+1.5
+2.34+ 0.5

must form the upper bound for Cp„. Were Cp„ to
exceed this, we would have a, negative C», in vio-
lation of thermodynamic stability. That Cp„cannot
diverge all along a line of second-order phase tran-
sitions has been shown rigorously by Wheeler and
Griffiths. ' From thermodynamics there are no

such restrictions on C». It is clear, however,
that if Cp„reaches its upper bound then Cp~ will be
infinite. The way it diverges is a matter of con-
jecture. If one assumes C»-0, Q. &0, then one
can readily show that Fisher's renormalization re-
sult, C~„-f ~" ', follows from Eg. (3) and the

fact that one must also have (Bx/aT) I ~ o
-8 '. The

latter is obtained from the identity

To show how Cp„ is renormalized one expands Eq.
(3) in terms of 1/C~o which immediately yields the
leading term Cp~„™0, where we have indicated by
the superscript that this is C~„along the path P
=const. The path correction to bring Cp„ into Cp„
can be done using Eq. (7) and results in C~„-f"'" ".
This procedure is outlined in Ref. 7 and we will
come back to it in Sec. V, where we concern our-
selves with the reverse process of taking Cp„ into

Cp~. It becomes clearer now why the renormaliza-
tion exponent n/(1 —n) is so hard to measure. The
exponent appears in the leading term of a series
whose convergence is determined by the strength
of the divergence of C». The divergence of C» is
nearly logarithmic. This is so weak that the fully
renormalized Cp„occurs in a, region so close to T,
that it is experimentally inaccessible. Thus for a
full test of renormalization, it would be much bet-
ter to measure the assumed most divergent ther-
modynamic derivatives [(sx/sT) l~, ~, etc. j and to
test directly the conjecture that no matter where
one crosses the ~ line these derivatives show the
same nearly logarithmic divergence as does Cp in
pure 4He. Our own approach to the question of re-
normalization is to use Cp„ to construct C», as we
will do in Sec. V.

III. APPARATUS AND EXPERIMENTAL PROCEDURE

A. Calorimeter

A good calorimeter should have small heat ca-
pacity relati. ve to the sample being measured; it
should be built of high-conductivity material to en-
sure isothermal conditions; it should be well iso-
lated from its surrounding; and in our specific
case it should be so constructed as' to allow quick
changes of sample. The calorimeter shown in Fig.
2 satisfies all these requirements and incorporates
an arrangement briefly described in Ref. 5 in which

a. needle valve is made part of the calorimeter.
This feature allows one to seal the calorimeter
chamber and evacua, te the connecting capillary.
Troublesome effects due to the superfluid film
flow or to part of the sample being in the filling
capillary are thus eliminated.

The calorimeter consists of two pieces of oxy-
gen-free high-conductivity (OFHC) copper held to-
gether by eight screws. The vacuum seal is made
with a 0.075-cm indium 0 ring. When the sample
is condensed through the filling capillary, it re-
sides in slots cut into the calorimeter bottom. '
In this arrangement the condensed sample is at no
point farther than 0.035 cm from a copper surface.
Two bottoms were used in the course of the experi-
ment. The calorimeter with the slotted bottom
piece, calorimeter (1), had a volume of 1.998
+ 0. 002 cm and was used for measurements on ~He

and on the mixtures with mole fractions 0.0110,
0.0997, 0. 2000, and 0. 390. Calorimeter (2) used
an unslotted bottom piece and had a volume of
1.305+0.001 cm3. It was used for measurements
on 4He and on the mixtures with mole fraction
0. 30. The heights over which the liquid extended
in these calorimeters were 0. 35 and 0.1 cm, re-
spectively. The performance of the two calori. me-
ters was identical except for a, slight difference in
the relaxation times. Calorimeter (1) had a re-
laxation time both above and below T~ less than the
time constant in the thermometer circuit, 0.3-3
sec. Calorimeter (2) performed in the same way
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FIG. 2. Schematic representation of the caloriIneter
in the vacuum can. The screwdriver (5) and counter-
torque (6) are used to cool down the calorimeter as well as
to operate the needle value assembly (3). Other parts
indicated are calorimeter bottom(l), resistance thermorn-
eter (2), filling capillary (4), flange of vacuum can (7),
heater (8), and nylon support, thread (9).

for the measurements on 'He but had a noticeable
time constant of about 3-5 sec for the measure-
ments on the mixture. This time constant was of
no consequence.

The needle value assembly is located on top of
the calorimeter and sealed to it with an indium 0
ring. The needle of this valve was machined to
size from a standard valve stem. The stem is
soldered into a carefully machined "guide, "which
allows the needle to move up and down without
turning or becoming misaligned. The guide is
soldered to a small commerically manufactured~0
bellows which serves as a stem seal (or packing)
and prevents rotation. The guide is translated
with a modified screw arrangement. The screw is
captive on top of the calorimeter assembly, and
engages a threaded hole in the top of the guide. To
translate the guide a slotted screwdriver is low-
ered and turned. The calorimeter is suspended on
nylon strings, for good thermal isolation. Thus
the operation of the needle valve necessitates the
use of a countertorque. This countertorque en-

gages in three holes on top of the valve assembly
and holds the calorimeter while the screw is being
turned. Since no exchange gas is used inside the
vacuum can, the calorimeter is cooled by making
mechanical contact with the countertorque. The
countertorque itself is thermally connected with
fine copper wires to a post extending from the
flange in contact with the surrounding He bath.
The screwdriver is also cooled with a similar ar-
rangement. The flange and the vacuum can are
immersed in a 4He bath whose temperature is elec-
tronicnlly controlled at a temperature below the
calorimeter's.

A heater with a resistance of 567. 2 0 is wrapped
on the bottom of the calorimeter and cemented to
it with Ge 7031 varnish. This heater is made of
Manganin~' wire and is provided with two current
and two voltage leads. A germanium resistor32 is
used as the main thermometer and is fitted snugly
in a hole drilled on top of the calorimeter. This
resistor consists of a germanium crystal encap-
sulated with 1 atm of 4He as exchange gas. The
capsule itself is placed in good thermal contact
with the calorimeter by using a film of Apiezon N
vacuum grease. All electrical connections made
to the calorimeter are through superconducting
niobium-zirconium wires which are thermally an-
chored to posts on the flange. These wires have
been stripped of their copper coating except at the
ends, which had to be soldered. The bare sections
were electrically insulated with GE 7031 varnish.
Because superconducting leads are used there are
no corrections necessary for heat generation in the
leads. The heater was in sufficiently good contact
with the calorimeter that the leads did not warm
above the superconducting transition temperature.
We could not detect a dependence of the measured
heat capacity upon the rate of heat input or total
time of heating.

When the calorimeter is isolated by raising the
screwdriver and the countertorque, the measured
residual thermal conductivity to the bath was 8
x10 ' W/K. Almost all of this is due to the stain-
less-steel filling capillary, with minor contribu-
tions from the electrical leads and the nylon
strings. A constant heat input of about 3.5x10 '
W was also measured, and is probably due to radi-
ation down the stainless-steel tubes which escaped
the radiation traps. The current through the ger-
manium resistor is an additional source of heat,
which varied from about 1 to 0. 1x10 ~%. All
these heat inputs are balanced during the experi-
ment by having the surrounding bath at a lower
temperature than the calorimeter. It was found
that for taking data one could keep the calorimeter
at a "constant" temperature, i.e. , with drifts of
10 9-10 '0 Kjsec for periods of several hours. To
achieve this the 4He bath was regulated in a range
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of ~ 30 p.K for the length of a whole run, i.e. , 5-
6 h. An auxiliary heater on the calorimeter could
also be used as a fine adjustment to regulate the
temperature drifts. It was wrapped around the
body of the needle valve and provided heat inputs
at a rate of 1.0-0.01 x10 7 W.

B. Toepler pump and gas-handling system

The samples of He and 'He- He mixtures were
prepared Bt room temperature using the Toepler
pump shown in Fig. 3. When a sample of a gas is
introduced in the pump one can read its pressure
and temperature. By using the precalibrated vol-
ume of the pump itself, one can then determine the
amount of gas in the sample. The volume of the
pump between the upper and lower calibrated bu-
rettes was measured by filling the pump with dis-
tilled water and decanting it into volumetric flasks.
The volume thus measured between two fiducial
marks on the lower and upper burette sections was
775. 8+ 0. 3 ml. The over-all capacity of the pump
including the calibrated upper and lower sections
is about 900 ml.

The thermometer shown in Fig. 3 is graduated
at intervals of 0.02'C and can be read to 0.01'C.
To avoid rapid changes of temperature the Toepler
pump is enclosed in a wooden box which is outlined
in Fig. 3. The front of the box is closed with a
panel of clear plastic. The pressure is read on a
Texas Instruments precision gauge model 145.
This gauge measures pressures from 0 to 1000
Torr with a claimed absolute accuracy of ~ 0. 05
Torr and a resolution of 0.01 Torr.

The gaseous sample of 4He was taken from a
storage Dewar containing liquid He. An ev3cuated
tube with a rubber stopper in one end led from the
Dewar to the manifold. When the stoppered end of

the tube was immersed in liquid 4He, it began to
leak. Some of the liquid 4He which entered the tube
through the leak was evaporated to make the gas
sample. This method of obtaining a sample makes
it virtually free of impurities, with the exception
of the isotope 'He present at a concentration of
-0. 1 ppm. The 'He gas used to prepare the mix-
tures had an isotopic composition of 99.9 at. % 'He,
0. 1 at. % ~He, and traces (-2x10 ~o at. %) of triti-
um (according to the supplier~4).

The manifold on top of the Toepler pump shown
in Fig. 3 has lines labeled "to gas storage" and
"to condensing line. " The former leads to a 2-l
glass flask where the mixtures are stored, and the
latter leads to the calorimeter. The additional
line labeled "pressure line" leads to a vacuum pump
or to a gas tank at pressure higher than atmospher-
ic. Using this line, the mercury level can be
raised or lowered to any desired position.

The gaseous mixtures are prepared in the follow-
ing manner: A sample of 'He is taken from the
supply tank and put in the 2-1 storage flask at a
pressure P„He is then introduced into the flask
up to a final pressure I'. If the temperature has
not changed in this process then the He mole frac-
tion is given by x= P, /P. The mole fraction of the
gaseous mixture prepared this way is known to bet-
ter than 0. 1%. After condensing these mixtures
into the calorimeter, their measured ~ tempera-
tures agreed with values from the literature" with-
in the error of our temperature scale, ~ 2 mK.
This was a good check on the preparation of. the
mixture, and an indication that no fractionation of
the two isotopes had occurred while condensing
(which was always done above the & temperature).
For the measurements of constant-volume specific
heats the condensing procedure was altered to the
extent that the calori. meter was overfi. lied and the
liquid rose about 30 cm along the condensing line,
thus encountering a significant temperature gradi-
ent. A small amount of fractionation did occur in
this case.

Calibrated Burette

Thermometer

Pressure Line ~=™-=-

Mercury

Calibrated
Burette

Box for Thermal
Isolation

FIG. 3. Toepler pump for gas handling. This system
was used to prepare the mixtures and measure the num-

ber of moles in the calorimeter.

C. Electronics

The circuit to provide a measured heat input into
the calorimeter consists of a power supply~' to which
a known resistor is connected in series with the
heater on the calorimeter. The voltage across the
resistors is measured with a differential voltme-
ter, ~6 thus giving the power input. To obtain the
total energy a timer ' is triggered to measure the
time interval when the voltage is applied. The
measurements in the heating circuit never give a
significant contribution to the error in the heat
capacity, Typically, the error contribution from
this source is 0.1-0.01 of the error contributed
from the measurements of temperature intervals.

The calorimeter temperature is determined by
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measuring the resistance of a germanium thermom-
eter. The ac bridge used is shown in Fig. 4. A

signal from the oscillator drives the bridge through
the 6:1 transformer. ~' The voltage drop across
the germanium resistor is then compared through
a 1:1 isolati. on transformer with a fraction of the
voltage across the standard resistor. The differ-
ence between these two signals is fed to a pream-
plifier and a lock-in detector. 3~ Its output is then
displayed on a chart recorder. ' The bridge is
operated almost always near balance, and hence
the ratio-transformer voltage output is nearly
equal to the voltage across the germanium resistor.

For this particular bridge the frequency stability
of the oscillator is important. At a frequency of
430 Hz while measuring a 5000-Q unknown and us-
ing a 10000-0 standard, we measured a frequency
dependence of 0. 06 0/Hz, corresponding to 10 p, K/
Hz. The amplitude stability is also important
since at the power levels used (-1.0-0. 1 erg/sec
across the germanium resistor) the temperature
of the resistor is higher than the temperature of
the calorimeter. This self-heating was measured
to be 300 pK/(erg/sec).

The ratio transformer has seven decades of res-
olution. Only six of these decades were used in
the experiment, and in none of the measurements
was the accuracy of the ratio transformer a limit-
ing factor in the ultimate accuracy of the data.

All components of the bridge were carefully
shielded and thermally insulated to ensure maxi-
mum stabi. lity. At the start of the experiment the
stability of the bridge was checked over a period
of 15 days by measuring the resistance of the ger-
manium thermometer at the ~ transition of pure
4He. Although the data from day to day scattered

within a 15 p, K no systematic drift was observed.
At the end of the first five months of data taking,
however, a shift in the ~ resistance corresponding
to approximately —100 p, K was measured. Five
months later a similar shift was again observed.
This is presumably an "aging" effect of the germa-
nium thermometer or perhaps the standard resis-
tors in the bridge. If this drift were uniform in
time it would imply that in a typical run the A. re-
sistance would drift by an amount corresponding to
0. 1 p, K. Such a drift is unimportant because it is
at the limit of temperature resolution wi. th a ther-
mometer power level of 1 erg/sec.

D. Calibration of germanium thermometer

The germanium resistor was calibrated against
the vapor pressure of He. 4 This calibration was
done by having the germanium resistor in good
thermal contact with the He bath via He exchange
gas in the vacuum jacket. Simultaneous measure-
ments of resistance and bath vapor pressure were
then made. Two resistors were calibrated this
way. Both resistors (identified by the manufacturer
as Nos. 614 and 1019) were on the calorimeter, as
indicated in Fig. 2 (only one is shown there). The
resistance of No. 1019 was measured using the
same dc potentiometer arrangement used in the
measurements of the heating circuit. The temper-
ature range covered was between 3. V and 1.8 K.
Subsequently, in a separate experiment, ' this
range was extended to 1 K by using the vapor pres-
sure of liquid SHe as a thermometric standard.

Thirteen data points taken this way were fitted
to the function

N

1 ~
log, oR= T ~ An(log, oR)" r

n=0
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Helium
Dewar Lock-in Detector

Germanium
Resistor
on
C

Chart Recorder

FIG. 4. Schematic of the ac resistance bridge used in
conjunction with the germanium thermometer.

where 8 is resistance and T temperature. Six co-
efficients provided a satisfactory fit over the whole
temperature range with a scatter of less than
+ 0. 002 K. Resistor 1019 had been precalibrated
by the manufacturer and good agreement was found
between this calibration and our own. Other func-
tions were tried in place of Etl. (8) but made no
significant difference in the closeness of the fit.

It was very important for our measurements that
the derivatives dR/rf T and d2R/d T' be accurately
established as well as R(T). The first derivative
enters as a multiplicative factor in computing the
specific heat, while the second derivative makes
the major curvature contribution; i.e. , the change
in dR/dT with T, if not accurately measured, would
contribute an extraneous temperature dependence
to the specific heat. For these reasons there is an
optimum number of parameters which must be used
in Etl. (8) so that one does not overfit, i.e. , obtain
good agreement with the input data at a cost of a
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very "wiggly" R versus T. We found that using
five, six, seven, or eight parameters in Eq. (8)
gave us good fits with dR/dT varying by -0.4% and
d R/dT~ by 2/0. These derivatives also agreed
with those obtained using the manufacturer's cali-
bration within the same percentage. By assuming
that the variation of d~gdT with the number of
parameters used is representative of the errors in
our knowledge of this derivative, we estimate a
systematic error in heat capacity of 0.04% in going
from T, to T&+0.01 K. Similarly, the error in
dR/dT implies that the absolute value of the heat
capacity is uncertain by 0.4%. This latter error
is irrelevant to our main objective of measuring
the temperature dependence of the heat capacity.

To take data we used resistor No. 614 with the
ac bridge shown in Fig. 4. When this bridge is
balanced the ratio-transformer setting is not at the
same ratio as one would measure with a dc bridge.
This is a result of the way the capacitance and in-
ductance across the unknown and standard resis-
tors enter into the conditions for balance. For in-
stance, a 5000-0 resistor being measured by this
bridge at 430 Hz and using a, 10000-0 standard
would be balanced at the ratio 0.5011. For this
reason, resistor No. 614, together with the ac
bridge, was calibrated against the dc measure-
ments of No. 1019 near the ~ temperature of each
mixture studied. Thus a secondary temperature
scale was obtained at each concentration which was
used for the computation of the heat capacity. Re-
sistor No. 1019 functioned as a transfer standard
from the primary vapor-pressure calibration to
the working thermometer, resistor No. 614.

E. Determining volume of calorimeter

The heat capacity of interest at the ~ line is C~„
for the liquid mixture. A calorimeter which is
very nearly filled with liquid will follow very close-
ly a path of constant pressure and liquid concentra-
tion. The actual measured heat capacity has, how-

ever, contributions from the vapor phase and from
the process of vaporization and condensation. To
determine these contributions it is necessary to
know the volume of the liquid and the volume of the
calorimeter.

To determine the calorimeter volume we filled
it completely with 4He at about 1.4 K at a pressure
just above the saturated vapor pressure. We closed
the needle valve and warmed the calorimeter up to
2. 5 K. In this temperature range the liquid's mo-
lar volume under its vapor pressure first decreases
and then increases. The helium in our calorim-
eter goes from a one-phase region to a two-phase
and back to a one-phase region. These transitions
are marked by a. jump in the heat capacity given by

BP Bv
'

svg v
v

,
svy

C=AT+BT3 . (10)

The coefficients A =0.00421 (0.00453) JK ' and 8
=0.000312 (0.000325) JK s were obtained. The set
of numbers in parentheses refer to the second cal-
orimeter heat-capacity data were fitted to Eg. (10)
the scatter of the points was less than 2%. The
calorimeter heat capacity was always less than 1/0
of its contents, and hence the errors in the mea. -
surement of the calorimeter heat capacity do not
contribute significantly to the errors in measure-
ment of the heat capacity of the helium.

G. Procedure

The samples of mixtures were condensed above
their ~ temperature to avoid fractionation. The
amount condensed was such as to have a very near-
ly filled calorimeter near T&, thus avoiding large
vaporization corrections.

After condensing the needle valve was closed,
and any liquid remaining in the filling line pumped
out. After this, the calorimeter was isolated by
raising the mechanical heat switch (see Fig. 2).

To determine the ~ temperature and plan a run,
we let the calorimeter drift through the ~ transition
and observed the temperature on the chart record-
er. With constant heat input the slope of the trace
on the chart recorder is a measure of the recipro-
cal of the heat capacity. A sudden change of slope
in a very narrow temperature region is the indica-
tion of the ~ temperature. Having identified this
temperature, the taking of data is planned so tha, t
one converges on the transition using successively
decreasing temperature intervals. Typically, four
to seven data points are taken for each temperature
decade away from T,. The temperature resolution
limits the data severely in the 10 -10 decade;
for this reason temperature intervals smaller than
about Sx10 K were never used. Often when sev-
eral runs were made on a particular sample, the
size of the interval used in a particular decade was
varied and no dependence of the heat capacity upon
this interval size was observed.

Data were taken by observing the drift for sever-
al minutes, heating for a time interval of about 1
min or longer, and then observing the drift again.

In a typical case this jump was a few percent of the
saturated-vapor-pressure specific heat (C„,), thus
easily observed. We readily obtai. ned the calorim-
eter volume by measuring the temperature at which
the jumps occur and the number of moles in the
calorimeter and by using the molar volume-tem-
perature data of Kerr and Taylor. 36

F. Heat capacity of empty calorimeter

The heat-capacity data of the empty calorimeter
were measured in the region between 4 and 1.5 K.
They were then fitted to the function
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TABLE II. Hesults of fitting the data for C» to the
power-law expression, Eq. (12).

+l-
Q-

—I—
ee oeeeee e e ~e

I I e

X=0.590

0. 0000
0. 0110
0. 0997
0. 200
0.301
0.390
0.530

0. 0000
0. 0110
0. 0997
0. 200
0. 301
0.390
0.530'

0. 012 026 + 0. 0036
0. 033 70 + 0, 01
0. 093 94+ 0. 0038
0.1559+ 0.0081
0. 1713+0. 0078
0, 1717+0. 0129
0. 2773

+0. 012 458+ 0. 0028
+0. 016 19+0. 0083
—0.033 67+ 0. 0037
—0. 0891+0. 0054
—0. 1584+ 0. 0044
—0.2047+ 0. 0046
—0.3053

(J mole" K"l)

5.717+ 0. 15
6.318+0.44
6. 046 ~ 0. 14
4.991+ 0.20
2. 761+ 0. 11
1,446+ 0. 084
0.593

A
(Jmole- K ')

4. 923+ 0.10
4.655+ 0.28
4. 892 + 0. 13
4. 531+ 0.15
4. 423+ 0. 10
3.194+0.072
2. 649

gl
(Jmole 'K- )

12.791+ 0.56
10.229+ 1.61
8. 684+ 0.48
8.428+ 0. 72

10.714+ 0.39
10.794+ 0.30
8. 959

8
(Jmole" K- )

—6.256 + 0.38
—5.209 + 0.48
—4.351+l. 0
—l.617+ 0.44
—0.585+ 0. 55
+2. 872+ 0. 25
+2. 755

0
Q peewee e e

I

X=0.30(

z' +2
O

«f Q-
hJ

2

X = 0.0997

e e ~
e

0 I ~

I—

C3
U3

CL
tLj
o. 0—

X=0.OI IO

~ 1 ~ e
I

e 0 ~ 4
I I

X = 0,0000

2
X= 0,200

0 ~ e 0 ~ 0
Q e ee h

0

~Data from T. A. Alvesalo, P. M. Berglund, S. T.
Islander, G. 8,. Pickett, and W. Zimmermann, Jr, ,
Phys. Hev. A 4, 2354 (1971); VV, Zimmermann, Jr.
(private communication).

The total temperature change for a data point can
then easily be inferred from the bridge readings
and the drifts extrapolated to the middle of the
heating interval. The temperature drift of the cal-
orimeter could be adjusted to between 10 and 10 '
K/sec by heating with the auxiliary heater and ger-
manl. um thermometer while simultaneously regu-
Iating the helium bath at about 1.3 K to provide a
negative heat input.
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O
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FIG. 5. Power-]. aw parameters ~, ~', A. , and A' for
pule IIe Rs R function of the maximum range of datRRwRy
from Tz used in the computer fit.
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FIG. 6. Percent deviation of the specific heat at con-
stant mole fraction for T & T& when fitted to a power-law
temperature dependence, Eq. (12). Data for tempera-
tures farther from T& than those shown here deviated
systematically from the fitted function.

Upon completing a successful run, the mixture
was removed from the calorimeter and measured
with the Toepler pump.

IV. DATA AND DATA ANALYSIS

%e have made 165 separate specific-heat mea-
surements on pure 4He and 433 measurements on
3He-4He mixtures. The raw data are available
from one of the authors (FMG) and are tabulated in
Ref. 3V. Here we have chosen to present the de-
rived specific heat, C~„. This specific heat i.s of
greater physical interest and only slightly removed
from the raw da.ta, in the range I T- T), ~ &0.01 K.
A quantitative representation of C~, is given by the
power law, Eq. (12), together with the &-line pa-
rameters listed in Table I and the coefficients and
exponents listed in Table II (and graphed in Fig. 5).
The precision with which the power law represents
the data, is evident from the graphs of deviahons
shown in Figs. 6 and 7. The qualitahve features
of C~„are evident in Figs. 1, 8, and 9.

Thi.s section is divided into two subsections, one
deabng with pure 4He and the other with 3He-4He
mixtures. In each subsechon we first concern our-
selves with the relahonship between the measured
specific heat, C„, and the specific heat C&„(or C~
in the case of pure 4He). We then describe the
procedures we have used to obtain algebraic repre-
sentahons for these specific heats for further use.
Section V is concerned with the implicahons of our
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data, in terms of "scaling, " "renormalization, " and
"universality. "

A. Data on 48e

1. Obtaining C~. The specific heat measured in
our experiment is very nearly C~. The measure-
ments contain contributions from the calorimeter,
the vapor in equilibrium with the liquid, a,nd from
the process of vaporization. In addition, the liquid
follows a path in temperature along the coexistence
curve which is not at constant pressure. The con-
tribution from the calorimeter is readily subtracted.
This leaves R specific heat which we call C . Cor-
rections from the vapor and vaporization can be
made using the formula

80—

60-

CD

O
E
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40—
C3

1 I

XeQOOOO

X =0.0110 ~ ~

X=0.0997

X=0.200

~ ~ ~
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(1/nI)C„—C~ Bv, dp s, -s„n—n, ds„

(11)
which involves the first three terms of the more
general equation derived in the Appendix for the
case of mixtures. (Here n, is the number of moles
in the liquid pha, se, s, is the molar entropy of the
liquid phase, etc. ) Equation (11) was first derived
in Ref. 38 and is a special case of a more general
equation derived in Ref. 6. Although the first term
on the right-hand side of this equation has the same
singularity as C~, it is small in magnitude. The
other two terms are small in virtue of the high
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least-squares-fitting procedure to the power-law tem-
perature dependence, Eq. (12). For clarity the data
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moved up the same amount.

0 — reer/ ~ ~ ~ ~ ~
I I

X=0.390

X = 0.0000

+l—
0 — ~ r 5+ ~ ~ ~~ ~ ~ ~ ~

-I—
I

X = 0.200

r
~ ~

~ ~ ~

Xr0.30'

X=

e ~ I

+2 X =0,0997Z
O
I-

)
LLj

O
+2 — X= 0.0l lo

Z
LJJ0 0 — ~ ~

LLI

Q I

0 r ~ ~
I

~ ~ ~ '~ ~
I I

~ ~
~ ~ ~

~ ~

X= 0.0000

0 — r + + rr ~ ee re ~ ~ r ~
0

2 I I

40—
e

aI
0

—X=Q0997
In

0
X

X=0,200

Xr Q.50l

X=0.590

~ ~

~e
~ ~

~ ~

~ ~
~e

~ ~ e ~ r ~
~ ~ ~e ~ r ~

~ ~

~ ~
~ ~ ~ ~~ ~

A
Ie

ee

1e
r

~04+ Jgre~g+r '~ og Q ~ '~~ ~
~ r ~

0
106

I

IO-5
I I I

IO-4

I I-T/T„l

I I I

IO-~ 102

-3 -4
Log It/T), I

-5

FIG. 7. Percent deviation of the specific heat at con-
stant mole fraction for T &T& when fitted to a power-law
temperature dependence, Eq. (12). Data for tempera-
tures farther from T~ than those shown here deviated
systematically from the fitted function.

FIG. 9. Specific heat at constant mole fraction for T
&T&. The A, temperature for this graph was chosen by a
least-squares-fitting procedure to the power-law tem-
perature dependence, Eq. (12). For clarity the data at
g =0.0110 have been shifted down 5 J/mole K, while the
data at the other four mole fractions have been shifted
down 10 J/mole K.
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liquid-filling fraction. The total contribution of
the right-hand side of Eq. (11)varied between 0.02
and 0. 2% of C in the region where the data were
analyzed. These corrections were used prior to
further analysis. The correction of the data from
C~ along the coexistence path to C~ along the path
P =I'„ is less than 0. 01% and hence totally negligi-
ble.

(2) I'itfing data. Our early interest in pure 4He

was simply to provide a control experiment for the
measurements on the mixtures. These data, how-

ever, showed an interesting asymmetry between
the branches above and below T„, indicating that
the conclusion of a symmetric, i.e. , equal, am-
plitude logarithmic divergence from the data of
Ref. 1 was not correct. Shortly after our measure-
ments Ahlers published his own data on He at sat-
urated vapor pressure" and later at higher pres-
sures. ' He has discussed these data and their
implication to scaling and universality. We have
fitted our data to the function

Cq = (4 /n ) (e —1) + B, (12)

where c = f/T~ and—the parameters A, n, B were
allowed to take different values above and below
T~. In the latter case, as has become customary,
we denote these parameters by primes. The X

temperature itself was treated as a variational pa-
rameter. As an alternative to Eq. (12) we tried
explicitly to have both n and n zero using the
form

C& = —Aln& yB . (13)

If, as &-0, the specific heat has the functional
form of Eq. (12), scaling predicts n = o. . If the
specific heat has the functional form of Eq. (13),
scaling predicts ' ' '& =A . In the computer anal-
ysis we actually used the integrals of Eq. (12) or
(13) and compared them with the heat added to span
a given temperature interval. Using this procedure
one avoids curvature corrections associated with
the assignment of a temperature (usually the mid-
dle of the heating interval) to a heat-capacity point.
There were no gravitational corrections made to
the data. These corrections would be negligible
except for data which spanned the transition, and
in some cases with calorimeter (1), a data point
on either side of T~. These points were omitted
from the analysis. To fit the data to Eqs. (12) and

(13), we weighted each point according to the ex-
pected random error in the heat capacity, which is
0. 1% for temperature intervals &T ~ 10 K and
grows progressively larger for smaller intervals
due to the temperature resolution of about 10 K.
The weights were

1

0. 001Cq+ 10 ~Cq/&T
for b.T & 10 4 . (14)

We used a standard error analysis 2 to determine
the variance in the parameters in Eqs. (12) and

(13), with the exception that we expanded Eq. (12)
for n small and used

C~ b=, + b~ In&+ b, (In@)~, (15)

where b, =B, bz= —A. , and b, = —,'An. Also, in this
calculation of the variance we took T~ as fixed,
while in fact it is a variational parameter. We
made several different numerical experiments to
assure ourselves that the error in this approxima-
tion for computing the variance in n, A, B and n,
A, B is not serious. The variances of b „b~,
and b, in Eq. (15) are given as the diagonal ele-
ments of the error matrix, which is the reciprocal
of the matrix whose elements are

n, , = Q m, (Inc„)' '(Ine, )' ',

B. Data on mixtures

where i,j = 1, 2, 3 refer to subscripts of the b's in

Eq. (15) and b runs over X data, points.
Four sets of data on 'He were fitted simulta-

neously to Eq. (12). A total of 10 parameters
were varied to achieve an optimum fit. They were
T„ for each of the four sets, a, n', g, 4', B and
B'. In Fig. 5 we show the values of the parame-
ters n, A, n' and A' as a function of the range of
data, &,„, used in the fit. Thus the point in Fig.
5 at &,„=10 means that only data in the range 0

10-' are used. A decade of &,„ from 6 x 10
to 6 x 10 was explored this way. The number of
data points included for logjpem, „=2. 2 and —3. 2
was 132 and 91, respectively, decreasing by about
10 at each successive value of g ~. At logy06
= —2. 2 the deviation of the data from Eq. (12) is
systematic; for log|or,„(—2. 45 Eq. (12) fits the
data well. Although the variations in the parame-
ters in Fig. 5 seem to indicate a slight range de-
pendence for logyp& ~~ —2. 45, we note that these
variations are all within the expected error, as
computed from the error matrix. The results for
e ~= —2. 45 are listed in Table II and the deviation
of the data from the fitted function for g,„=—2.45
is shown in Figs. 6 and 7. It can be seen from
this figure that Eq. (12) fits the data well with no
evidence of systematic deviations.

In every case we studied, we found that the vari-
a ion of the "best-fit" T„as a function of &,„
amounted to less than +3x10-~ K. This confirmed
our assumption that the data determine T~ with
great precision.

0. 001C~
for &T) 10" 1. Obtainieg C~„. Before proceeding with a

more detailed analysis we have to verify how close
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dP Bx~x v —v —-s +sdT BT Pe 4
(17)

The particular form of this equation is useful in
converting C to C~„ insofar as it isolates a pos-
sibly singular term, i. e. , (sx, /aT) I». This par-
tial derivative can be related to C~~ as in Eq. (7),
and if C~, diverges at T„so does (Sx,/ST)l~, o. We
discovered however, that Eq. (17) is not very use-
ful if one wants to calculate C —C~„using present-
ly available data The. coefficient of (Bx,/BT) l~ ~

involves the difference of large numbers and is
hard to evaluate accurately. A simpler form of

Eq. (17) which avoids this difficulty but which
smoothes out the possible singularity of the last
term was used to estimate C —C~„. This is Eq.
(A12) of the Appendix. It was found that where this
latter equation is expected to be valid, c-10-2, C
—C~„was less than 0. 1% for all cases except at x
= 0. 200. In this case the difference was approxi-
mately +0. 2 and +0. 4/o for temperatures 0.02 K
greater and less than T~, respectively.

Although reassuring, the estimate using Eq.
(A12) is not totally convincing, since it does not

properly take into account the possibly singular
term (Bx,/BT) l~, ~. The contribution of this term
is independent of the filling fraction and hence can-
not be minimized by having a nearly filled cell. To
see how close C is to C~„ for the data closer to T,
we decided to carry out a further check at x = 0.30
by measuring C„„. At this mole fraction it can be
easily checked that at a molar volume sufficiently
close to the saturated-vapor-pressure molar vol-
ume (C~„—C„„)/C~„~ 0. 1%. Hence, if C is mea-
sured at the same average liquid mole fraction as
C„„and if the two are found to coincide, then one
can conclude that C is essentially equal to C~„.
The result of these measurements is shown in Fig.
10. Here we show three sets of data: two at con-
stant volume and one with a 99% filled cell. The
mole-fraction label on these latter data refers
strictly to the average of liquid and vapor rather
than to the liquid alone. The data in Fig. 10 were

our measured specific heat is to C~„.- As in the
case of 'He, our measurements were done in a
partly filled cell following a path of liquid and va-
por coexistence. The same considerations outlined
for He to obtain C~ apply here to obtain C~„. In

addition, the fact that the 'He concentrations in the
liquid and vapor differ introduces the additional
variable of concentration. The following equation,
derived in the Appendix, gives the difference be-
tween C and C~„,

(1/n, )C —C~„&v, dP s, —s„dn, n -ng ds„
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FIG. 10. Data for C~ and C~ in the neighborhood of g
=0.30. Here C~ =—C».

intended to be at the same mole fraction; however,
a measurable fractionation of the liquid occurred
when the samples were condensed in the calorime-
ter. As we mentioned in Sec. III, the filling pro-
cedure for the measurements of C„„was different
than for C . To achieve the original goal of show-
ing C -=C~„, we calculated the value of C at the
concentration of C,„and corrected C„„to the aver-
age saturated-vapor-pressure molar volume. Vfe
carried this calculation out for both sets of C„„
data. Our conclusions are that at x=0.30, I C„„
—C I

~ 0. 002 C for the whole temperature re-
gion which will be used for data analysis, i.e. , z
&4. 5x10 .

One can extend now this conclusion to the other
mixtures. %e have already shown that farther
away from T„, IC„-C~„t &0.001 C~„, except for
x =0.20, where this difference is a bit larger. Now
we have established that at x =0.30 the tempera-
ture dependence of this difference in the region
closer to T, is also small. This temperature de-
pendence comes from the filling independent term
(Bx,/BT) l~, ~, which is weakly dependent on x in the
sense that its temperature dependence near T, is
very nearly the same at al) mole fractions. Under
these circumstances, then, our conclusion that C~„
=—C at x = 0.30 holds for all the other mixtures we
studied.

2. Data malysis. In Figs. 8 and 9 we have
plotted our data as a function of (T —T,)/T, . Note
the data have been displaced vertically in the fig-
ures, as indicated in the captions. The data for all
the mixtures were fitted in the same fashion as for
pure He; i.e. , the energy per mole required to
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span a temperature interval was tested to the in-
tegrated form of Eq. (12). The errors in the best-
fit parameters were also generated using the same
procedure as for pure 4He. The maximum range
of data which could be used was q &4. 5x10-'. Out-
side this range the data deviated systematically
from Eil. (12). The results for the variational pa-
rameters are listed in Table II. In Table II we
also give the results of the same analysis for the
data at x = 0. 53 from Ref. 6. In Figs. 11-13we
have plotted the parameters n, e', A, A', 8, B'
as a function of mole fraction. We see from these
figures that the parameters are smooth functions
of mole fraction. In particular, as observed in the
case of pure He, n seems to remain larger than
n', at least up to x =—0.35. The parameters A and
A' can be smoothly extrapolated to zero at the tri-
critical point (x = 0. 68), while B and B' take the
value near 8 J/molK there. This seems to be con-
sistent with the measurements near the tricritical
point. s The solid lines in Figs. 11-13have no
particular significance and have been drawn to aid
the eye.

The increasingly negative values of o. and a' (as
x is increased) are quantitative representations of
the renormalization effects visible in Figs. 1, 8,
and 9: As one moves to higher mole fractions the
specific heat loses most of its temperature depen-
dence and shows progressively greater negative
curvature. We have discussed this feature of the
data in an earlier publication. 5 We find no evidence
that the specific heat has a jump at T„, as has been
thought. Indeed, the difference between the
branches above and below the transition goes to
zero increasingly rapidly as one approaches the
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FIG. 12. Parameters A and A' in the power-law de-
pendence of C» as a function of He3 mole fraction.

transition. It also becomes apparent, especially
at the higher concentrations, that C~„ is finite, as
is required by thermodynamics. The derivative
of C~„with respect to temperature is divergent
whether calculated numerically from the data them-
selves, as we did in Ref. 5, or from Ecl. (12) with
n and n' negative. . Thus C~„reaches finite values
at T~ with infinite slope. The same conclusions
have also been reached for data at higher mole
fractions by Alvesalo et al. 6
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FIG. 13. Parameters S and 8' in the power-law de-
pendence of C» as a function of He mole fraction.
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V. SCALING AND UMVERSALITY

We will now consider our data from the point of
view of scaling a,nd universality. For this purpose
we assume that pure He is an "ideal" system for
which C~ (along a path of constant pressure) may
exhibit a nonanalytic possibly divergent tempera-
ture dependence at T„characterized by the expo-
nents o. and o.' [Eq. (12)]. We will find that the
scaling prediction a = n' is not satisfied unless one
presumes that singular correction terms to Eq. (12)
exist. Until we have more theoretical guidance to
the form of such terms, data with the precision and
closeness of approach to T& of our own cannot deter-
mine a value of n consistent with scaling. In order
to examine the data, for the SHe-'He mixtures from
the viewpoint of universality, we must first com-
pute C~~ along paths of constant «t). We will then
find that the data are consistent with the universal-
ity prediction that C~~ has the same temperatuxe
dependence near T„[Eq. (12) with the same values
of n and o.'] as does C~ in pure 4He. Thus the data
on mixtures provide an independent indication of the
need for singular correction terms to scaling. This
is particularly important because the mixture data
are subject to quite different systematic errors
than are the data on pure He (for example, the
superfluid mixtures do not have an effectively in-
finite thermal conductivity, as does superfluid He).
Unfoxtunately, the values of n and n' for C~~ in the
mixtures with larger va, lues of x are subject to
greater errors than are the corresponding expo-
nents for pure 4He. This occurs because some of
the thermodynamic quantities which are needed to
convert C~„ to C» [particularly (Bs/sT) I ~,„]are
not well known for these mixtures.

From the point of view of universality, the finite
and cusped character of C~„and C in the mixture
is the almost trivial result of our choice of thex-
modyna, mic path for the measurements a,nd oux

measurement of the specific heat at constant x
(which cannot diverge along the & line) rather than
at constant Q. Nevertheless, we feel a remaxk re-
emphasizing these qualitative features is appropri-
ate. There are few pure laboratory systems with
X-like phase transitions which are known to remain
sharp at the c =10 ' level when the pure system is
diluted lly 40% wl'tll all impurity wlllcll reduces tile
transition temperature by one-third. Most solid
systems with even small impurity concentrations
have macroscopic inhomogeneities which cannot
equilibrate on the time scale of laboratory experi-
ments hence their &-like phase transitions become
"rounded. " Experiments near the critical point of
puxe fluid systems indicate rounding from gravita-
tionaDy induced density gradients at this level, and
it ls likely that exper1ments on binary fluid systems
will also be subject to such effects. Thus in some
respects helium mixtures are an ideal experimen-

tal system in which to study scaling and universal-
ity.

Upon applying the procedures we desc11bed ln
Sec. V to the data fox pure 4He, we obtained for
the constant-pressure specific hea, t the exponents
m =0.0125+0.0028 and a' =-0.0120+0.0036. These
exponents disagree with the predi. ction from scal-
ing that they should be equal. In particular, the
branch for 7 & T& seems to tend to a finite value,
while 7" & T„diverges. A similar asymmetry when
using Eq. (12) was found by Ahlers. " His expo-
nents are 0, = 0.000 + 0. 003 and n' = —0.020 +0. 003.
The differences between our exponents and Ahlers's
equal four times and twice the sum of the standard
deviations for a and e', respectively. The expla-
nation of this. difference is not clear.

A subset of the data, we used for the power-law
fit was also tested explicitly by setting a = e' =0,
i.e. , with Eq. (13). In these fits the deviation of
the data from the Eq. (13) was ahuays systematic
when the range of log&0& „was changed from —2. 2
to —3.2. It was found that A/A. ' varied monotoni-
cally from 1.04 to 1,08 in the same range. We
conclude that, if one is willing to further limit the
range of data so that the systematic deviations
from Eq. (13) are within the random error of these
data, then A &A'. This is again a result which dis-
agrees with scaling.

One could extend the above analysis to further in-
vestigate the seriousness of the discrepancy with
sca,ling by forcing a = n' and compensate for this
constraint by adding singular higher-order texms
of Eq. (12). Or, alternatively, one could add
higher-order terms to Eq. (13) with the constraint

Ahlers has tested a number of alternatives
along these lines against his data (which have a
precision comparable to our own in pure 'He) and
was not able to reach a. unique conclusion when us-
ing only his data near saturated vapor pressure.
Current theory does not specify enough of the pa-
rameters in possible correction terms to make a
meaningful test at this time. Thus we can only
make the qualitative conclusion that imposing the
constraint that the data, in pure ~He agree with
scaling would imply a substantial contxibution from
these correction terms even for the data closest to
T„. Indeed, in the particular case of Eq. (13), the
smaller &,„ the larger the contribution from these
terms would have to be.

We now turn to the data on mixtures and ask the
question, " Are they consistent with universality?
A naive way of answering this question would be to
compare the exponents n for C~„ in Fig. 11 with the
prediction that they be something like the fuQy re-
normalized exponent [o./(I —o.)]. We would expect
this renormalized exponent to be - 0.01 (o. =+ 0.01
in pure He), which strongly contrasts with the ex-
ponent —0.3 we obtained for C~„at x=0.39. In fact,
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we regard the value n = —0.3 as an "effective" ex-
ponent which fortuitously describes our data in the
range 10-' &e &4. 5x10 . This is an illustration of
our conclusion from thermodynamic arguments that
a weak divergence in C» will lead to a very slow
approach of C~„ to its maximum value, C,„. Thus
to test universality a more laborious process is
necessary. We will compute C» from our data and

compare it to C~ in pure 4He. Universality leads
us to expect C~~ to have the same exponents4~ as
C~ in the same ranges of temperature away from
TQI

In order to obtain C~~ from our data the first
step is to calculate C~~ along paths of constant x
via Eq. (3) and our estimate of the X-line parame-
ters. This specific heat along the path x =const is
also asymptotically divergent if C~~ is; as a matter
of fact, one can readily show that asymptotically
C~~

- t '" '. Hence its characteristic exponent
differs only by approximately 1% from C» in an
appropriate region close to T„. In using Eq. (3) to
calculate C~~ the X-line parameters were assumed
to have no t dependence in the range up to t ~4. 5
x 10-'T~. The calculated specific heat was then
fitted to Eq. (12) to obtain its characteristic expo-
nents. These are plotted as the filled and open
circles in Fig. 14 as a function of mole fraction.
The rather large error bars associated with these
results stem almost entirely from the uncertainty
in the X parameters. There is only a small con-
tribution from the errors in our own data. We ex-
plored the effects of our poor knowledge of the X

ant

z line

He Mole Fraction
FIG. 15. Geometry in z-T space of going from a path

of constant g to a path of constant Q.

parameters by setting them equal to their extreme
values consistent with our error estimates (see
Table I), and reevaluating C~~. Refitting C~~ then
yields values of the exponents within the error bars
of Fig. 14. This procedure could not be followed
at x = 0. 53, where the uncertainty in the X parame-
ters is so large that C,„calculated from Eq. (6)
could assume values less than the largest value of
the measured specific heat. Thus we expect that
the uncertainty in n and n' will be even larger than
at x=0. 53.

It is clear when one compares Fig. 14 with Fig.
11 that the exponents for C~~ do not become pro-
gressively more negative as do those for C~„, but
rather tend to cluster closer to zero, and in par-
ticular to the values of He. This is as expected.
Before making any conclusions however, we pro-
ceed in our calculation of C~~. All we have left to
do is to carry out a conversion of the distance to
T, from a path of constant x to that of a path of
constant P. The geometry in T-x space to carry
out this conversion is shown in Fig. 15. Our ex-
perimental path is a path of nearly constant mole
fraction x =x„. At a particular temperature we
have indicated the distance f =

I T- T„(x,p) I along
this path and the distance 8= I T —T„(g,p) I along a
path Q =const. Calculating C~~(f) involves using
Eq. (3) without changing the distance t to 8. If we
make this correction we then obtain C» along P
= const; however, if we carry this out at a series
of temperatures T„T3, . . . , we obtain C», (8,),
C~~ (82). . . , while we want C~~,(8,), C~~ (82), etc.
The variations in P, however, in the neighborhood
of interest are small and can for all practical pur-
poses be ignored. This we have checked explicitly
by subsequently evaluating (BC»/8$) I o6@, where
6&f& is the maximum variation in Q corresponding
to the maximum range in 8 used. We have calcu-
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a ed C» using data only for 8&10~ T a d„an we found

alon
a» varied from its value along P to t

a ong P =const at the extreme of the temperature
range by at most about 1% at the highest mole frac-
tion, x = 0. 52, and less than 0. 5% for all other
mole fractions. Even these small deviations refer
to a few data, points at the extreme of the range.
For the rest of the data this path effect is much
less, decreasing proportionately to 8 as one gets
closer to T„.

In proceeding with the calculation of 8 we are
handicapped by the lack of any other thermodynam-
ic data sufficiently close to T&. We thus used an
iterative procedure whereby we ass d C"

p ~ume ~~(t j
»(8), calculated a 8, refitted C»(8) to E . (12),

and repeated this process until it conver ed In

ail, we used the following procedure: We see
rge .

from Fig. 15 that if we assume the X line to be
locally linear, we have (in the case of T&T„)

f= 8-(x-x„)—BT
Bx p

(18)

Further, we can integrate Eq. (I) along / = const
by assuming the ~ derivatives to have no t depen-
dence, and obtain

TABLE III. Results of fitting the calculated C&& to the
power-law expression, Eq. (12).

0.0000
0. 0110
0. 0997
0.200
0.301
0.390
0.530

0. 0000
0. 0110
0. 0997
0.200
0.301
0.390
0 530

—0.012 026
—0. 033 56
—0. 050 02
—0.042 73
—0.042 13
+0. 01244
—0. 01807

+0. 012 458
+0. 021 62
+0. 02017
—0. 003 166
+0.001 111
—0. 06420
+0.07796

A'

(Jmole K"~)

5.717
7. 021

10.782
10.690
9.805
4. 666

13.850

A
(Jmole K )

4. 923
4. 858
6.388
V. 800
7.230
8.221
6. 143

gl
(Jmole-' K-')

12.791
10.681
10.670
10.875
6.496

16.970
—16.012

8
(Jmole"~ K" )

-6.256
-4.464
-2.517
—V. 240
—8.229

—12.446
—16.478

Data from T. A. Alvesalo, P. M. Berglund, S. T.
Islander G. R. PI.ckett, and W. Zimmermann, Jr. ,

0

Phys. Rev, A 4, 2354 (1971); W. Zimmermann, Jr.
(private communication) .

where the parameters n', A', B' refer to C»(8,
(19)

pendence on 8 as in Eq. (12). In obtaining Eq. (19)

we have also ignored the x dependence of the right-
hand side of E . 7 This is a good approximation
since at any given mole fraction we are only con-
sidering a range of Ix —x I & 10 Th e parame-
ers at al) mole fractions except 0. 53 differ at the

extreme of this range from their value at T b 1a, y ess
o, an typically a few tenths of a percent.

At x = 0. 53 this
2

difference reaches approximat 1

These differences are at the extreme of the
mole fraction
proportion to Ix —x, t, for the data closer to T„.

Combining Eqs. (18) and (19), one has

8=t 1- BT BT as
ax, „e@,,„aT,,„

—1 +B' . 20

This, with the identical expression for T & T„, is
our working equation. We start our iterative pro-
cess to evaluate 8 by taking n' A' I3',n. . . tobethe
parameters of C~~. This yields the first set of 8's,
8, 's. We then fit C»(8, ) to Eq. (12) to obtain a new
set of n', A', B' which then go in Eq. (20) to gen-
erate a new set of 8's 8 's. Th' dis procedure con-
verged ter at most six iterations after h hrw ic no
c anges in the parameters of C were obt ' d.o aine .

e ave listed these parameters in Table III. In
Fig. 16 we have plotted the ratio 8/f below and
above T . 46 It cv ~. I can be seen from this figure that al-
thou h 8g gets to be considerably smaller than t, it
shows a very small t dependence. This implies
that the characteristic exponents for C~~ will not
differ much from those of C" '

th~~, since in the limit
that g~t is a constant these exponents are identical.

as x's the exponents for C». The error bars for
C» exponents can also be applied to the ones
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for Cp~, since the additional step in calculating
Cp~, the t-to-8 conversion, gives a relatively small
error contribution to the exponents.

It is clear from Fig. 14, as remarked earlier in
the case of Cp~, that the exponents for Cp~ are
close to the exponents of pure He, although per-
haps not identically the same. This agrees quali-
tatively with the ideas of universality, which pre-
dicts they should be the same. According to these
ideas one expects that these exponents not be af-
fected by the presence of 3He. The similarity be-
tween Cp~ and Cp in pure 4He is also evident in Fig.
1V, where we have plotted C» as a function of
8/T„. All the data seem to fall on nearly straight
lines, indicating a and n' to be near zero. Indeed,
except at x = 0. 53, where the estimate of the X pa-
rameters is especially crucial, these lines are
nearly parallel. Figure 1V, which shows Cp~,
should be contrasted with Pigs. 8 and 9, which
show the renormalization effect for C».

A close look at Figs. 14 and 17 or Table III re-
veals that the same asymmetry for the exponents
above and below T~ which we observed for pure 4He,
persists for the mixtures. The branch for T & T~
has more positive exponent, except at x=0.39 than
the branch for T & T~. This asymmetry is a viola-
tion of scaling if these exponents correctly describe
Cp~ arbitrarily close to the X line. The small resid-
ual x dependence of these exponents, if real, would
be in violation of universality. To explore how seri-
ous these violations are one couM attempt an analysis
in which higher-order terms would be allowed to
contribute to Eq (12). .We have not attempted such

Having obtained the behavior of C» as a function
of 8, it is relatively easy to obtain the behavior of
(sx/sT) l~ ~ and (sx/s»t») l~ r, the other derivatives
which behave as C» near 7;. The values we com-
pute for these derivatives will be subject to direct
checks from osmotic pressure measurements which
are now in progress. ' (sx/BT) I~ ~ is given by Eq.
(7), and hence all one has to do is use Eq. (12) with
the accompanying parameters Cp~ given in Table
III. Equivalently, we have used Eq. (18) to obtain
a plot of x-x„along paths of constant 4. This is
shown in Figs. 18 and 19. The lines in this graph
extend only within the range of data used in deter-
mining C». The slight curvature visible on some
of these lines reflects the 8 dependence in the curly
bracket of Eq. (19).

To obtRlll (&x/8»t») lI», r we used the egllatlon

Bx Bx Bx B T
B$ p p Bf p g BT p gBQ p

where we again take the ~ derivatives with their
values at the X line. This equation gives (sx/8$) I ~ r
on a path of Q = const if one uses on the right-hand
side Eq. (7) for (ex/BT) I~, If one wants (ex/
s»f») l~ r as a function of x-x„ for its "natural" path
of T= const we further have to compute

Bx(x-x„)r=(x-x,), + BT„
BT p

(22)

which can easily be derived from a diagram si,mi-
lar to Fig. 15. In Eq. (22) the subscript on x -x„

analysis at this time. %e note, however, that in
the analogous case of the ~ line in I'-T space at x
= 0, a simple-power-law assumption for Cp also
yielded3 the result that the branch for T & T~ tended
to have a more positive exponent than the branch
for T & T~. This discreparicy, which is especially
clear at higher pressure, can be removed'9 by the
addition of higher-order terms to the functional
form which describes the specific heat. Neverthe-
less, one retains the disagreement with scaling in
the sense that the amplitude of the specific heat is
pressure dependent. It would seem then that, both
for the & line in the P- T plane (with x = 0) and the
X line in the x-T plane (P =—0), small but persistent
devlatlons from scaling occur.

We finally note that, in spite of these deviations,
our result of a negative n' is consistent with the
SCRlillg reiationsh1p f = 3(2 —II )» where t ls the
exponent which characterizes the vanishing of the
superfluid density at T~. Using the value of g
= 0. 67$ which has been recently reported by Ahlers4
as being independent of concentration at least for a
region not too close to the tricritical point, one ob-
tains n' = —0. 016. All our values of n' are within
one standard deviation of this value.

VI. OTHER THERMODYNAMiC DERIVATIVES
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indica estes the path along which this quantity is mea-
de endencesured. In calculating (Bx/Bp) I ~ r the x depen ence

of (Bx/BT) ~ ~ an d the X parameters was not con-
d This is in the same spirit as the ca cu a-sidere . is i

li ible.f r C where it was found to be neg igi e.tion or», w

n in Fi s. 20 andThe result for (Bx/Bg) I~ r is shown in xgs.
21 plotted versus (x-x„)r. The T in

'
pin this ath can

be taken to be the ~ temperature to the same ap-

proximation that C~~ along different values of P was
verified to be C» along 6,.

VII. SUMMARY

We have presented in this paper our measure-
ments of the specific heat of He and 'He- He mix-
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tures at their X transition for 'He mole fractions
less than about 0.4. We have discussed our experi-
mental apparatus and procedure as well as our in-
vestigation of the difference between our measure-
ments along a path of liquid-vapor coexistence and
the specific heat at constant pressure and mole
fraction. We found that for the range of data ana-
lyzed in this paper this difference is negligible.

Our data analysis for 4He confirms some of the
work of Ahlers, although it differs somewhat in de-
tail. We find that the branches of the specific heat
above and below Ti, when fitted to a simple power
law, show an asymmetry with characteristic ex-
ponents of +0.012 and —0.012, respectively. We
find that this asymmetry persists with the mixtures
in the sense that one branch tends to be more sin-
gular than the other. For the mixtures, the data
show the effect of path renormalization which
causes the heat capacity to reach a finite value at
the transition. A simple-power-law analysis of the
data does not yield the true renormalized exponents,
but rather effective exponents which for the same
range of data from T, tend to become more and
more negative. In order to verify the conjectured
universal behavior of the conjugate specific heat

Cp~, we have constructed this specific heat using
our data and our calculation of the thermodynamic
derivatives at the X line: (ax/BT) l~, „, (8$/BT)l~, „,
(as/BT) i~ „. We have extended this analysis to the
data at x=0. 53 of Ref. 6. We find that C», when
tested with a simple power law, does indeed show
a universal character in its exponents, although in
details it retains the asymmetry observed in He,
which is in violation of scaling.

We have also calculated the paths of constant gP

on the x-T plane and the derivative (Bx/agp) l~ r,
which are closely related to C».

Our main qualitative results are shown in Figs.
1, 8, 9, and 17 for the renormalized and unrenor-
malized specific heats. The main quantitative re-
sults are given in Tables II and III for the power-
law parameters of the two specific heats.
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by

S =n, s, +n„s„ . (A1)

Differentiating this expression with respect to T
we obtain

dS ~C ds
& dn& ds„= n, +(s, -s„)„+(n-n, )

—„—", (A2)

Bs Bv

ra BT px

as agp

Bx p~ BT p„' (A4)

which are obtained from the differential of the mo-
lar Gibbs free energy dg= —sdT+vdp+pdx, with

P = p, 3
—p. 4 the difference in the molar chemical po-

tentials of 'He and 'He. Using Eqs. (A4) in Eq.
(A3) we obtain

ds i Cp„Bvi dP 8$ dxi
dT T BT,,„,dT BT,,„dT '

where for simplicity we omit the subscript l on
C~„. If we consider x, =x, (T,P, gIg), then we can
write the total derivative in Eq. (A5) as

(A5)

dxg Bxg BXg gfp BXg

dT BT
g g, BP r ~dT agtg

g rdT
Also from the Gibbs-Duhem relationships for va-
por and liquid,

0 = - s
g
d T+ v i dp xi d(IJ)g d p

0=- s„dT+v„dp -x„d@-dp.

we obtain upon subtraction

dQ dp 1
Av ——hsdT dT (AS)

where hv = v, —v„, etc. We now use Eqs. (AS),
(AS), and (A5) in (A2) and obtain

(1/ng)C —Cg„avg ' dP agP

T BT p ~ dT BT p

Bx) Bx) dp Bx) dp 1
BT p g BP y gdT B$ p g dT Ax

where the total derivatives are along the experi-
mental. path in which the molar concentration a,nd

the pressure are changing in a way unique to the
amount of liquid and vapor present. If we consider
s, = s, (X, ,P, T) we can write

ds, as, asg dp Bsg ' dxg
(gfT BT gg„ap r„dT Bxg g, rdT

We can change two of the partial derivatives in Eq.
(A3) by using the Maxwell relations

APPENDIX

We derive in the Appendix an equation for obtain-
ing the liquid specific heat Cp, from measurements
in a container of fixed volume with a tw'o-compo-
nent liquid and vapor in equilibrium. If we ignore
surfaces and interfaces the total entropy $ is given

hs dn& n-n~ ds„+ +
nf dT n) dT

We then use the following identities:

agtg Bx agtg

BT p g BT p $ Bx p

(A9)
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ex 9$ Bx

sp T, l ~p Tyx s4 p&T

and obtain

(A10)

(I/n~)C —C~„sv, dp hs dn, n —n~ ds„
T BT p „dT '8) dT Ã) dT

9@ 8(f) dp
BT „BP „dT

dT hx BT
(A11)

This is a suitable working equation giving us the
difference between the measured specific heat C /
~, and C~„, which is the quantity of interest. In
this equation we have isolated the derivative (Bx,/
ST) I~ ~ which is possibly singular. This can be
seen from Eq. (I) in Sec. II, in which this deriva-
tive is related to C».

To evaluate the right-hand side of Eq. (All) we
used the vapor-pressure data of Sydoriak and
Roberts, ' the molar-volume data of Kerr, and
the estimate of the excess chemical potentials of

Roberts and Swartz. " The vapor properties were
computed using an ideal-gas approximation. For
the liquid mixture's entropy we integrated heat-
capacity data, up to the X temperature. '" For
(sx, /BT)l~ ~ we used Eq. (7) along with values of
C~~ obtained via Eq. (3).

A simpler equation than Eq. (All) was also used
in estimating the difference between C and C~„:

(1/ ~n)C —C~„sv, dp n —n~ ds„
T 8T „dT

dx) 1 —x) dn„
dT n, dT (A13)

which assumes most of the atoms evaporating from
the liquid are 3He.

BP 1 —x~ AS dn„
BT p 8) 8) dT

(A12)

This equation is useful away from T&, where one
does not have to worry about possible singularities.
It can easily be derived by using the expression
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