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A. density-functional theory is constructed for nonuniform systems of superfluid 'He at zero temperature. In
calculations of the freewurface shape and tension it is found necessary to self-consistently renormalize the
theory in order to account for the important effects of the zero-point motion of the long-wavelength (wave
number q & q ) surface modes. Use of a cutoff q = 0.99 A ', self-consistently determined within the theory,
yields a surface tension of 0.384 erg/cm, which compares well with the experimental results of 0.378 erg/cm'.
Detailed liquid-structure effects are included, but no static density oscillations near the free surface result, in
contrast to a theory of Regge. %hen the theory is applied to the case of "He bounded by a single hard wall,
density oscillations near the wall are obtained. For a much simplified version of the density functional, an
analytic solution for a planar free surface, vortex-line structure„and various properties of "He droplets,
including the curvature dependences of the surface tension and Gibbs surface mass, are obtained.

I. INTRODUt TION

In recent years a, considerable amount of effort
has been devoted to the study of many-body systems
which possess some essential nonuniformity, the
most extreme example being a surface separating
two phases. One of the most widely used theoreti-
cal tools employed 1Q such studies ls density-func-
tional (DF) theory. The physical ideas involved
have been in existence at least as long as the
Thomas-Fermi model of the atom, but their firm
theoretical basis has been established only compar-
atjvely recently by Hohenberg and Kohn and by
Mermin. ' Recently, the DF theory has been ap-
plied to problems as diverse as those associated
with the electron density in the vicinity of metal
surfaces, liquid helium, "nuclear matter, ' clas-
sical liquids, ' and self-trapped electron states in
dense gases. v

While the DF theory is in principle exact, ' in
practice, the density functionals are always con-
structed using, in an essential way, the concept of
local uniformity. This approximation is applied
even when the nonuniformity is as extreme as the
for mation of a free surface, where the density may
vary drastically over a distance of only a few atomic
diameters. What may be essential new correlations
introduced by the presence of the nonuniformity are
incorrectly treated. This neglect turns out to be
particularly important in a calculation of the free-
surface tension and profile for zero-temperature
'He. In this case the presence of the free surface
radically alters the nature of the long-wavelength
(i.e. , longer than a few interatomic spacings) ele-
mentary excitation spectrum. What was a spec-
trum containing simply phonons in the case of a
uniform system becomes one containing both exei-

tations localized near the surface (ripplons) and
phonons reflected at the surface. This change has
two important consequences. The first is a con-
siderable zero-point- motional broadening of the
surface. The second is an important contribution
to the surface energy arising from the zero-point
energy of both the ripplons and the surface-modi-
fied phonons. That the ripplon zero-point energy
is important was recognized some years ago by
Atkins. A somewhat similar point has been dis-
cussed concerning the electron contribution to the
surface energy of metals'; however, there are
significant qualitative differences between the He
and electron problems. Our treatment of He in-
corporates these zero-point-motion effects via a
renormalization of the density-funetiona1 results
calculated in their absence.

In See. II we first develop a bare-density-func-
tional (BDF) theory, "bare" in that zero-point-mo-
tion effects are not included. Subsequently, we
present our prescription for renormalization. Sec-
tion III is devoted to the details involved in calcu-
lating the input for the BDF theory: the energy
density, liquid-structure factor, and nonlocal ef-
fective interaction as functions of 'He density.

In See. IV we present our results. The nonlinear
integro-differential equation determining the bare-
density profile and, consequently, the surface ten-
sion ls first solved, The renormallzatlon pr0-
cedure is then implemented. A self-consistent pro-
cedure for determining the mode wave-number cut-

0
off q =0.99 A is developed, yielding a surface
tension of 0. 884 erg jcm, in good agreement with
the experimentally determined value of 0.878 erg/
cm . Other methods of determining q are also
discussed. The surface density profile contains no
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oscillations (neither does the bare profile), in con-
trast to results of a recent theox'y of Hegge, "but
in agreement with calculations, based on approxi-
mate wave functions, of Shih and %'oo and Chang
and Cohen. ' In order to check that our theory is
capable of producing oscillations (they result from
hard-core effects), we apply it to the case where
the liquid has not a free surface, but one bounded

by a hard wall, and we find density oscillations
similar to those found by I.iu, Kalos, and Chester'
for a, hard-sphere boson system bounded by two
hard walls. This contrasting behavior shows that
a free surface is simply too soft to permit static
oscillations in the density.

In Sec. V we present results of a number of cal-
culations based upon a simplified DF theory. This
theory has the virtue that it possesses an analytic
solution for the free-surface case. Further, it
permits easy calculation of the density profiles
near a vortex line and for small helium droplets.
In the latter situation the curvature dependence of
the surface tension and the Gibbs surface mass
(quRlltltles of 111'tel'esi 111 tile I'ecellt wol"k of Ed-
wards, Eckhardt, and Gasparini concerning the
surface excitation spectrum) are obtained for the
first time.

In Sec. VI we present a discussion and summary
of our results. A short discussion of ways in
which the width characterizing the free-surface
profile Inight be measured is given.

We begin this section with the development of
what we term the bare-density-functional (&Dr)
theory. Our use of the adjective bare is to indi-
cate that this formalism, as is the case with all
previous such theories, 5' fails to include the
effect of zero-point motion of the surface. The

, reason for this failure is that BDF theories gen-
erally 1nvolve expans1ons about the un1form-sys-
tem limit, and thus contain energies and response
functions appropriate to a uniform system at an
arbitrary density. Any information about changes
in mode structure due to the formation of a surface
is lost. The second portion of this section explains
our method of modifying the BDP in order to in-
clude the changes in mode structure in a self-con-
sistent way.

A. Bare-density-functional theory

The approach we take here is similar to that of
Hohenberg and Kohn. ' For the sake of complete-
ness, and because of significant differences be-
tween the He problem and the electron problem
treated by these authors, we go into some detail.

The basic assumption' made is that the energy
E of a nonuniform system of supelfluid He at zero
temperature may be uniquely expressed as a func-

tional of the number density n. We approximate
this functional in terms of a local energy density
plus an expansion in powers of the difference be-
tween densities at different points in the Quid; the
series is terminated in second order. Thus,

&I )=f4' .(tl(I))+ f&' 8' '~(, ')( ( )- ( ')I

+ d'l d'l'w(r, r')[n(F) —n(r')]'. (2. 1)

n(r) = no+ 5n(F),
,

d'l. 5n(F) =0. (2. 4)

Combination of (2.2)-(2.4) yields, to second order
in 6g

Pg

E[n] = Eo+ — d l. 01-[hn(r)]3+ 2 Wo
' d l [6n(r)]

—2 l
d'r d'y'W((F —r'); n()) 5n(F)5n(F'), (2. 5)

where Eo and &o are, respectively, the ground-state
energy and ground-state-energy density of the sys-
tem at density go, and

W() —= d r W(F; n o) . (2. 6)

Now, it is an exact result of second-order per-
turbation theory that

Here e(n) is the energy density of a uniform sys-
tem having density n. Further, symmetry requires
that y(r, r') and W(r, r') be even functions upon in-
terchange of F and r'. Thus, (2. 1) simplifies to

E[n] = d'l «(n(F))+ td' 'dl' 'tW(F, r')[n(r) —n(r')]'.

(2. 2)
The kernal W(F, r') may be thought of as an effec-
tive interaction between different portions of the
Quid arising because of nonuniformity.

Equation (2. 1) is strictly correct for small va.ri-
ations in n(r) around some average density no;
W(rq 1" ) 18 tlleI1 R functioll of no Rnd 1' —1' . In Rppll-
cations where n(r) varies by a large amount and
where there is no average density around which one
can reasonably expand (e.g. , the liquid surface),
it is necessary to have some prescription for.
choosing the density m at which R' is to be evaluated.
A simple, convenient, and intuitively appealing
procedure which has the correct behavior in the
uniform-system limit is to pick n= ~[n(r)+ n(r )];
thus,

w{F,.-')- W(F- r'; —.'[n(F)+n(r')]]. (2. 3)

To obtain an explicit expression for W, we look
at the case of a fluid perturbed only slightly from
the avex'age density fly. Then
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3
x 3

e'~"-' 'y, ' On r an r', (2. 7)

where X, is the retarded density-density response
function at wave number q for the uniform system.
Comparison of (2. 5) and (2. 7), combined with the
compressibility sum-rule result X 0=9 e0/Sn())

'
yields the identification

3

H~(r —r'n ) = —I q e"(x-")y- (~ ). (2. 6)o
——

4 )

Consequently, (2. 2) becomes

1
E[n] =

J
d'~e(n(r)) —— d'r d'~'

d'
x —

3 nr —nr' . 2. 9

The term involving &n (r) in (2. 11) is the well-
known quantum pressure term first used by
Gross. It is a very pleasing feature of the
present theory that this term emerges in a com-
pletely natural fashion ' and does not have to be put
in by hand as has been done in the essentially phe-
nomenological theory of Padmore and Cole. '

In order to make practical use of (2. 9) we re-
quire a reasonable approximation for y, . Our
choice is to employ the result of the Feynman the-
ory

Now, in the limit that q -~, y, must approach the
free-particle result

X, =@ q'/4m~', ~, (2. 12)

(2. 10)

e2
n[n] fd'zz( ( ))=d'z[z'n'"( )]'

(n) =h q'/4mn,

in which rn is the He atomic mass. The integral
over wave numbers in (2. 9) is thus irregular for
large q. It is convenient to separate out the free-
particle limit in order to obtain a regular kernel,
a procedure which yields, after some simple ma-
nipulations,

where S, is the usual liquid-structure factor. While
this approximation is not the best theory of He, it
does include the structure of the system in a very
reasonable way. Further, it renders actual com-
putation of g, as a function of density reasonably
tractable.

With (2. 12), and the assumption that variations
in the system occur only in the z direction (e. g. ,
only in the direction normal to a planar surface),
(2. 11) takes the form (for unit area normal to the
z axis)

00 @'2 zn 00 1 (n 00

d[ ]=
I(

dzz(n( ))+x ' d*[n' ( )] —
z

d d '
x z

—
n

——()z""' ' [ ( ) —n(*')]
~ ~00 2' dW M ~~ 7r mn .8

(2. 13)
where a prime on a function denotes differentiation with respect to its argument. The equilibrium config-
uration assumed by the system is then the solution of

6E[n]/5n(z) = i]. ,

subject to appropriate boundary conditions. Here p, is the chemical potential. For brevity, let
00

&(z —z') = —q'[S,'(n) —1]e""' ' .
4mn „2w

Written out explicitly, (2. 14) as found from (2. 13) and (2. 15) is
@' n'" (z) , BA(z —z', n)+ e'(n(z))+

I
dz'&(z —z';B)[e(z) —n(z')] —— dz' ' [n(z) —n(z')]' = u, .2m n (z) 4„„8n

(2. 14)

a, =E[n,]— dz pn, (z) . (2. 17)

It is this nonlinear integro-differential equation
which we solve in Sec. III for the bare-surface-
density profile as'sociated with the free surface.
For future reference, we point out that the surface
tension associated with the solution n, (z) to (2. 16)
ls

B. Inciusion of the surface modes

As discussed in Sec. I, in the neighborhood of a
planar free surface of superfluid He, correlations
differ drastically from those deep in the bulk. This
effect is most manifest in the longer-wavelength
elementary excitation spectrum, which contains
both ripplons and phonons reflected at the surface,
rather than merely freely propagating phonons.
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)),".,(r) = [n 2+ &y)"(r)]e[z+ g(x, y)], (2. 18)

where f(x, y) is the surface displacement associ-
ated with the excitations and 5n"(r) describes the
density fluctuations below the surface. Now, the

n, (z) which we calculate in Sec. IV is, from the
point of view of all but the very shortest-wave-
length excitations, a step function. For these ex-
citations, then, the approximation

This alteration, which leads to both a zero-point-
motional broadening of the surface and an additional
contribution to the surface energy, has nowhere
been accounted for in the above development.
Changes in the very short-wavelength part of the
spectrum are at least approximately dealt with via
the density dependence of & and S,. We note that a
theory yielding ripplons and surface-reflected pho-
nons is one which begins in zeroth order with a
sharp surface, 'whereas in practice density-func-
tional theories embark from the uniform-system
limit. The formalism to be described below uni-
fies these two approaches in a self-consistent way.

We begin by noting that we may regard, after
Gross ' and Pitaevski, ' the BDF result (2. 16) as
a semiclassical equation determining a classical
field n, ( z) Th. e small oscillations of the density
are then, when quantized, the elementary excita-
tions of the system. Our approach for including
the effects of the zero-point motion associated with
these excitation is made most clear by first con-
sidering the case where the liquid has a perfectly
sharp surface at z = 0, corresponding to a bare
density ))28(z) =))2 for z &0, 0 for z &0. The exci-
tations will give rise to fluctuations in both the
position of the surface and in the density below the
surface. Consequently, the density operator be-
comes

ik8 -k 0 /2 (2. 23)

Here, n» is the Fourier transform of n, (z),

e~=-&0 ~K'(, y) ~o) =Z
f),2 l

(2. 24)

is the mean-square surface displacement, 10) is
the ground state for the excitations, and we have
made use of a well-known result concerning ex-
pectation values of exponentials of operators of the
form (2. 22). The result (2. 24) is easily put in the
more convenient and transparent form

))(z, a,) = dz'n, (z —z') e ' "'&(2))g)') ) '/', (2. 25)

where we have explicitly noted that the density de-
pends upon O.b. The effect of the zero-point motion
has been simply to fold the bare density with a
Gaussian whose width is determined by the mean-
square surface displacement &0. The quantum-
hydrodynamic result for $22(obtained in the Appen-
dix) is

p 5 rb ~m
2 2

)/) =, 0. & 96 ~ — x)x) dx),
mpsb 4p „p

(2. 26)

in which q is a wave vector parallel to the surface,
l is an index referring to both surface and bulk
modes, and a;, creates an excitation characterized
by q and /. The normal mode amplitude f&, will
be computed from the linear theory of quantum hy-
drodynamics for an ideal compressible fluid with
a free surface.

Inserting (2. 22) in (2. 21) gives

(Z) e)hn (Q
~

)h).'(x v)
~
Q)

""dk

.'. 2m

oy (~) [ 6 oy(~)] nh[z+ K(xx y)]
Qo

(2. 19)
(1 y z)3/2 (1y z))/2 /1/2

is a good one. Further, if renormalization of the
density due to fluctuations in f(x, y) is the only im-
portant effect (a statement to be justified later)
n",„(r) becomes

n",.,(r) = n,[z+ &(x, y)] (2.20)

and the renormalized density is

n(z) = (0
~
n, [z + g(x, y) ] ~

n), (2.21)

where IQ) is the excitation ground state. The oper-
ator r(x, y) has the form

&(~, y) = Z z"'(&*;,)n';, )+ 4.)~a. )) ~ (2 22)
q2 l

(& )
&yhonon Orion)on

Ep b zp + zy

where, assuming unit surface area,

(2. 27)

Here, q is a high-wave-number cutoff which is
self-consistently determined within our theory in
Sec. IV.

Next, we obtain the contribution of the zero-point
motion of the phonons and ripplons to the surface
tension. This is just the difference between the
zero-point energy per unit area of the system with
a free surface and that of an equivalent amount of
bulk liquid, and is expressed as (from the Appendix)
a sum of two terms

bq l2
riyylon "

2[ 2 (1 2)1/2]1/2 d
~p
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sq @s
dx

( )
b q —

( )
lx((+ b qQ(x)]) . (2. 28)

Here, f (x) =x (1 —x ) . Note that o„(o,) is a func-
tion of 0,.

The surface tension in our theory now contains
two contributions, the bare result (2. 17) and the
zero-point-motion piece o, . If these are simply
added to give

dz S«(z —z )z n, (z —z )
1 / I I

pgp

&&
e-s' /22()(2vg2)-1/2 (2. 32)

where the density-surface structure function S«(z)
is defined by

o = E[n, (z)] — dz pn, (z)+ (r„(o,), (2. 29) S, (z) = m(0
~
6n„(z)0

~
0) . (2. 33)

o = E[n(z, o )] — dz /1n(z, cr) + o „(o) . (2. 30)

This result, together with (2.25)-(2. 28), and the
bare density n„(z) provides us with a set of equa-
tions from which both the renormalized surface
tension 0 and the renormalized surface profile
n(z, o) may be found.

To conclude this section we discuss the question
of corrections to (2. 20). Clearly, what one would
like to do is to take the expectation value of (2. 19).
The calculations involved present some difficulties.
To see this, note that in a linear theory 6n"(r) has
the form

we have an expression for cr which is inconsistent
for two reasons. First, the renormalization of the
density due to fluctuations in f is not included and
second, the surface tension cr, determining the ex-
citations and appearing in both o„(ob) and n(z, o', )
is not the total surface tension. To obtain a self-
consistent expression for o, one must include both
the density renormalization and the fact that the ex-
citations themselves are renormalized by their own
zero-point energy. This objective is clearly ac-
complished by replacing o, in o„(o,) and n(z, o,) by
cr and replacing n„(z) in (2. 29) by n(z, o). Thus,
the final expression for the surface tension is

0.6
1 I I

I
I

Evaluation of S«(z) yields '
1 X&2/2( )

-x(x)q,
fbgm«( ) 4 l

d
[1 ( b )2]1/2

hq' 2 —2 cosq z —q zsinq z
2p s (q z)'

in which 2(x) =xq (-2bq x+ [1+ (2bq x) ]
It is seen from Fig. 1 that S,&(z) contains con-

siderable structure. Nevertheless, when (2. 30) is
solved, corrections to o and n(z, o) due to including
(2. 32) amount to only a few percent, all of the
structure in S,&(z) being washed out by the integra-
tion in (2. 32).

In addition to density-fluctuation effects of the
type given in (2. 32), there are higher-order effects.
For example, there will be a nonlinear correction
to the 6n"(r) of (2.31) coming from what is essen-
tially the difference between the zero-point-motion
"thermal expansion" in the uniform system and that
in the system with a surface. While this cannot be
calculated exactly without solving a nonlinear quan-

6n" (r) =g (n*„,(z)a1;, , + nL, (z)a~, ,) e"',
e2&

(2. 31)

where the mode amplitudes n;, (z) are functions of
z, the surface having been fixed at z =0. In (2. 19),
however, n„[z+ f(x, y)] has the surface at z = —f(x, y)
Consequently, the simple insertion of (2.31) into
(2. 19) is a procedure devoid of real physical mean-
ing. A plausible way to repair the theory is to re-
place the z's in (2. 31) by z+ f(x, y). This amounts
to a highly nonlinear renormalization of 6n"(r) due
to the presence of surface motion, and the physical
notion involved is that the density adjusts adiabati-
cally to the surface motion. If this replacement is
made, and the expectation value computed in the
same way that led to (2. 25), one obtains

(0
~

6n"[x, y, z+ g(x, y)] n, [z+ g(x, y)]
~
0)//n,

0.40~
O

C:
E

0.2

0.0

z (A)

IO

FIG. 1. Density-surface structure factor Sp//(z')/rnno
as a function of z.
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turn-hydrodynamics problem, detailed investiga-
tion shows that the corrections have the same
qualitative structure as those given in (2. 32)-
(2.34). Since these latter corrections have essen-
tially no effect on the final density, there is no rea-
son to believe that the former will. The physical
reason for this is that the zero-point smearing of
n, (z) caused by fluctuations in & is so large that any
structure of the type given in (2. 34) is washed out. '

III, STRUCTURE FACTORS, ENERGY DENSITY,

AND KERNELS

5.0 5.50- 4.0 4.5

I I I I
I

I I I I
I

I I I I
I I

t I I

In order to obtain the bare-surface density from
(2. 16), it is first necessary to know the structure
factor S,(n) and the energy density e(n) in the uni-
form liquid. To obtain these we employ the theory
of Mihara and Puff, who derive the following two
equations for the structure factor [Eq. (3. 1) of
Bef. 30] and for the energy density [Eq. (1.6) of
Bef. 30] of the uniform liquid at T=0:

1/S, (n) =1+4nmv(q)/5 q + (4m/h q )
' d q'/(2v)

-IO—
I I I I I I I I I I I I I I I I I I M I I I I I

0

FIG. 2. Comparison of VLJ(r) and V(x) as functions
of x.

x (v(I q y q'
I )[q ~ (q y q')]

—V(q')[q q']'f [S,, (n) —1] (3.1)

dc(n)
dn 3=;e(n)/n+ -,n V(q =0)

V(q) = '~~ d'r V(~) e *" (3.3)

and j is a unit vector in the direction of q. Al-
though V(x) is assumed to have a Fourier transform,
this is not essential for the application of (3.1) and

(3.2) since the integrals may also be formulated in

terms of V(r) and the radial distribution function

g„(r) which is given by

g„(~)=1+—,[S,(n) —1]e" . (3.4)
n 2lT3

It is, however, more convenient to work with V(q)
and S,(n) when solving (3.1) in particular.

The potential we employ is the same as the one

used in Ref. 30:

V(~) = &0(a/r) (e ""—re '"'), (3. 5)

with Ep=8. 95&10 K, y=0. 2560, P=0. 8000, and

a=0. 376. In Fig. 2 this potential is compared with
the more standard Lennard-Jones (6-12) potential
for helium atoms

V„,(~) = 4 V,[(c/r)" (c'/r)'], — (3.6)

+- q, [-,'V;(qV(q)) —V(q)] [S,(n) —1].
(3.2)

Here, V(q) is a Fourier component of the inter-
atomic potential V(x),

where Vp=10. 2 K and Q. =2. 556 A. The two differ
principally in the core region where V(r) is softer
than V„z (r) and in the long-range attractive region
where (3.5) approaches zero more rapidly than
(3.6). The fir..t of these differences should have
an effect only on calculations done for very high
density; we do not believe that the results presented
below would be significantly altered by using, e. g. ,
VLz(x) rather than (3.5). As for the fact that V(r)
does not have the correct 1/r' long-range behavior,
it seems likely that this is partly responsible for
the rather small discrepancies between the equi-
librium energy and density found below and their
experimental values. However, the difference be-
tween calculated and measured values is sufficiently
small that V(r) from (3. 5) should be quite adequate
for our purposes.

Our first task is to find S,(n) from (3.1) at a
number of different densities using the Fourier
transform of (3.5):

V(q) =4vEoa'[1/(1+ q'a') —y/(P'+ q'a')]. (3.7)

Substitution of (3.7) into (3. 1) produces the equa-
tion that must be solved. A solution to this very
equation has been presented by Mihara and Puff
for density n-np where n p is the 'He density at
T=0 and I'=0. Their procedure is described by
Mihara" who presents a detailed discussion of the
properties of (3.1). In the present work we have
followed their numerical procedure quite closely
and have obtained S,(n) at 70 different values of n
between 0 and 1.41np. The basic idea is to make
an initial guess for S,(n), insert this in the right-
hand side of (3.1), and do the integral over q' to
find a new S,(n). In the simplest iteration scheme,
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1.5
I I I

1
I f I

[
I ties close to no.

The energy density e(n) is found by numerically
solving (3.2); we first transform the integral to one
in real space so that the equation is

0.5

FIG. 3. Structure factors S~(n) as functions of q for
n/no equal to 0. 1 (A), 0.5 (B), 1.0 (C), and 1.4 (D) .

the new structure factor would in turn be used to
produce another one and the procedure repeated
until convergence is achieved. It turns out, how-
ever that this method does not work; rather, it is
necessary to use a weighted average of the result
of previous iterations in order to obtain conver-
gence. The convergence is examined by looking
(at all q) at the difference between a given calculated
structure factor and the one that is used to produce
it. In practice it proved possible to obtain a maxi-
mum difference of less than 0.001 by using some
2000 iterations. For densities larger than about
0.Sno, the iteration procedure was terminated
when the maximum difference between succeeding
structure factors became smaller than 0.001; at
smaller densities, the maximum difference was
required to be smaller than 0.01.

Results for S,(n) at several representative den-
sities are shown in Fig. 3; for n=n (courve C), the
calculated structure factor has a shape very close
to the experimental one, consistent with the results
presented in Refs. 30 and 31. The first peak be-
comes more pronounced as the density increases
and moves to slightly larger q, behavior that is ex-

32pected and supported by neutron scattering data.
Further, for n - n there is a distinct shoulder in
S around q=0. 5 A, which is also observed ex-0
perimentally. The oscillations in S,(n) —1 gradu-
ally die away as n is decreased and disappear al-
together for n-0. 1no. Thus, we find structure
factors that at the very least, contain all of the ex-
pected qualitative features of S,(n) for liquid heli-
um and that are in rather good quantitative agree-
ment with the measured structure factors at densi-

=Ie(n)/n —,'n d—'xg„(t)[~r ~ VV(r)+ V(x)].
dn 3

(3.3)

The reason for reformulating the integral in real
space is that a small error in S,(n) at large q can
have a rather sizable effect on e(n) as found from
(3.2). To avoid this difficulty we first Fourier
transform S,(n) —l to find g„(r) and then find e(n)
from (3.8). Now, the error in S,(n) at large q will
of course also lead to appreciable errors in g„(r),
but these will be principally at small z; at larger
r, the factor e"' jn (3.4) oscillates rapidly for
large q and thereby strongly reduces the effect of
errors in the tail of the structure factor. On the
other hand, since we know on physical grounds
that g„(r) is essentially zero at small t (z & 2. 2 A),
we can simply set it equal to zero in this region.
Specifically, our procedure has been to use the
Fourier transform of S,(n) —l down to that value
of y for which the computed radial distribution
function first goes to zero and to then set g„(y) =—0
for all smaller x. In this way we believe that we
have minimized the effect of numerical inaccuracy
in the large q part of S,(n).

The results for the radial distribution function
at several representative densities (the same densi-
ties as in Fig. 3) are shown in Fig. 4. These func-
tions rise rapidly from zero to a peak value which
increases and moves to smaller x as the density

1.0—

0.5—

FIG. 4. Radial distribution functions g„(x) as functions
of w for n/no equal to 0.1 (A), 0. 5 (8), 1.0 (C), and
1.4 (D).
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FIG. 5. Energy density and energy per particle as
functions of number density.

increases. Following this peak is a train of decay-
ing oscillations about unity. Thus, the computed

g„(1) contain all of the expected qualitative features.
Given these functions, it is easy to do the inte-

grals in (3.8) at various densities and to solve this
first-order differential equation for e(n). There
is, however, one point that requires some discus-
sion. Since (3.8) is a first-order differential equa-

tion, it is necessary to supply a boundary condition
011 tile solutloll E(s). Tllis cR11 be dolle 111 R VR1'iety

of physically reasonable ways which need not all
produce the same energy density because the for-
malism is not exact. For example, some reason-
RM8 boundary colldltlolls Rl'8 (i) tllRt tile cRlculRt8d
equilibrium density at P=0 be no, (ii) that the en-

ergy per particle at P=O be the 4He chemical po-
tential (-7.17 K) at zero temperature and pres-
sure, and (iii) that the compressibility at P = 0 be
the experimental compressibility. Yet another
condition, employed in Ref. 30, is (iv) that the
P=O compressibility found by computing d e/dn
be the same as that inferred from the slope of

S,(n) for q-0. We have chosen to use the second
boundary condition (ii) above. With this choice the
calculated equilibrium density is found to be 1.08go
or 2. 36&10 cm; by contrast we find that condi-
tion (iii) leads to an equilibrium density of 1.047no
while (i) obviously gives no. Mihara and Puff ar-
rive at a density of about 1.045no using the fourth

boundary condition. The spread in these results
gives some idea of the validity and accuracy of the

calculations. At least part of the spread is prob-
ably a consequence of the fact that the potential

(3.5) falls off too rapidly at large r relative to the

true interaction between helium atoms.
This property would tend to make the calculated

equilibrium density larger than &go for most choices
of the boundary condition. On the other hand, if
the equilibrium density is forced to be @0 as in con-

dition (i), then we would expect the energy per par-
ticle at this density to come out too high because
the potential is not sufficiently attractive. This
turns out to be the case: Condition (i) gives an en-
ergy some 2z K too high at g=zo.

In Fig. 5 we plot the energy density and energy
per particle as functions of the number density.
Boundary condition (ii) was used in obtaining these
functions, and it is this energy density that will be
used in the calculations of the density at a planar
surface in Sec. IV.

We consider next the determination of the kernel
&(z;n). In principle, it may be found from (2. 15)
by direct integration, but this integral is very sen-
sitive to small deviations of S,(n) from unity at
large q when z is small. We therefore adopt the
same sort of procedure as that used in connection
with the integral in (3.2). First, replace the fac-
tor 1/S1(11) in (2. 15) with the right-hand side of
(3.1). Then write V and S as Fourier transforms
and complete as many integrals as possible ana-
lytically. After some manipulation, the expression
for the kernel becomes

A(z;n) = w l r'de„(r) 1-——+—— d'V(r)
&'

Numerical evaluation of this integral is straight-
forward. The resulting kernels at several densi-
ties are shown in Fig. 8. At all densities &(z;n)
has the same qualitative behavior; starting from a
positive value at z =0, it decreases very nearly

0

linearly with z and becomes negative at z = 2 A.
There follows a shallow minimum at about 2. 6 A

and a long negative tail. The negative region is

I
I

I
I

I
I

I
I

I

IOO

5O

C)

l I I I I

I 2 5 4

FIG. 6. The kernel no&(z;n) as a function of g for
~j~, equal to 0.5 (e), X. o (C), and &.4 (D).
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quite insensitive to the density, while the short-
range positive part of the kernel depends on n rather
strongly for g -n 0 in particular, where it increases
with increasing density. It is perhaps worth re-
marking that if A(z;n) is evaluated directly from
(2. 15), the result for z & 2 A is very nearly the
same as when it is evaluated from (3.9). At
smaller z, (2. 15) gives a smaller kernel with a
somewhat different shape. The discrepancy is a
consequence of small errors in S,(n) at large q.
The effect of these errors is reduced by using
(3.9) and g„(r) computed in the manner described
above. We note that Mihara was also aware of

this difficulty in evaluating other similar integrals
over S,(n) and that he too chose to reformulate them
as integrals over g„(~).

IV. RESULTS

A. Determination of ny(x)

The bare density at a free planar surface of He
is found by solving (2. 16) with e(n) and A(z;yg) as
determined in Sec. III. To this end we first write
(2. 16) in the form

(4. 1)

with

(4.2)

where ~= z[n, (z)+n, (z')] as in Sec. ll. The boundary
conditions on n, (z) are that n, (z) -0 as z -—~ and

n, ( )z-n„asz-~; n„ is such that —p, + e'(n ) =0
and depends on the boundary condition used in solv-
ing (3.2) for the energy density of the uniform sys-
tem. As discussed in Sec. IG, this condition was
chosen to give the correct energy per particle or
chemical potential at zero pressure. The corre-
sponding equilibrium density is n„and came out to
be 1,QSn4.

Our method of solving (4. 1) and (4. 2) is first, to
choose some trial density to compute B(z), and
then to solve (4. 1) by numerical integration, start-
ing from the vacuum (z- —~) side of the surface.
The new density obtained in this last step is used
to find B(z) again and the procedure is repeated
until convergence is obtained. There is a difficulty
in that for arbitrary B(z) the solution of (4. 1) for
the density does not necessarily approach n„at
large z. Therefore, the solution is truncated at
some appropriate value of z, and a properly be-
haved tail, which goes to n„as z -~, is added.
This function is then used to compute the next B(z).
After some effort we succeeded in obtaining a self-
consistent solution to (4. 1) and (4. 2) which con-
verged to g,„of its own accord,

To cheek on the validity of this result, we also
found n„(z) variationally by constructing a param-
etrized analytic expression for the density and then
minimizing the free energy per unit area,

by the form of the variational trial function.
The bare density is plotted as a function of z in

Fig. V. It is a monotonic function of g with a very
small width; defining the width ~z of the surface
to be the distance between the points where g~
=O. lg„and 0.9n„, we have for the bare surface
4@~=0.64 A; this is much smaller than the widths
obtained for the real 'He surface in other theo-
ries. ' ' The free energy per unit area in (4.3),
which is the same as the surface tension, comes
out to be cr, =0.003 erg/cmz, much smaller than
the T=O experimental value" of o4=0. 3VB erg/cm .

These discrepancies in the density and surface
tension are a consequence of having omitted zero-
point-motion contributions as discussed in Sec. II.
We turn next to consideration of the changes wrought
by including these contributions and find, in par-
ticular, that they produce a sizable increase in
both the surface tension and the surface width.

I.O

0.5

E [n,] = B[n,] —p, dzn, (z), (4. 3)

where (2. 13) is used for E[n,]. The density ar-
rived at using this appl oacI1 ls essentially the san1e
as that determined by direct solution of the integro-
differential equation given the restrictions imposed

-OA 0
z (A)

FIG. 7. Bare density g&(g) /go as a function of z.
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B. Inclusion of surface zero-point-motion

Surface zero-point motion is accounted for via
the formalism of Sec. IIB. The numerical pro-
cedure is to start from some guess for o, calculate
go, n(z), and o„from (2. 26), (2. 25), and (2. 28),
and then find a new value of o from {2.M). These
computations are repeated until the surface tension
and the renormalized density n(z) converge.

In order to carry out these manipulations, one
must first make a choice of q, Our procedure is
to relate q to the surface midth, which is essen-
tially 2&0 since the bare surface is very sharp, by
the statement q fo(q ) = y, where y is a constant
of order 7t. Nom, for q -1A, $0 is a decreasing
function of q; the reason is that an increase of the
cutoff increases o which makes the surface more
rigid for high-wave-number ripplons in a compres-
sible fluid. As a, consequence, q fo(q ) exhibits a
maximum at q = 0.99 A '; the value at the maxi-
mum is 3.28. Hence, me cannot choose y larger
than 3.28 and, if me have @&3.28, the equations

q Ko(q ) =y and (2. 30) do not possess a unique solu-
tion. Therefore me have chosen to use @=3.28
with the co11espond111g q~= 0.99 A . This choice
leads to a =0.384 erg/cmz, which compares very
mell with the experimental surface tension of 0.378
erg/cm, In Fig. 8, the renormalized surface-
density profile n(z) is plotted. The surface width
is ~z = V. 8 A, larger than predicted by Shih and
Woo' (=3 A) or by Chang and Cohen' (=6 A). A

discussion of possible experimental determinations
of ~z is given in Sec. VI.

Other choices of q mill naturally lead to differ-
ent predictions of o and n(z). It turns out that the
density profile is quite insensitive to the cutoff;
for 0.95 ~ q ~ 1.05 A ', n(z) deviates at most by
.02' 0 from the curve shown in Fig. 8. The sur-
face tension, on the other hand, varies from 0.369

at the smaller cutoff to 0.414 erg/cm at the larger
one. We believe that our choice of q is prefer-
able to other ones because it is self-consistently
determined within our theoretical framework.
Nevertheless, it is possible to make other physi-
cally motivated selections of this number. For
example, one could use the requirement that the
imaginary part of the ripplon frequency be equal
to the real part at q=q: Im~', /Re&a", =1. Rip-
plon damping has been calculated by Saam; using
his results we find thRt this crltel ion implies q
=0.973 A and o =0.379 erg/cm'. These numbers
are very close to what we found above using an en-
tirely different specification for the cutoff. One
may also consider having different cutoffs q" and
q~ for the ripplons and phonons. A simple may of
picking these is to use the Debye model and count
modes in two and three dimensions. Then, q"
=vBwno" =1.395 A ' and q~ = (18m n )' '=1 568 A '
the attendant value of o is 0.429 erg/cmz. One
would expect an overestimate since, for example,
the bulk excitation spectrum ceases to be linear
near q™0.8 A ',

Both the bare-surface profile n, ( )z and the re-
normalized one n(z, o) are monotonically increas-
ing functions of z, displaying no oscillations. This
is in contradiction to the result of Hegge,

' mho ob-
tained significant oscillations. Begge's theory,
which may be viemed as a rather rudimentary ver-
sion of BDF theory, should in fact be compared
with our unrenormalized theory. Even if a bare
profile does contain oscillations, they will be
washed out when the zero-point motion of the sur-
face is included. The free surface is simply too
soft to sustain static density oscillations (in con-
trast to the hard wall case to be discussed below).
This conclusion is supported by calculations, based
on the use of RpproxlIQRte mRve functions) per-
formed by Chang and Cohen. ' However, these
authors used a scheme in mhich the surface energy
was minimized via variation of on).y a few param-
eters in a trial function describing the surface pro-
file. A similar calculation by Shih and Woo' in-
volves a single-parameter fit which entirely rules
out oscillations. Many parameters are needed to
investigate oscillatory behavior (see our discussion
of the hard wall case below). In fact, our solution
of (2. 16) is equivalent to an infinite-parameter
Inln1ml zRtlOn.

We have also investigated the renorrnalized den-
sityandsurfacetension by including (2. 32) as a
correction to (2.25), that is, (2. 25) is replaced by

Distance (AI

FIG. 8. Henormalized surface-density profile n(z) jno
as a function of g for q~=0. 99 A. ~.

n{z, o) = dz'n, (z —z') 1--
z Sp, (z —z')

@&0
'

-g 'zgzco{2 ~8)-1/2 (4.4)

The iterative procedure described above is used to
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FIG. 9. Comparison of the renormalized density
keeping zero-order and first-order terms in &'P(z) for
q =1.0 A.-'.

We have also calculated the density n„(z) in the
vicinity of a hard wall using the formalism of Sec.
IIA. The mall is assumed to be planar and located
at z =0. The boundary conditions on n„(z) are
n„(0) =0 and n (z)-n„as z-~, where np is a con-
stant determined by the pressure P which is applied
to hold the liquid against the wall. For this case,
severe convergence difficulties were encountered
in attempting to solve the integro-differential equa-
tion for n (z) by the method described in Sec. IVA,
consequently, we have used the (in principle equiv-
alent). procedure of minimizing o,» = E [n j —fo dz
x [pn„(z) —Pj with respect to variations in n„(z).
The trial density profile employed has the form

find o and n(z). Although S,&
is an oscillatory func-

tion, capable in principle of producing similar be-
havior in n(z) even when n, (z) is monotonic, we
find that no such behavior appears in the renormal-
ized density because fo is comparable to the period
of the oscillations in 8,&

and they are washed out
by the integration over z' in (4.4). Indeed, the net
effect of using this equation in place of (2. 25) is
small. Figure 9 compares the densities obtained
in the two cases for a cutoff of q~= 1.0 A"'; here,
the density arising from (4. 4) is denoted n"'(z).
The surface tension is also only slightly affected,
being increased by about 1% when (4. 4) is employed.
Thus, we find that the net effect on n(z) and o of
keeping first-order terms in 5n"(r) is small, lead-
ing us to believe that higher-order corrections
are unimportant.

gives no corrections to this density profile since
the surface is not free to move. The surface ener-
gy per unit area is then just the sum of cr =0.737
erg/cm plus a phonon correction equal to hsq /48m
This energy is much more sensitive to the choice
of cutoff than is the free-surface tension.

Our result for n (z) is qualitatively similar to
that of Liu, Kalos, and Chester' who found n(z)
for a gas of hard-sphere bosons between two walls
by direct integration of the Schrodinger equation.
It is interesting that we find oscillations in the den-
sity at a hard wall, in agreement with Ref. 14, but
none at a free surface in agreement with Befs. 12
and 13 (although not with Ref. 11). This demon-
strates the power and versatility of our theory and

suggests that it be applied to other situations such
as a realistic wall including van der Waals forces
and helium films of finite thickness.

V. SIMPLE MODEL

In this section we present a simple, essentially
phenornenological, density-functional theory for
4He. The simplicity of the model allows one to
perform, with relative ease, a wide variety of cal-
culations. Further, it is the first model to be ex-
actly solvable for the case of a planar free surface.
%'e will here neglect zero-point renormalization.
However, since the surface tension derived from
the model is of the same order of magnitude as
that for real He, this neglect is not expected to
destroy the considerable value of the qualitative
conclusions to be drawn.

The density functional is obta, ined from (2. 11) by
neglecting the interaction term and representing
t(N) as a power series ln the density,

e(n) =An + Bn + Cn'.

Constant and linear terms do not appear because

P 2

n (z)=nJ, 1 — 1+ "n,z' e' (4. 5)

where the a& and P are varied. In Fig. 10 we show
the result using ten parameters at a pressure of
24. 4 atm. For smaller pressures, the size of the
density oscillations decreases, as is to be expected.
For the hard mall, our renormalization procedure

Distance (8,)

FIG. 10. Density at a hard wall n~(g)/n& as a function
of the distance from the wall for P.=24. 4 atm; the ratio
of n& to the calculated P = 0 density is 1.25.
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w:&ns /ca=3. 8. (5. 3)

Using (5. 1), the equation determining the density
6E/5n(r) = {{becomes

ff' &'n' /(2r)
+2An(r)+3ffn (r)+4Cn (r) = i{.

(5. 4)
We first solve (5. 4) for the case of a planar free

surface normal to the z axis. The surface is lo-
cated in the region near z =0 and the bulk of the

we require that both the energy density and chemi-
cal potential vanish in the limit of zero density. A
similar theory has been presented by Padmore and
Cole'; however, their theory has the very unphysi-
cal feature that e(n) approaches a non-zero positive
constant as n -0. The coefficients A, B, and C
are fixed by demanding that the energy density,
chemical potential, and compressibility be those
for real He at zero temperature and pressure.
Consequently,

&= (e»/n{&)(2w —3), B= (ez/n{&)(3 —w),
(5. 2)

C= (&s/2n{'&)(w- 2),

where

x = [2m', /e2]'/2z, y(x) = [n(z)/n, ]'",
Pi

——w —6 = —2. 2, P2 = 3 (3 —w) = —2. 4,

p2 = 2 (w - 2) = + 3.6 .
Using the conditions y( —~) =0 and y'(- ~) =0,
first integral

(5. 6)

y (x) = [y (x)+ 2 piy (x) + 2 pzy (x) + 4 pgy (x)] ' (5. 7)

of (5. 5) is obtained simply by multiplying that equa-
tion by y'(x). Using (5.6), this result simplifies
to

y'(x) = a '"y(x) [1—y'(x)] [y'(x) + a]'", (5. 8)

where

a=-2/(w —2) . (5. 9)

Equation (5. 8) may be directly integrated to yield

liquid in the z&0 half space. In this situation,
since n(r) is a, function only of z and ii = —ez, (5.4)
takes the form

y" (x) = y(x)[1+ P,y'(x)+ P,y'(x)+ P,y'(x)], (5. 5)

in which

1 a 2(1+ a)+ 1 —y +2[(l+ a)(y + a)] /
& 2a+ y +2[a(y pa)]

x =xo+ — ln 22 1+a 1 —g
(5. 10)

The constant of integration xo deter mine s the pos i-
tion of the surface. The condition y'(0) =-,' centers
the surface at x=0 and, using (5. 6) and (5. 9),
yields xo=0. 616. The result is plotted i.n Fig. 11.
From (5. 10), (5. 6), and (5. 9) one obtains the as-
ymptotic re suits

face, "given implicitly by

/. L

lim n(z)dz n{&dz =1.
L, » oo +»ao go

Our numerical result is

5=—zo —z, = —0. 337 A,

(5. 13)

(5. 14)

n(z), „„=4an{&e "{& e " '»/" &

(5. 11)
2 2a/2,

n(z) —=n fl —4(1.+ a) e 2{ 1+~&/~& "{&e-2{~/» & sJ

which has the same sign and order of magnitude as
that used by Edwards et al. in recent determina-
tions of the ripplon spectrum in He from fits to

The asymptotic behavior far from the bulk is thus
governed by the binding energy, whereas the ap-
proach to the equilibrium density no upon moving
into the liquid is determined by the compressibility.

The surface tension. for the present model (ne-
glecting zero-point-motion contributions) may be
obtained numerically from (5. 10) and (2. 17), the

result being o2 =0. 111 erg/cm . Another quantity
of current interest is the distance between the po-
sition z, of the surface of tension, defined by

z, = f z[&(n(z)) —iin(z)] dz [e(n(z)) —&1n(z)] dz

O

C:

x=I2mEB/0 j z=fQ9IAI z

+2

(5. 12)

and the position zo assigning zero mass to the sur-

FIG. 11. Reduced density n(z)/no vs the dimensionless
length x=[2m&3/h ] a=[0.91 A] z for the planar sur-
face case, within the model of Sec. V.
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Another simple application of the modmo el xs a cal-

()
e e ensit rof'

v r is the velocit fieldv
' '

y ie associated with the
e equations to be solved are s,as

mv ~(r) 6E
2 6u(r)

(5. 15a)

& ~ [n(r)v(r)] =0.
Since Vu(r) ~ v(r) =0 in the eomin e geometry of interest

ecomes n(r)V ~ v&r&=0 ' u-
tlon

, which has the solu-

(5.15b}

v(r) = e=2', " (5.16)

where x and 8 are th d'e ra ial and an ul
coordinate system ed y rn ea is aunitt', d

'
th

' l.".-.gl. q--- fum o circulation g =2'
Using this value fo thr v, e model density functional,

g. (5.15a) may be put in the form

].G—

0.5—

0 4 8
l l l l l l 1

l 2 le 20 24 28

2 /I

=l2 E' lh j' =[09IA1

FIG. 13.. 13, Reduced density n(r) j'n vs the
rachal coord&nate = I2 /

cal droplets with ch
.91 j y for spheri-

= —0.95'&, These l
i c emical potentials =0p= .90'& and e
ese results are obtaese l btaxned for the model
~ ~

&f(y) f(y)
y dy dy y2

= f(y)[1 + fl f'(y) + & f'(y) + & f'(y)], (5. 1V)

=g(u)[&+ Ag'(u)+ Pu'( )uP+,g'(u,
in which

(5. 18)

I.O-
0.9-

l l I

in which y=—(2m' /ff "~
h P, i i (5.6). The boundary condi-

r at the densityare f(~) = 1, in order th

f(0)=0 so th t th
u v ue far from the

a e kinetic ener
vortex, and

gy pe ni vorte
uu e see 1 . '

y o verifyini e see (5.16)]. It is eas to
res t' ' '

f(y) -y for smallres rj.ction implies
ese oundary conditions n

integration of (5 1V) ieldyields the density profile shown

As a final application of this simAs a '
~s simple model we

e sp erical helium dro le
situation, (5.4) becomes

g u) = [n(r)/n, ]'", u = [2m~ /sh']'"r, &=——P/&si
(5. 19)

coor inate. The dimen '

are conszderang f' 't
n x fers from unit s

ya tnt e system
is etermined by o. &1, the li

n = 1 being ach' dleve fol a dlo l t
e imiting value

Far from the bulk
p e of infinite size.

e ulk of the droplet g(u)-e '
for reasons of symmetry, g' 0 =0
conditions w h

'
ally mtegrated (5. 18).

g(y) al'e depicted ili F . 13.
and 0.95, the resultant densit

Xn lg. 13,
z y profiles

Order-of- magnitud t'
dependences of th

e es imates of the curvature

6 between th
o e surface tension

e surface for real 'He c

'
n and the distance

from our solutions
e can be obtained

txtxes we use the q th d n
~ 4

u xons g y . To calculate th ese quan-
e quasithermod ny y

energy density is
on o. In the resp sent model, the total

~ 0.F—
CL6—

0.5-
0.4—

( )
8 dn ~~(r)

+ ~(u(r)) (5.20)

O. l—
0 0.5 l.o 1.5 ZQ0 2S 3.0 3.5 4.0

jl

y=t2mE& j'0 1 r=tQQI A]

I

4.5 5.0
pr(r) = pn(r) —~„,(r),

we have

(5, 21)

Definin the tangential pressure dia one &agonal compo-
ess ensor in the direc '

e y

I'"IG. 12.. 12. Reduced density n(~)/n vs
radxa& coordinate = [2e y= m&z/I' .]~ 2~='0

wx n the model of Sec. V 0

E- u&=-4v
l~ f,(r)r'dr, (5.22)
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FIG. 14. Surface tension 0. vs curvature K for spheri-
cal 4He droplets using the model of Sec. V.

where E is the internal energy and N the number of
particles in the droplet. The thermodynamic rela-
tion

P =Pr(0) (5.24)

(5. 23)

then serves to define the surface tension cr in terms
of the value of the integral in (5. 22), the pressure

The former provides, because of its small size,
justification of the neglect of curvature dependence
of the surface tension in a recent calculation of
ripplon damping.

VI. MSCUSSION

In applying density-functional theory to a calcu-
lation of the properties of the free surface of super-
Quid 'He we have demonstrated a clear need for
modification of the BDF theory in order to include
the important effects due to zero-point motion.
Further, we have developed a renormalization
scheme which self-consistently takes these effects
into account. A more sophisticated treatment
would incorporate the physics contained within this
scheme directly into the original density functional.
Further research in this direction is needed.

Our predicted surface width is significantly
larger than that obtained in Befs. 12 and 13. As
yet, there exist no experimental determinations of
the width, but we suggest two possibilities. The
first involves measurement of the elliptieity of
light scattered elastically at the surface. If light
incident at the Brewster angle is polarized at an
angle of 45' with respect to the plane of incidence,
the ellipticity 8 of the scattered light is given by

far from the surface of the droplet, and the area
A and volume V of the droplet. In terms of the
droplet radius R,

k ~ —1""
dzn(z)[n, —n( )],

+0 ~ ce
(6. 1)

V= 34mB, A=4mB . (5.25)

1
o = ~JR~.

Combination of (5.22)-(5. 26) leads to

(5.26)

(5.2V)

The radius R~ of the surface of tension is that value
of R for which da/dR =0, a condition which, since

p and E —pK are independent of R, yields [from
(5. 23)] the well-known Laplace equation

where k is the wavenumber of the light and & is the
He dielectric constant. This result assumes that

the wavelength of the light is large compared to the
surface width and that the Clausius-Mossotti equa-
tion is applicable. It is clear that 8 measures a
surface width l defined by l = j"„dzn(z)[n, —n(z)]/
n0. A second method for measuring the width in-
volves the elastic scattering of neutrons from the
surface. Since the neutron ref lectivity 8 for large
angles of incidence is exceedingly small, it would

be best to perform measurements near the angle

The zero-mass radius B0 is defined by

Ro =3
I

n(r)r'dr. (5.28)
0.54—

From our solutions to (5.18) and (5.26)-(5.28)
we have numerically obtained o and

(5. 29)

as functions of the droplet curvature

(5. 30)

0+ 0.52

0.30

0.28—
0 0.04 0.08 0.12 OJ6 Q20

The results are plotted in Figs. 14 and 15. We
also find (so/BR')», = 3. l &&10 ' erg/cm and (95/
SK)~0=0.301 A . The latter derivative is of inter-
est since it is of the same order of magnitude as
values used by Edwards et al. in their fits of rip-
plon spectra to empirical surface-entropy data.

FIG. 15. Distance &=Rp RT between the radius Rp of
the zero-mass surface and the radius R~ of the surface
of tension, plotted vs the curvature K of spherical 4IIe

droplets. These results pertain to the model discussed
in Sec. V.



12 RENOBMALIZED DENSITY- FUNCTIONAL THEORY. . .

for critical reflection. In this case one finds that

8O, (u', —4vbn, )'"
0

Pl p

~C(, (qz (d) =

CO&SQ .

K PS
6 ((d —(d„), (d & 8 q z

(d„P

2hk (&t)

P((d + (dk)

(AS)

x Zzz[n(z& —Z(z&nz&),
«00

(6. 2)

where Ro is the reflectivity for a perfectly sharp
surface, 9, is the z component of the neutron wave
vector, and b is the He-neutron-scattering length.

An interesting result of Sec. IV is the prediction
of static density oscillations in He near a hard
wall. It is worthwhile to point out that these oscilz«

lations may reasonably be expected to persist in
the situation where the helium is in contact with a
real substrate, next to which several solid 'He

layers are formed (due to the substrate van der
Waals attraction), followed by the liquid. We hope
to generalize our formalism to treat this case.
Significant structure (in the density) in the neigh-
borhood of this liquid He-solid He boundary could
conceivably have an important effect on the Kapitza
resistance in the temperature region (1-2 'K)
where the effective thermal-phonon wavelengths
are comparable to those of the static density oscil-
lations (especially if we note that the characteristic
wave number for the energy current is about
SksT/Rs and that the phonons can approach the sur-
face at an angle).

APPENDIX

x(;(;(q, ~) = 6l. (q, ~)/», t(q, ~)
and for zero temperature

S„(q, (d) = 25 Imp«(q, (d) .

(Al)

The y«(q, (d) is easily calculated along the lines set
forth in Sec. III of Ref. 41. One need only alter
Eqs. (18b) and (19b) of that reference by setting
5U(r, f) = 0 in the former and adding 5P,„,(r, f)!,o to
the right-hand side of the latter. Straightforward
calculation then yields, for (d & 0,

Here we derive Eqs. (2. 26) and (2. 28) of the
text. While these may be derived by quantization
of the appropriate ideal-fluid hydrodynamic equa-
tions, treated as field equations, we have, for
present purposes, no need of all the detail con-
tained in such an approach. The mean-square dis-
placement go can be obtained from the structure
factor S&(;(q(d) —= (Ol f~(q(d)l (q(d) I 0), which in turn is
derivable from the retarded f-p correlation func-
tion y«(q, (d); g«(q, (d) is found from the solution of
the ideal-fluid hydrodynamic equations in the pres-
ence of an external pressure (in Fourier trans-
form) 6P,„,(q, (d) applied to the exterior surface of
the liquid. In fact,

In terms of 8(;(.(q, (d),

d g d(d
lo=

(2 )z 2 S'(:(:(q, ~) ~ (A6)

Combining (AS)-(A5) gives, after some calculation,

~2 [~2 ]r&&z»lan+ [~2 ]l&hanon (A6)

where

ho]"'"'-=
~2, ,~a

"g'i (x)dx
g'(x) +x'

f(x) dx . (AVb)

In Eqs. (AV),

g(x) = —x'+ x (1+x')'~', f& = o/ps',
(A6)

(1+x)' '+x' '
f(x)

2
1 +

(1 )3/p ln
(1 )g/z

The term [$0]""'"comes from integrating the
term with the 5 function in (AS). In this case no
cutoff is necessary so that the integral in (AVa) is
extended to infinity. The remaining term in (AS)
gives rise to [go ]'" ", for which a cutoff at large
wavenumbers q is required. The integral in
(AVa), done numerically, has the value 0. 2V8;
combination of this result with Eqs. (AV) and (A8)
yields Eq, (2. 26} of the text.

We turn now to the derivation of Eq. (2. 28).
ripplon zero-point energy per unit area is clearly

&ropy&on 1
KQ 2

d q
(2 )2 ((k (A9)

where the ripplon frequency (d,„ for a compressible
fluid. is determined. by42

(d,„=s (q —
&( ) = o&(:q /p .2 2 2 2 2 (A10)

Combining (AQ) and (A10) leads immediately to the
first of equations (2. 28}.

To derive the second, we solve the hydrodynamic
equations' for a slab having thickness L, along the
z axis and two free surfaces. Consideration of
wave solutions of the form e"'e"'"'(e'"—Re '"'),
where q is perpendicular to the z axis, lead im-
mediately to the conclusions that the allowed wave
vectors k are determined by the condition

ar. —2tan ' [f q'u/(q'+u')]= ~n, (A11)

At zero temperature S«(q, (d) = 0 for (d & 0. In (AS),

&( = (q' —(d'/s')'~', (d„= (ovq'/p)'~',
(A4)

a, = ((d'/s' —q')'~', (d, = (ok,q'/p)"' .
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d q g hs [q'+ k'(n)]'I
(2v)'

For brevity, let f (n) =-,' ks[q'+k'(n)]. Assuming
that all derivatives off (n) are zero at n=~ (i.e. ,
assuming a cutoff wave number), the Euler-Mac-
laurin formula gives

(A12)

f(n)= — — — + f(n)dnf (0)
n=1,2s ~ ~ 2 0

where n~ j. is a positive integer and that the fre-
quencies obey uP=s (q +k ). The wave vectors q
are determined by periodic boundary conditions.
For area A, the phonon zero-point energy of the
system is then

ln which p = lg +k q k=pxi and q=P(1 —x )
Equation (Al. &) becomes

n = — + — n
f(o)

n& 2 ~ 0

5(1 —x )(1 —2x~) 1
1 ——

p p g( g)p
dk+0-

(A15)
Insertion of (A15) into (A12) gives, for large L, a
term proportional to the volume V=AJ plus a term
proportional to A. Dividing the latter term by A
gives twice (since there are two surfaces) the pho-
non zero-point surface tension v,'," ". Consequent-
ly,

(A13)
~~ „(p'+ 1)! dn „0

Here the B„are Bernoulli numbers. Next, we
change to the variable k using the relation [see
(A11)]

~n I, , 2 k(1 -2)(1 —2X')

dk v L 1+bpx(l-x)

As/ dP
4 (2v)' 2 (2w)'

nsp b(1 -2)(1-2x')
2 1+5'p'x'(1- x'}' (A16}

Straightforward integration using a cutoff wave
number q yields the second of Eqs. (2. 28).
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