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A thorough analysis is made of the dependence of the superconducting transition temperature T, on

material properties (X, p, , phonon spectrum) as contained in Eliashberg theory. The most striking new

feature of the analysis is in the asymptotic regime of very large X where T, is found to equal

0.15(X(co'))'" (assuming p, ~ = 0.1). This result implies the surprising conclusion that within

Eliashberg theory T, is not limited by the phonon frequencies, and also shows that McMillan's "X =
2 limit" is spurious. The McMillan equation (with a prefactor altered from 8L, /1.45 to co„,/1.2) is

found to be highly accurate for all known materials with X ( 1.5 but in error for large values of 'A.

Correction factors to McMillan's equation are found in terms of X, p.*, and one additional parameter,

((o)'))'"/o)log. The frequency COlpg is defined as exp(lnco) where the averages (inc@) and (co') are
defined using (2/Xco)a'E(co) as a weight factor. These conclusions are based on a combination of

1

analytic and numerical solutions of the Eliashberg equations, and are supported by a comparison with

tunneling data, Especially strong support comes from a new experimental result for amorphous

Pb04, Bio» reported herein. This material has parameters X = 2.59 and T,/co, g
= 0.284, in serious

disagreement with McMillan's formula but in good agreement when the correction factors are included.
The McMillan-Hopfield parameter g [or N(0) (I')] is extracted from tunneling measurements or from

a combination of empirical values of X and neutron-scattering measurements of phonon dispersion. It is

proposed that q (which is now known not to be accurately constant) is the most significant single

parameter in understanding the origin of high T, and the limitation of T, by colvalent instabilities.

I. INTRODUCTION

The most extensive study of the relation between
microscopic theory and observed superconducting
transition temperature 7.', was made by McMillan. '
In the subsequent seven years there has been a
significant accumulation of microscopic information
on strong-coupling superconductors coming most
notably from tunneling experiments but also from
inelastic neutron scattering, electron spectroscopy,
and energy-band theory. In this paper, McMillan's
work is reexamined in the light of this new infor-
mation. We find several aspects of his work which
agreed mell with information available at the time
on medium-coupling superconductors (0. 5 & X & 1)
but need modification for strongly coupled materials
(X&1) which have been more recently studied. We
attempt to make the appropriate modifications.

McMillan's work is based on the Eliashberg equa-
tions which are extensions of the original Bardeen-
Cooper-Schrieffer (BCS) theory, ' and were first
written in their finite-temperature form by Scala-
pino, Schrieffer, and %'ilkins. The microscopic
ingredients of Eliashberg theory are the Coulomb
repulsion p =N, (0)I V, I [where N, (0) is the single-
spin density of electronic states at the Fermi sur-
face], and the electron-phonon spectral function
n'E(~) defined as

&2E(&) N (0) ~4k IMihlh I 5(& —&g) 5(&a) 5(ea ) (1)
&.a 5(&~) 5(ea )

~1
where Q =k —k, & and &„ are phonon and electron
energies, respectively, Q and 0 run over wave num-
ber and band quantum numbers for phonons and

electrons, M», is the electron-phonon coupling
matrix element, and the 6 functions restrict the
electrons to the Fermi surface. Given these param-
eters, the zero-temperature Eliashberg theory
determines the complex energy-gap function 4(v),
and the finite-temperature Eliasberg theory deter-
mines 7,. The quantity 14(&u) l~ is measureable by
quasiparticle tunneling, and McMillan and Rowell'
have been able to use measured tunneling conduc-
tances to determine o. E(&u) and p* by inverting the
zero-temperature Eliashberg theory. The resulting
functions n'F(~) tende to have a close similarity
to the phonon density of states E(&u) as deduced from
neutron scattering. It is primarily information de-
rived from this technique that has motivated the
present work.

The principal content of McMillan's 1968 paper'
is the solution of the finite-temperature Eliashberg
theory to find T, for various cases, and the con-
struction from this of an approximate equation re-
lating &, to a small number of simple parameters:

(&u) 1.04(1+ &)

1.20 ~ X —p"(1+0 62K))
'

The original McMillan equation contained OD/1. 45
instead of (~)/1. 20, which was introduced later by
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Dynes. ~ The parameter X is a dimensionless mea-
sure of the strength of + I'.

d(d Q F((d)/(d .

The quantity I+ & plays the role of an electron
mass enhancement and renormalizes certain ob-
servables such as the electronic specific heat, In
terms of BCS theory, & corresponds to N, (0) I I/»I.
The parameter p,

* is an effective Coulomb repu1, -
sion reduced from the instantaneous repulsion p.

by the fact that Coulomb coupling is propagated
much more rapidly than phonon coupling,

—~=—+ln

The ratio ~„/1d,„is a ratio of propagation times;
~„corresponds to a plasma frequency or a high-
frequency peak in Imrl/«(cd)], where «(1d) is the
dielectric function, while m» corresponds to the
high-frequency cutoff in naF(&u). A time lag occurs
in the electron pairing which is the source of both
the frequency dependence of b(&d) and the reduction
of the effective Coulomb repulsion. Finally, (v}
is the first moment of the normalized weight func-
tion g(e) = (2/4u) o.'F(&d), where the general mo-
ment is defined as

(I'd }= — de c/ F(&d) (d

The principal content of the present paper is a
more extensive set of numerical solutions for &,
at larger values of the coupling parameter X than
were studied by McMillan, and for a variety of
shapes of the weight function g(&d). We find that
McMillan's Eq. (2) underestimates T, for large
values of &, and also underestimates the extent to
which &, depends on the shape of g(1d) .

The plan of this paper is as follows: In Sec. II,
the mathematical apparatus used in solving for T,
is discussed. The asymptotic behavior of &, at
large X is rigorously shown to be - (&(&d'})1/a rather
than - (1d} as in Eq. (2). The numerical results are
summarized in Sec, III, where it is shown that the

shape dependence of T, is described (for && 2) if
the prefactor (1d} of Eq. (2) is replaced by a loga-
rithmic average frequency, equal to the n-0 limit
of the sequence of average frequencies

—(~n}1/ n

In Sec. IV the available tunneling data are sum-
ma, rized and a. new experiment is reported for a
very-strong-coupling system, amorphous Pb-Bi,
which provides strong confirmation of our cal,cula-
tions in the large-~ region. In Sec. 7 a new ap-
proximate ~, equation is presented which consists
of correction factors to McMillan's Eq. (2). In
Sec. VI the question of causes of and limitations to

high ~,'s is discussed. The McMillan "~=2 limit"
is shown to be spurious. Data on high-~, materi-
als are analyzed and it is concluded that the param-
eter 1) = KM(ada} is of crucial importance in raising

The "covalent instabilities" which appear to
limit g are discussed, Appendix A presents some
mathematical analysis used in Sec. II, and Appen-
dix 8 discusses the asymptotic limit of BCS theory.
The principal results of Secs. I-V have already
been published in a short note. '

II. MATHEMATICAL ANALYSIS

The value of &, is determined from the interac-
tion parameters n F(v) and p,

* via the Eliashberg
equations. Because the gap h(~) vanishes at T„
this becomes a linear equation for the infinitesimal
function b, (1d). The condition that a nonzero solu-
tion exists determines the value of T,. Two equiv-
alent versions of this equation have been used; a
mathematically direct matrix equatione'0 for b, (i&d„)

on the Matsubara imaginary-frequency points x„
= (2n+1) v7', or a physically meaningful integral
equation for O (v) on the real-frequency domain,
obtained from the former by analytic continuation.
McMillan's analysis' was based on this latter ver-
sion, and has the advantage that physical insight
can be brought to bear. In particular, the solution
&(&u) at &, bears a close resemblance to the mea-
sureable gap function at low temperatures, How-

ever, the kernel of the integral equation is made
complicated by the occurrence of poles on the real
axis and various unwieldy combinations of Fermi
and Bose factors. A recent analysis of this kernel
by Kessel" has confirmed the results of McMillan's
numerical analysis under the assumption that the
Bose factors are negligible. Less sophisticated
analyses by Allen'~ and by Leavens~3 indicate that
the Bose factors are not negligible in every in-
stance. These mathematical, difficulties are avoided

by remaining at the imaginary-frequency points,
where poles do not occur and statistical occupation
factors disappear. An additional benefit for com-
puter programming is the occurrence of an exact
discrete matrix representation, which ebminates
the practical necessity of constructing an approxi-
mate discretization to solve the integral equation.

The Matsubara representation of the gap equation
has been discussed by Omen and Scalapinoe and

Bergmann and Rainer. " %e choose, for our start-
ing point, Eq. (7) of the latter authors,

In this equation, ~ is a modified gap parameter
which becomes &/I m I in the limit when the "pair-
breaking parameter" p (to be discussed shortly)
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vanishes:

I (d„/(d„ I 4(ild„)
Z(i(d„) =

IMn[+7T P
(8)

Q(K „-p5 „)b,„=0 (m —0),

If „=X(m —n)~X(m+n~1) —2p.*(N)

(14)

The frequency 2„ is e„multiplied by Z(i(d„), which
is the "renormalization function" Z(&u) of strong-
coupling theory4 evaluated at the Matsubara fre-
quencies:

n

z„=~, 8(' „(=z„+mT X(O(+2+X(l() .
l=1

The interaction parameters X(n) and p.*(N) are de-
fined by

X(n) = 2 d&u
0 F(co)(d

(d + 271++

~ =—+ln (12)

It is this number (rather than p, ) which has to come
be regarded as physically significant, and which is
frequently deduced from tunneling experiments or
isotope-effect measurements. Therefore, the def-
inition (11) of p.*(N) in terms of p, should be rewrit-
ten in terms of JL(,

*:

It is convenient to make a further simplification
of Eq. (7) which follows from the symmetry of the
kernel under replacement of (u; by —m; (i.e. , the
transformation n- —n —1, m- —m —1). It follows
that the eigenfunctions of Eq. (7) must be either
even or odd under this transformation, and we can
restrict attention to even solutions (odd solutions
would be gapless). Then we can write Eq. (V) as

The function &(n) takes the value &(0) =& when n=0,
using the definition (10).

The integer N must be chosen large enough that
the largest eigenvalue p is not affected by the choice
of N. This is satisfied provided &(N) is much small-
er than unity or X(0). We find that satisfactory
convergence is obtained provided ~~ exceeds -8(d~,
where ~, =(~ )'~ was defined in Sec. I. The pa-
rameter p,*(N) is the (generally reduced) value of
the Coulomb parameter p. which reproduces at cut-
off w& the effect that p, has at cutoff co„. A two-
square-well analysis (such as McMillan's) provides
an approximate T, equation, which depends on a
number p.*, which is scaled to a cutoff at some
upper phonon frequency &u,„as in Eq. (4). There is
no known unique best choice for ~», and we have
used ~~ in our numerical solutions:

„2m+1+~ 0 +2
l=1

(15)

pm~ 'po=&oo=~(I) —2p*(N) —1. (18)

If we evaluate (18) at the actual transition tempera-
ture, the inequality (1V) tells us that p~~ p (T,)
= 0, giving the following rigorous inequality for T,:

where b.„ is shorthand for b, (ia„).
The pair-breaking parameter p has so far not

been discussed. The physical-gap equation is ac-
tually only the special case of (7) or (14) where p
=0. The parameter p was introduced by Bergmann
and Rainer'o (we have introduced a scale factor vT)
in order to create a standard Hermitian eigenvalue
problem, and it is only a convenient mathematical
device. At very high temperatures, the eigenvalues
of K [Eq. (14)] are all negative. If p* equals zero,
they are approximately the negative odd integers.
This can be seen by noting that at large T, X(n)

[Eq. (10)] reduces to

X(n) = X ((o~)/(2' T)2

provided n&0, 2wnT»((d')'~ . Thus &(n) can be
made as small as desired by raising the tempera-
ture. The exceptional case X(0) cancels with itself
and doesn't appear in Eq. (15). As the temperature
is lowered toward T'„one of the eigenvalues p
begins increasing toward zero, T, being defined as
the temperature at which the first eigenvalue
crosses zero. Presumably at still lower tempera-
tures, other eigenvalues could cross zero, but
Owen and Scalapino~ have not found this to happen
for a variety of realistic kernels. It is helpful to
note that to find T, we need only study the behavior
of the maximum eigenvalue p ~. This eigenvalue
is bounded below by the expectation value of the
operator K taken with any arbitrary trial vector 4, .

p.„-~, If ~/( ~~ ~,)=p, (17)

(The same inequality is the basis for the Rayleigh-
Schrodinger variational procedure for the ground-
state energy. ) This inequality can be immediately
used to generate lower bounds &„on &„by solving
p, (T„)=0. Provided a solution exists, it is clear
that T,=T„. Thus we have a variational condition
on the transition temperature, namely, that the
actual gap function 6((d) maximizes T,. This is an
intuitively obvious consequence of the principle that
the gap function minimizes the free energy.

Let us now construct the simplest possible trial
solution, ~o = ~„o. The corresponding estimate of
p 1s
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p„(T,„, X, p*, g) = 0, n = 0, 1, . . . , N (26)

(d
T T E

4

2z' 1+2tj, *(N)

We have immediately the surprising result that if
& is very large, &, scales at least as fast as &' '
rather than saturating as occurs in the BCS or
McMillan formulas, This means that the electron-
phonon mechanism does»ot imply a restriction of
the type T„&eD, but can i»P«»csPIe lead to an ax-
bitmxily large T, . With this information in mind,
it can be seen that in the limit of very large X, the
asymptotic limit of the T, equation is

T.—(~&'&'))"'f(u*(N)), (22)

where f is a, function of p.
* only. This follows be-

cause in the large-& limit [using Eq. (16)], informa-
tion about T„X, and phonons only enters Eq. (15)
in the combination X(uP)/T', .

We can obtain an improved estimate of T, by al-
lowing 6, to have two components corresponding to
»= 0 and 1, The best choice of such a two-com-
ponent vector is obtained by diagonalizing the 2&& 2

matrix ~K, which consists of the matrix K „ trun-
cated after»= j.„rn = i. The large of the two eigen-
values is

p & et = —-'' I4+4u*-(N)+ ~(1) —~(3)].4)2.»(I) —~(3)1'

+[&.(I) + X(2) —2 p" (N)]~/~'. (23)
From this we can generate an explicit lower bound

on T, analogou. ". to (19) or (21). However, the for-
mulas are complicated and uninstructive. In the
limit of large T, and p. = 0, the inequa, lity on T,
coming from (23) is

T, T„=0.180(~(~'))»' (~& lo I."=0). (24)

The exact behavior in this limit, "as deduced from
computer calculations with ~+1=64, is

T, = 0. 182 (X(&ua))'~' (X & 10, p.
* = 0) . (25)

Thus the 2&& 2 appx'oximation has converged to within

1% at large &.
The eigenvalue p can be regarded as depending

on T, &, p, , and g(~), where g(z) =2a'E(td)/hu is.
the normalized spectral function. The procedure
described so far consists of solving the equations

It is convenient at this point to introduce an Ein-
stein model for the spectrum @ I",

c.'Fz(e) = X~s5(cu —&us)/2 .
In Sec, III we will. see that the transition tempera-
tux'es of many x'eal superconductox's such as Pb ox'

Nb are only weakly affected by deviations of n I
from this form„Using the Einstein model, we can
solve (19) to get a direct inequality on T, :

obtaining an increasing series (T„, T„, . . . ) of
lower bounds on T, . For numerical purposes it is
much simpler to regard T, as fixed and solve in-
stead

p„(T„&„,u*, g) = 0, n = 0, 1, . . . , N (27)

obtaining a decreasing series of upper bounds (X„
X„.. . ) on &. Equation (27) is equivalent to solving
the matrix equation

detK„= 0 = det(A„+ X„B„), (28)

where A.„contains the terms of K„which are inde-
pendent of n E(v), and X„~B contains the terms
which are linear in naE(&u). In principle one needs
to be careful to find the smallest positive eigenvalue
X„of Eq. (22), but in practice, only one positive
eigenvalue seems to occur. ' We have constructed
a computer program" which solves for ~„by in-
verse iteration, and also finds the corresponding
eigenvector 4„. The matrix size is then doubled,
and the previous eigenvector is used as the trial
vector in the next iteration loop. The total time
required to solve for X (with a maximum matrix
dimension of 64) is less than 1 sec on an IBM 370
computer.

When p,
* vanishes, this procedure converges very

rapidly and can be terminated when ~„ is in the
range 5 to 10 times z~. When p, is nonvanishing,
the nature of the matrix K is altered in that the off-
diagonal elements no longer fall off as I» —m l in-
creases. This gives a series (Xo, X.„.. . , X~) which
never converges in a strict sense unless M is made
to exceed the predetermined cutoff N (in which case
the Coulomb terms are put to zero for I v —m

~
&N).

However, it is possible to obtain a convergent
series of approximations by the legitimate proce-
dure of using p. (n) rather than p. (N) in the trun-
cated-matrix solution. If this is done, the series
(Xo, &„.. . ) rapidly converges. However, the con-
vergence is no longer monotonic, and inequalities
of the type (18) and (23} are no longer rigorously
true.

In summary, the results of this section provide
a rapid computer algorithm for solving the Eliash-
berg equations for T„and the unexpected result
that for large X, T, behaves as (X(aF))~~ . The
particular combination &(uF) is an interesting one,
as McMillan has shown that this product depends
only on electronic properties and atomic masses,
and is independent of specific features ef the lattice
dynamics, We will have more to say about this in
Sec. M. It is interesting to note that BCS theory
(nonretarded) has an asymptotic form T,- XSD/2

for large X, This is discussed in Appendix IEt. As

a, final mathematical observation, it is interesting
to ask what is the optimum shape for the function
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FIG. 1. Calculations for an Einstein spectrum of 1',
normalized to the Einstein frequency uz as a function of
A for @*=0. The curves labeled first lower bound and
second lower bound are from Eqs. (21} and (23) and con-
sist of solving Eq. (14) with N equal to 0 and 1, respec-
tively. The curve labeled "exact solution" was found by
solving Eq, (14}with X=63. Deviations from McMillan's
equation are apparent when T,/~z exceeds 0, 1.

n~E in the sense that T, is maximized under the
conditions of fixed &, p*, and (uF). The asymptotic
formula (22) indicates that at very large &, the

shape doesn't affect T,. At smaller values of X

the shape does play a role. It is clear from inspec-
tion of Eq. (15) that the eigenvalue p (and thus T,)
is maximized by making the parameters X(n) as
large as possible. If we write &(n) in terms of the
normalized spectral function g(&u),

bound has converged to within 1% of the exact T,
for. »10, and we believe that the 64th lower bound
has converged to within 1% for»0. 3 (and p* = 0).
In the range 0. 3& ~& l. 5, the calculated T,'s agree
very well with McMillan's functional form'
e ' """'. This is illustrated more clearly in
Fig. 2, where the logarithm of T, is plotted versus
(1+X)/X. There is in fact a slight displacement
toward higher T,'s in our calculations at small &

which corresponds to a 5% increase in the prefactor
of the exponential and arises from the fact that the
Einstein spectrum yields higher &,'s than McMillan's
niobium spectrum. For values of & exceeding 0. 5,
the exact solutions shown in Fig. 1 begin to depart
from McMillan's equation, and the departure be-
comes significant for»1. If a positive value of
p,

* is used, the departure from McMillan's equation
is postponed to larger &, but occurs always for T,/
co exceeding 0. 1. It is perhaps surprising that this
effect was not seen in McMillan's original calcula-
tions. The explanation is that McMillan calculated
only cases where T,/&u did not exceed 0. 1. In Fig.
2 it can be seen that on a scale of (1+X)/X, the de-
parture from McMillan's equation is confined to a
narrow range between 1 and 1.75, which was omitted
in McMillan's work. A strong hint of this deviation
was found by Leavens and Carbotte. '6

The predicted asymptotic behavior of T, as A'

g(&)&
X(n) =X dt's ~— (29)

we can then ask which shape of g(&u) (for fixed sec-
ond moment (uP)) maximizes X(n)/&. It is proved
in Appendix A that the Einstein spectrum optimizes
the integral (29) and thus is the preferred phonon
spectrum.

III. NUMERICAL RESULTS

oI-
EINSTEIN SPECTRUM

In Sec. II, the mathematical basis for our com-
puter solutions of the Eliashberg equations has
been described. In this section we. present numer-
ical results and compare them with tunneling ex™
periments.

The simplest case is the idealized model of an
Einstein phonon spectrum with no Coulomb repul-
sion (p* = 0). For this case the first two lower
bounds on T, are simple enough to be solved ana-
lytically, and they are shown in Fig. 1. I'hese
lower bounds are of no help if & is small because
the lower bounds vanish. The curve in Fig. 1
labeled "exact solution" is actually the 84th lower
bound. As mentioned previously, the second lower

-2-

(1+k)/X

FIG. 2. Logarithm of ez/T, versus (1+A)/A calculated
for an Einstein spectrum with @*=0, McMill, an's equa-
tion is also shown, and agrees well with the calculations
at large values of (1+~)/~, At small values the calcula-
tions suddenly deviate from the straight line in a fashion
dictated by the first lower bound, Eq, (21), This graph
is similar to McMillan's Fig. 1 (Ref. 1) except that Mc-
Mtjlan included only values of (1+X)/A greater than 2,
and used a slightly different phonon. spectrum which ac-
counts for a slight displacement.
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FIG. 3. A log-log plot of T,/cuz vs h calculated for an
Einstein spectrum. The slope at large P is 0. 5. The
asymptotic formulas for T,/~z are 0, 18K and 0. 15K'/2

for @*=0and 0. 1, respectively.

Trofimenkoff and Carbotte, and Leavens. As
another test of our computer programs we have re-
peated McMillan's calculations~ using the same
choice of n'E which he used to represent niobium.
This test is illustrated in Fig. 4. McMillan's re-
sults and ours are not completely overlapping be-
cause we used a maximum matrix size of 64, which
guarantees convergence only when T,/~z exceeds
0.01, whereas McMillan was able to solve for very
much smaller values of T,. In the region where
our methods overlap, the agreement is excellent
for p,

* =0 but discrepancies of -77o exist at the
largest values of p.*. This discrepancy probably
arises from slightly different choices of the phonon
cutoff frequency, which occurs in the definition (4)
or (12) of p*. This in turn produces a slight dis-
crepancy in the size of p,*(N) as determined in Eq,
(13). Such a discrepancy is negligible for. small
value of p. but becomes noticeable if p.*-0.2. In
general the agreement between these independent
calculations is quite satisfactory.

When T,/a2 is not very large (i. e. , X& 10), we
expect the shape of o.'F(~) to play a, role in deter-
mining T,„Qf the shapes known from tunneling ex-
periments, lead and mercury stand out as in some
sense prototypical. The lead spectrum was mea-
sured by Howell and McMillan' and has a shape
typical of simple crystalline metals. The mercury
spectrum was measured by Hubin and Ginsberg~'
and represents an extreme case of wide dispersion

is verified by a log-log plot in Fig. 3. For values
X =10, which corresponds to T, =0.6 e~, the as-
ymptotic formulas 0. 18 m~ ~~ ~ for p.

*= 0 and 0. 15
for p.

* = 0. 1 are good approximations to T,.
As mentioned in Sec. II, these results are inde-
pendent of the shape of n E(&u) provided T, is high

enough and &us is replaced by ((uP))' '. Unfortu-

nately, there are no materials known to have &

greater than 3. However, it is clear that, in prin-
ciple, if ~ could be large enough, T, can be almost
arbitrarily large. However, if 2m', became com-
parable to the Fermi energy, the validity of the
Eliashberg theory would be doubtful because of pos-
sible complications related to Migdal's theorem.

An important test of the consistency of the Eliash-
berg equations is the comparison between mea-
sured values of T, and values computed from the

n E curves which are extracted from low-tempera-
ture tunneling spectra. . Because the "measured"
~ F are required to give the observed value of
&(+=0) =&o, this test consists of calculating the
deviation of 2d, /ke T, from the BCS value of 3. 52,
In all cases where we have performed this test the

agreement has been excellent, confirming the con-
clusions of several other workers, especially Swi-
hart, ~ Owen and Scalapino, 9 Bergmann and Rainer,

0,25—

A
0.1 5—

~O

0.10—

0.05—

0,5 1.0

FIG. 4. T,/((cu ))' 2 plotted versus &. The solid lines
are calculated from Eq. (14) using N=63, for various
values of p.* and the same shape ~~E(~) as used by Mc-
Miilan to represent niobium. The points are McMillan's
calculations as summarized in Table I of Ref. 1. The
points enclosed in parentheses have JL(,*=0.157, other-
wise p* is the same as on the nearest labeled line, The
agreement between these independent calculations is ex-
cellent except for a systematic deviation for large p*,
which probably derives from a slight difference in the
definition. of p*, which is unimportant if p* is small,
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020—

0.15—

FIG. 8. T,/(, (~ )) plotted versus &. The solid
curves are calculated for the various shapes of e2I"

shown in Fig. 5 and with @*=0.1. The dashed curve is
the McMillan equation using @*=0.1 and the prefactor
((~ )) /1. 20 instead of 0D/1. 45. The experimental
points are taken from tunneling data given in Table I.

periment if the prefactor was chosen as (&u) = &u, .
Therefore, it is interesting to rescale the curves
in Fig. 8 using T,/e, instead of T,/ez. This is
done in Fig. 9. There is now considerably less
shape dependence in the three theoretical curves,
and the data also show less scatter. The data have
also been plotted this way in Ref. 16, - except that
the axes (T„Xv~) were used instead of(T,/&u&, X)
used here. The McMillan equation is noticably
underestimating the trend in ~, for large &. By
inspection of Fig. 7, it is clear that if replacing
~, by ~,

&
has eliminated some of the shape depen-

dence, then replacing ~, by some (d„ for n& 1 will
make even more improvement. This is confirmed
in Fig. 10, where T,/~„, is plotted versus X. With
this scaling, the shape dependence has been virtual-
ly eliminated for. && 2, The data are also quite
satisfactorily aligned in this single curve, which
deviates very noticeably from a McMillan curve at
&= 2. The use of ~„,as the appropriate scale
factor has been proposed by Ginzburg and Kirzh-
njts '3 and j.s j.mplj, cit jn the work of Leavens.
Our calculations confirm this proposal for values
&& 2. However, for large values of ~, the appro-
priate scaling frequency increasing from co„, to
(d2, the latter being appropriate for X&10,

0+0—

It is also shown in Appendix A that cu„ is a nonde-
creasing function of ~ for ~ & 0. As can be seen in
Fig. 7, ~„ tends to be roughly linear in n for small
~, with mercury having a slope five times larger
than lead. An Einstein spectrum is the only shape
with zero slope.

To illustrate the effect of the shape of n E on T„
Fig. 8 shows T,/a2 plotted against &. The theo-
retical calculations have been done for the three
shapes of Fig, 5 and p,

* always 0. 1. The experi-
mental data are all taken from tunneling experi-
ments and are tabulated in Table I. There is a
surprisingly large sensitivity of T,/z, to the shape
of the spectrum, especially considering that for
X '10, this sensitivity must disappear, The experi-
mental points lie neatly between the extreme curves
for Einstein and mercury spectra, and have a con-
siderable amount of scatter. A small part of this
scatter is a more or less random result of devia-
tions of p* from 0. 1, but the bulk of it is either a
true shape effect or else experimental uncertainty,
No single curve passes through the data well, and

the McMillan equation fits the available data as
well as any other curve on this graph.

An analysis of the McMillan equation by one of
the authors' showed quite good agreement with ex-

0.1 5—

0.10—

005—

FIG. 9. T,/() plotted versus &. The solid curves
and the data points are the same as in Fig, 8. The
dashed curve is McMillan's equation with prefactor (~)/
1.20. Note that the scaling T~/(&) is more successful
than T~/((~ )) in pulling the points and curves together
towards a single curve,
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TABLE I. Parameters of superconductors derived from tunneling measurements. The value of
p* is renormalized from previously reported values as described in the text.

Material (,) q (K) (~g (K) (,)2 (K) &~,„(K) P*((.~ph) r, (K) q (eV/A')

Pb
In
Sn

Hg
Tl
Ta
a-Ga
P-Ga
Tlp 9Bip
Pbp. 4T1p. 6

Pbp 6Tlp 4

Pbp 8Tlp 2

Pbp 6Tlp 2Bip 2

Pbp ~Bip g

Pbp 8Bip p

Pbp vBip 3

Pbp 65Blp

»p. pTlp. ~

Inp v3Tlp 2v

Inp. 6vT lp. 33

Inp 5vTlp 43

In() 5Tlp (
Inp „Tlp
Inp. i v Tlp, 83

I p pv p p3

In2Bx
Sb2Tlv

Bi,Tl
-Pbp 45Bip 55

56
68
99
29
52

132
55
8V

48
48

50
50
48
50
46
47
45
63
55
57

53
53
42
45
49
46
37
47
29

60
79

110
38
58

140
77

108
55
56

57
56
53
56
52
52
50
75
67
68

64
64
53
55
56
57
48
53
38

65
89

121
49

148
101
129

62
62

62
61
58
60
57
57
55
86
77
79

74
73
63
63
63
67
58
59
47

l.55
0.805
0.72
1.6
0.795
0.69
1.62
0.97
0.78
1.15

1.38
1.53
l.81
1.66
l. 88
2. 01
2. 13
0.85
0.93
0.90

0.85
0.83
l.09
0.98
0.89
1.40
1.43
1.63
2.59

110
179
209
162
127
228
291
285
120
121

119
116
112
108
109
110
110
176
166
167

165
163
151
144
131
174
134
120
128

0.105
0.097
0.092
0.098
0.111
0.093
0.095
0.092
0.099
0.094

0. 103
0. 101
0. 111
0.081
0. 093
0. 092
0. 093
0. 103
0.110
0.110

0.117
0.110
0.094
0. 101
0.107
0.096
0.102
0.101
0.116

7.2
3.40
3.75
4.19
2.36
4.48
8.56
5.90
2.30
4. 60

5.90
6.80
V. 26
V. 65
7.95
8.45
8.95
3.28
3.36
3.26

2.60
2, 52
3.64
3.19
2.77
5.6
5.2
6.4
7.0

2.4
1.3
2.2

1.4
1.2
4 ~ 9
2. 1
2.0
1.1
1.6
2. 0
2. 1
2.3
2.2
2~ 3
2. 4
2. 4
1.4
1.4
1.4
1.3
1~ 3
1.4
1.3
1.3
1.6
1.6
2.1
2. 1

'Tabulation of the data used to derive these parameters is available in J. M. Howell, W. L. McMillan,
and R. C. Dynes, J. Phys. Chem. Ref. Data (to be published).

IV. TUNNELING DATA

The data with which we compare our calculations '

is that obtained from superconducting tunneling
measurements. Via quasiparticle tunneling through
thin insulating barriers in the configuration nor-
mal-metal-insulator-superconductor, and nor-
malizing this with measurements when the super-
conductor is in the normal state, direct informa-
tion about the density of quasiparticle excitations
and hence the function nsF((d) can be obtained.
From the ratio of conductances in the supercon-
ducting, o's((d), and normal o'„(e) states, one ob-
tains

Here N8 &» is the density of excitations in the super-
conducting (normal) state and b, (&u) is the complex
energy-dependent energy-gap parameter which re-
flects the strong electron-phonon coupling in its
detailed structure. Using an iterative unfolding
procedure the gap parameter b, ((d) and the spectral

function nsF(v) are extracted from the conductance
data by inversion of the zero-temperature Eliash-
berg gap equations.

The zero-frequency energy gap ~, is also direct-
ly measured in a tunneling experiment. This pa-
rameter is a direct measure of the net attractive
interaction a pair experiences, i.e. , the sum of
the attractive part [as represented by n F(e), or
more properly &] and the Coulomb repulsion —p,*,
Hence we have, in addition to c(sF((d), a, measure
of p,*. We saw in the preceding sections that this
term depends on one's choice of cutoff energies
for the electrons and phonons of the system. In
practice, in the solution of the Eliashberg gap
equations to extract c(sF(&u), the integrations are
performed to a cutoff frequency &, which is =10
~», where &» is the cutoff energy of the phonon
spectrum. Beyond 10(d», 6((d) is structureless
and hence further integration is unnecessary. The
actual value of p.

* used in the inversion process to
fit ho is scaled to this (arbitrarily chosen) frequen-
cy v„. It has been the usual practice to publish
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FIG, 10. T~/m)og plotted versus &. The solid curves
and the data points are the same as in Fig. 8, The
dashed curve is McMillan's equation with prefactor ~„~/
1,20. Note that the scaling T~/uq«has produced a uni-
versal curve describing all the experiments and calcula-
tions for A & 1, 5.

1 1 M 00+ ln
P*(&p~) P*(~ao) &»

(32)

The values of p, *(v») shown in Table I are defined
by Eg. (32). This convention is more "physical"
in being more closely related to an approximate T,
equation, and also eliminates the arbitrary depen-
dence of p, * on the choice of cutoff in the solution
of the gap equations. We recommend that experi-
mental values of p, * be presented in this fashion in
the future to avoid ambiguities and make the values
consistent with those deduced from the isotope ef-
fect, In most cases, the differences are small and
do not affect calculations or results. However,
when one is testing consistency, as is done here,
the differences become important and must be ac-
counted for. This has also been noticed by Leav-
ens. "

In Table I we compile the results of tunneling
measurements on the materials where all this in-
formation is available. We present the various

as the "experimental" value, the parameter p,*(v„)
used in the computer program, rather than the
more physical parameter defined in Eels. (4) and

(12)

moments (+»N, &u&, mz) of the function o' F(ru) which
are used in these calculations, X, the experimental-
ly measured T„ the renormalized p, *(~»), and the
parameter q, which is obtained from the relation-
ship

x, (0) (I')
M(&u ) M(&u )

'

Here (I ) is the average over the Fermi surface of
the electron-phonon matrix element and M is the
atomic mass. The importance of this parameter
and speculations concerning it will be presented in
Sec. VI.

We see from this compilation that except for Ta,
the materials for which data are available are all
s-p or "soft" materials, This is for a purely prac-
tical reason as the d- and f-band materials are
more difficult to prepare pure and the results are
more sensitive to any impurities on the surfaces be-
cause of the relatively short coherence lengths. It
is also clear from this table that the values of A. ob-
tained to date are & 2. This explains why the Mc-
Millan equation has done quite well in describing
these systems except for the few materials with
~ & 1.5. It is clear, however, from Fig. 10, that
for X& 2, substantial deviations from the McMillan
equation are predicted from our calculations and
indicated by the strong-coupled Pb-Bi alloys.

In an attempt to obtain a value of ~ greater than
found in crystalline alloys we have followed previous
investigators and prepared an amorphous Pb-Bi al-
loy. The concentration chosen was Pbo. 45Bio.» and
the alloy was evaporated from a resistively heated
boat onto a substrate held close to 4. 2 K. The tun-
nel-junction configuration was of the type Al-ox-
ide-amorphous film and the tunneling measure-
ments were preformed at 1.05 K for the supercon-
ducting state and 8. 0 K for the normal state. Care
was taken to measure the conductances to as low
an energy (or voltage) as was possible, to reduce
the influence of assumptions on the functional form
of n F(&u) at low ~. Below a certain energy it be-
comes difficult to measure accurately the conduc-
tance and an u& dependence to u F(&u) has tradition-
ally been assumed. This assumption has been
criticized especially in the amorphous materials,
where because there is a large density of states at
low e the assumption becomes more critical than
in crystalline systems. The parameters A. and +„
depend critically on these choices. The surest
way to avoid these problems is to measure to as
low an energy as possible, and hence the n F(~)
is "measured, " not assumed. It is for these rea-
sons (as well as the inaccessibility of the parame-
ter u„,) that we choose not to include in Table I
previous measurements of amorphous materials
similar to those reported here. The measure-
ments were thus made down to 0. 25 meV above the
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FIG. ll. e E(e) versus cu for the amorphous alloy
Pba 4~Bio». The material was quench condensed on a
substrate held close to 4. 2 K.

gap and the resultant a~F(~) is shown in Fig. 11.
It is clear from this figure that the shape and
strength do not significantly depend on a functional
choice below 0. 25 meV as there is very little
weight below here. The various moments as well
as A., p, *, and the measured T, are included at the
end of Table I, where we see that the value for A.

is 2. 59, higher than for any known crystalline sys-
tem. The value of T,/~„, is 0. 284 and on the plot
of T,/~„, vs A of Fig. 10, is shown as the trian-
gle at the extreme end. This provides a very clear
illustration in the strong-coupling limit that Mc-
Millan's equation breaks down and a modified form
for the dependence of T, on these parameters is
needed. We choose to modify McMillan's equation
rather than propose anything radically different and
in Sec. V we suggest these modifications.

V. APPROXIMATE Tc EQUATION

Many authors have proposed approximate equa-
tions relating T, to p. * and various integrals over
n E such as X, ~» ~~, etc. Of these equations,
McMillan' s form, ' Eq. (2), is the best known and
most useful by virtue of priority, simplicity, rela-
tive accuracy, and wealth of documentation.
Therefore we do not propose to abondon McMillan's
equation, but rather to provide some correction
factors which have the value unity for most known
materials and extend and range of McMillan's equa-
tion to cover extreme cases.

McMillan's formula is based on 22 numerical
solutions of the Eliashberg equati~ ~ for 0~ p, *
& 0. 25 and 0 & A. & 1.5, using a single shape for n I
patterned after the phonon density of states of Nb.
We have performed more than 300 numerical solu-
tions of the Eliashberg equations for a number of

shapes, and values of A. up to 10 . Of these we have
selected for purposes of fitting 217 calculations
representing the range 0 ~ p, *~ 0. 20, 0. 3 & A. & 10,
and three shapes (Pb, Hg, and Einstein). Repre-
sentative results are shown in Fig. 12. The cor-
rection factors toI McMillan's equation must account
for both the shape dependence and the enhanced
values of T, as the asymptotic regime T, - X is
approached.

As discussed in Sec. III, the shape dependence
of T, is eliminated for X & 2 if the prefactor of Mc-
Millan s equation is changed from e& to ~„,. With
this single correction, the McMillan equation be-
comes highly accurate for all superconductors with
X&1.5. We have not increased the number of pa-
rameters (X, p*, +„,) necessary to describe T,.
For empirical purposes, one would prefer instead
of G)g a prefactor that was accessible by some ex-
periment simpler than tunneling. The most obvious
such parameter is BD, as BCS and McMillan sug-
gested, but unfortunately this is not very accurate.
A systematic search for an accurate and accessible
characteristic temperature has not been made but
would be of considerable value. For simple mate-
rials (i. e. , elements), where n F is roughly pro-
portional to E, v„, could be estimated from heat-
capacity or neutron scattering data. For compli-
cated materials little data exist, but there is no
firm reason for n I to remain proportional to I.

It can be seen from Fig. 10 that T,/+„starts
to become shape dependent for A. ~ l. 6. This is
somewhat larger than the value of X (2 1.3), where
strong-coupling corrections (characterized by the
enhancement of the solid curves relative to the
dashed McMillan curve) begin to appear. There-
fore we use two separate correction factors (f, and

0.3—

0.2—
O

3
I-

0.1—

FIG. l~. 7.'~/~»~ versus & for three shapes of G & and
three vai~es of p*. This figure summarizes about 507o
of the numerical calculations used in constructing the cor-
rections to McMillan's equation.
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TABLE II. "Empirical" values of g for some bcc transition metals and Nb3Sn. The empirical values of (d, ~, i, )&, ~&
are calculated from Born-von Karman analysis of neutron data assuming z E=E, or (where indicated) from tunneling
measurements of e E. The values of & found by McMillan (column 8) were calculated assuming j(L*=0.13 and taking OHD/

1.45 as the prefactor in the McMillan equation. We find the prefactor &z&~/1. 2 is smaller than OD/1. 45 and consequently
obtain larger values of g (column 7). However, if p is assumed to be 0. 1 (arguments in favor of this are given in the
text), then values of g very similar to McMillan's are found (column 6). In the case of NbBSn, the tunneling experiment
doesn't yield an accurate experimental value of X; our calculated values of & can be used to normalize the experimentally
measured z F((d). Values of g (column 11) are calculated using & from column 6 and (e ) from column 5. These differ
from McMillan's values of q because of a difference in (~ ), and are in better agreement with the theory of Evans et al.
(H.ef. 30).

lMaterial
1

v
Cr
Nb

Mo
Ta
ra

(tunneling)
W

Nb3Sn

(tunneling)

(oi~(K)
2

222
308
166
236
142

132
208

&, (K)
3

230
317
175
244
148

140
215

&2(K)

238
324
183
251
153

148
220

&,(K)
5

5.30

9.22
0.92
4.48

4. 48
0. 012

18.1

Eq. (34)
p, *=0.10

6

0.60

0.85
0.39
0, 67

0.69
0.25

Eq. (34)
p, *=0.13

7

0.67

0.94
0.45
0.74

0.76
0.28

1.83

McMillan
Hef. 1

P =0. 13
8

0.60

0.82
Q. 41
0.65

0.65
0.28

Z (expt)
9

0.69

p, * (expt)
10

0.093

g (eV/A. )
11

3.1

4. 7
4.2
5. 1

4 9
4, 5

7.9

f,) to describe these two effects;

f~f~&„g 1.04(1+ A)
c 120 P I * 062K ~

We have found approximate formulas for f, and fz
which involve only one additional parameter, &~

=(&u )' . By requiringf, and fz to be unity for
small A. we ensure a good fit at small X. The
"strong-coupling correction" f, must scale as X'~

for large X, while the "shape correction" fz must

go to vz/~„, at large X. Acting together, these
two corrections allow Eg. (34) to attain the correct
asymptotic behavior given in Eq. (22). We have
somewhat arbitrarily chosen the forms

f, = [I+ (X/A, )"']"',
((dg/(d~oz —I )X

+

(35)

The exponents in these equations could have been
altered somewhat; our choice represents a com-
promise between simplicity a.nd accuracy. The pa-
rameters A& and A2 are given by

A&
-—- 2.46(1 + 3. 6p. *),

A, = 1.62(l + 6. 3p*) ((u~/ru, ~),
(3'7)

(36)

where the numerical coefficients have been chosen
by least-squares analysis of the 21'7 selected nu-
merical solutions. The rms percent deviation is
5. 6%.

One of the principal uses of approximate T, equa-
tions is the estimation of approximate "empirical"
values of X from measured values of T„We illus-

trate this in Table II, where new empirical values
of ~ are obtained for five bcc transition elements.
Because the values of X are all below 1, the correc-
tion factors f~ and f2 a.re entirely negligible. There
are two sources of uncertainty in the empirical val-
ues of X. The largest source is the value of ~„,.
This uncertainty accounts for disagreements of
greater than 10' between our estimates of X and
McMillan's for some materials. McMillan used
values of 8~/1. 45 while we have used ~,~/l. 2,
where ~„,is computed from the phonon density
of states E(~) in the same way that ~„,is com-
puted from n F(~). The similarity between n E(~)
as measured by tunneling ' and E(&u) as deduced
from neutron scattering in tantalum suggests that

w&,~ should be an excellent approximation to x&,~
in these materials. A second source of uncertainty
is empirical values of X is the uncertainty in p, ~.
We do not follow McMillan in assuming p, *=0.13 for
all transition elements. For the bcc transition ele-
ments, the isotope effect in Mo and tunneling in Ta
yield values of p. * of 0. 09. McMillan suggested that
a larger value of p,* should occur for transition
metals than for s-p metals because of a larger p,

[both N(0) and V, are probably larger] and a small-
er ln(~„/~»). Garland also suggested that In(~„/
&u») was smaller in transition elements in order
to explain isotope effects. However, we suggest
that the latter factor probably increases rather
than decreases for transition elements, The elec-
tronic cutoff e„ is defined by the cutoff in Im[1/
e(Q, &u)], just as ~» is the cutoff of u 'E(&u). Re-
cent optical measurements'7 show that Im[l/e(0, ~)]
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remains large at energies of 30 eV and more in Nb

and Mo. There may be an order-of-magnitude in-
crease in &u„or a factor of 4 increase in &u„/u&, h,

which is enough to compensate a factor of 3 in-
crease in p, above the value - 0. 5 characteristic of
nontransition metals. Thus we have taken p, ~

= 0. 10 for all metals. Isotope-effect and tunneling
measurements suggest a fairly large variation in
p, ~ about this figure, but it is not clear how reli-
able these "measurements"' of p, * really are.

It should be clear from the examples in Table II
that a fairly large uncertainty should be attached to
the empirical values of A. owing to uncertainty in

~„,and p.". The uncertainty is larger for com-
pounds than for elements because ~„,is more un-
certain. Very little information exists as to how

the optic phonons should be weighted in ~„,.
VI. HIGH T, : CAUSES AND LIMITATIONS

Before McMillan's work~ there was virtually
no theoretical understanding of the causes of or
limitations to high T,'s. McMillan observed that
the column-V transition metals (V, Nb, Ta) had

values of A, roughly twice as large as the values
found in the neighboring column-VI elements (Cr,
Mo, W), and that this increase could be explained
as coming entirely from the softening of the rms
phonon frequency ((&u ))' . He found a rigorous
relation between A, and (uP), given in Eq. (33). The
numerator of (33), q, is a purely electronic prop-
erty, independent of lattice dynamics. Hopfield
showed how g can be regarded as a local "chemi-
cal*' property of an atom in a crystal, and Qaspari
and Qyorffy29'3O discovered a simple way of calcu-
lating g in a muffin-tin approximation if the elec-
tron scattering phase shifts of a crystal potential
are known. The principle ingredient lacking is a
theoretical understanding of the parameter (&u ),
and a number of groups are gradually providing an-
swers to that problem. "

However, in spite of these important achieve-
ments, theory has yet to provide concrete help in
understanding high-T, materials or raising T,.
Our analysis of theory and experiment finds that the
situation has been muddied by several misconcep-
tions which we here attempt to straighten out.
These misconceptions are as follows: the impor-
tance of softening phonons (i. e. , (~~)) and the "&=2
limit. " Both of these arose in McMillan's work
from the extrapolation of observations which seem
entirely correct for materials with A. &1 into the
(then unexplored) regime with X& 1. McMillan
made suitable cautionary and qualifying remarks
which have been largely forgotten with time.

A related question (which McMillan did not con-
sider} is how should n E(&u) be changed to get the
xnaximum benefit to T,. This question was given
an elegant answer by Bergmann and Rainer, who

calculated the functional derivative 5T,/5u E(v),
which is defined by

dv z
' -nuE(&u).5T,

The results of Ref. 10 show that increasing o.'E(~)
at any value of &u always increases T, (in contradic-
tion to the incorrect conclusion of Ref. 12 that cou-
pling to very-low-frequency phonons could decrease
T,}. Furthermore, there is a frequency range near
+ = 2zT, where T, is most favorably enhanced by an
increase of o.'E(a). Following the method of Ref.
10, we have calculated 5T,/5n E(&u) for the lead
spectrum. Results are shown in Fig. 13 for vari-
ous assumed magnitudes of T,. For actual Pb with
&,/((~ )) -0. 1, the optimum frequency occurs in
the region of the TA phonons. For higher-T, ma-
terials, the magnitude of the functional derivative
falls, indicating that it is increasingly difficult to
raise T, (i. e. , the slope of T, versus X is decreas-
ing as X increases), The benefit of robbing from
n E at high (d to increase it at low (d becomes in-
creasingly small as T, gets higher.

Based on his observations on the column-V and
-VI bcc transition elements, McMillan proposed
that the best hope for raising A. and T, was by de-
creasing (+2), since q appeared to be roughly in-
variant in a given class of materials. There is now
good experimental evidence pointing to the oppo-
site conclusion, namely, that for strong coupling-

043
h.

OJ

40 03
~V
40

0.2

1IG. 13. Functional derivative &T~/&e I"(cu) plotted
versus co/((u )), for six different assumed values of
T~/{(uP)) . The calculations were done for p,*=0.1.
The shape of 0'~&(cu) is that of lead and is shown. (with un-
specified amplitude) for purposes of comparison.
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FIG. 14. Variation of T~ with A keeping A(~ ) fixed.
Exact solutions of Eq. (14) with an Einstein spectrum
(solid curves) are compared with the results from Mc-
Millan's Eq. (2) (dashed curves) for p, *=0 and p,*=0.1.
The value of T~ is normalized to the constant P (+2))i
The maxima at & =2 and &=2. 6 found from McMillan's
equation with @*=0.1 are spurious. The true maxima
are at A=~.

systems, variation in g is more importmst than
variation of (uP) in causing T, to change. Softening
of (uP)1 often does enhance T„but very high T,
seems to be caused more by large g than by small
(uP). McMillan also showed that if q/M or X(~ )
was invariant in a system (this now appears to be
the exception rather than the rule), then a.ccording
to the McMillan equation there is an optimum value
of A. (near 2) and a maximum value of T,. This is
illustrated in Fig. 14, where theoretical values of
T, norma, lized to (X(uP))'~ are plotted versus X.

For p, *=0.1, McMillan's equation has a broad
maximum, T,- 0. 105 (X(uP ) )~~, occurring at
A. = 2. 6. However, this result is spurious, being
based on an extrapolation that fails for X& 1. The
true solutions of the Eliashberg equations are
monotonically increasing with A, even if X(&u ) is
held fixed. The actual maximum is T,- 0. 15
&&(&(&u )) (assuming p, *=0.1), occurring when
~& 10. Thus McMillan has underestimated the max-
imum value of /T(&(uP)) by about 4&a, under-
estimated the virtue of having X much greater than
1, and underestimated the degree to which the
"chemical" parameter q can be varied. All these
reconsiderations are optimistic for high T,'s, and
we need now to examine what prevents real materi-
als from attaining the high T,'s which Eliashberg
theory seems to allow,

We first analyze a system that seems to obey the
A. = 2 limit, namely, Pb and some isoelectronic
analogs. With A. = I. 55, Pb lies close to the X= 2
limit and has T, within 4% of the maximum (if the
more realistic curve for p, *= 0. I is used in Fig,

TABLE III. Illustrating the (unexplained) futility of
increasing T~ in a strong-coupling system by decreasing
((,) ). McMillan's explanation of the futility was the

(spurious) "&=2 limit. " The tunneling experiments
have now shown that q was reduced (this is the unexplained
feature) rather than remaining constant is expected.
F

Pb
Pbp

&
Tlp 2Bip

a-Pb
a-Pbp 45L'ip 55

((. '))"' (K)

58
53
47

1.55
1 ~ 81
1.91
2 59

),lM (w ) =g (ev/A )

2.4
2. 3
2.0
2. 1

Tc

7.20
7.26
7.2

7.0

13, then the optimum X is 2. 6 and T, for Pb is 12%%uo

short of the maximum). If the McMillan equations
were correct and if g were invariant, then there
would be little hope for increasing T, in Pb. Sur-
prisingly, the data of Table III seem to support
this. Both the disordered crystalline ternary
Pbp 6Tlp pBio 2 and amorphous Pb films have the
same values of T, as crystalline Pb, although A. is
enhanced in the disordered systems. Closer in-
spection shows that the reason T, is not enhanced
has nothing to do with the X= 2 limit, but rather oc-
curs because q has decrea. sed (for reasons not en-
tirely clear).

A different and more interesting behavior occurs
in Pb if the electron concentration (S) is increased
by alloying with Bi. Tunneling data for this system
are reported by Dynes and Rowell and are included
in Table I. In these alloys T, rises monotonically
with 5 to a maximum of 8. 95 K at Pbo, 65Bio 3,. Be-
yond this concentration Bi is no longer soluble in
Pb. With no data available at the time, McMillan
suggested that the limiting T, might occur because
(+ ) had decrea, sed to a point of lattice instability.
However, neither tunneling' nor neutron scatter-

34int data suggest a significant decrease in (&u ) or
a dangerously soft mode in this system. A more
plausible interpretation ' is that the first-order in-
stability at 4. 35 electrons/atom (S) is a. "covalent
instability'" occurring because a large s-p electron
concentration favors directional covalent bonding as
occurs in Bi. The increase in T, from V. 2 to 8. 95
K occurs primarily through an increase in g from
2, 3 at S:4 (Pbo 6TIO qBio ) to 2 4 at S =4, 35,
(These values of q are calculated for disordered
crystalline alloys, ' ordered Pb with g = 2. 4 deviates
by +0. 2 from a smooth curve drawn for g versus
bin the 'disordered Tl-Pb-Bi system. ) The data
tend to suggest that as g increases, so does the
ability to form covalent bonds, leading to an upper
limit of 2. 4 on g in this system, at which point a
transition occurs to a more covalent nonmetallic
structure.

Further confirmation of the nonconstancy of q
was given by Weber, ' who studied the lattice dy-
namics of Nb-Mo alloys. McMillan found that pure
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TABLE IV. Illustrating the origin of strong electron-

phonon coupling and large values of 2~. The reason for
higher Z~'s in d-band materials than in s-p-band materi-
als is the larger value of ~j~. The difference between
the medium- and strong-coupling materials is a factor
of 2 increase in g a~sing primaril from an increase in

g, rather than a decrease in (~ ). In all these examples,
(+ ) is anomalously low (compare Pb and Tl with Au, or
Nb, and Nb3Sn with Mo). A decrease of (~ ) does ac-
count for a factor of 2 increase in g between Mo and Nb,
but this factor seems to play a much smaller role in
high-Tc materials. The data are all from Table I or II.

s-p metals

M=200 amu

d metals

M =100 amu

Medium coupling

Tl
T =2.4 K
y= 0.795

u))~=52 K
g=1.2 eV/A~

Nb

Pc=9 ~ 2 K
x=0. 85

fi)(~=166 K

q =4.7 eV/A

Strong coupling

Pb
Tc=7.2 K
y=1. 55

())~=56 K

q = 2.4 e V'/A

Nb3Sn
~c=18.1 K

&=1.67
u)(~=125 K

q =7.9 ey/A'

Nb and Mo have values of X differing by a factor of
2, while g differs by less than IO/o, However,
Weber found significant variations of q (up to 40/o)
in Nb-Mo alloys, the variations correlating with the
variation of X and T,. Thus it is now certain that
the factors which govern the value of g are not sim-
ply crystal structure and electron type as specu-
lated by McMillan, but also electron concentration
and crystalline order. Even the density of states
N(0) still plays a role, although somewhat cancel-
ing as Hopfield showed for d-band materials.

Our own point of view on the nature of high-T,
materials is illustrated by the 4 materials shown
in Table IV, with T, ranging from 2 to 18 K. Our
aim is simply to identify which material property
makes T, higher in one material than in another.
We feel this provides a necessary ingredient (a
usable recipe is still lacking) for raising T,. The
first two materials, Tl and Pb, represent a medi-
um-coupling and a strong-coupling s-p material.
The increase in T, from 2. 4 to 7. 2 K is emphatical-
ly not coming from softening of phonons. Both ma-
terials have low phonon frequencies (a factor of 2. 3
in M~ softening has occurred relative to Au). The
increase in T, arises from a factor of 2 increase in
g which causes a factor of 2 increase in A.. The
value g = 2. 4 may represent the maximum that a
material based on Pb can sustain because of the co-
valent instability. As prototype examples of cova-
lent instability, we take the first row of the Peri-
odic Table. The potential for high T,'s in these
materials is evident in the value T, = 9.6 K found in
amorphous Be films, and in the predicted high

T,'s for metallic hydrogen. Crystalline Be has
T,- 0. 3 K and A.™0. 23. The value of g is quite un-
certain because of uncertainty in (&u ); based on

Oo = 1390 K we estimate ((uP))~ a- 800 K, which
gives g=2. 4. The large T, in amorphous films
could be explained in both A. and g had doubled with
(uP ) unchanged. This gives a value g- 5, which is
very large for an s-p material and suggests that
crystalline Be has a reduced T, because of a cova-
lent instability. There are in fact solid reasons for
regarding the low T, of Be as arising from a low

N(0) (about one-third as large as an equal density
electron gas). The low N(0) is a result of having an
even number of electrons in the unit cell and a
strongly contracted Fermi surface because of wide
covalent gaps at the zone boundary. Beryllium
almost succeeds in becoming a semiconductor like
its neighbor, boron.

To summarize for s -p metals, they do not have
high T,'s primarily because the phonon energy ~„,
is too low. The maximum T, appears to be lim-
ited by a covalent instability occurring when q is
too large. The largest g may occur in amorphous
Be, but there (uP) is large and X is low. To raise
T, one needs to have both X and co„, large, and this
requires large g. Large g means strong electron-
ion interaction.

In transition elements, larger values of g occur
because the d wave functions are contracted to-
wards the core and have a strong electron-ion in-
teraction. Because of the attraction to the core,
they are also less subject to covalent instabilities.
However, if the wave function is too much con-
tracted, the resulting narrow bands have magnetic
instabilities which prevent superconductivity (as in
3d- or f-band metals). From Table IV we see that
Nb has a value of q twice as large as Pb, but T, is
only slightly larger. The trouble is that M(wa) has
increased by almost a factor of 4 so that A. has de-
creased by 2. This is offset by a factor of 3 im-
provement in &„,. It appears very hard to adjust
the parameters of a transition metal to get A. large
because of the stiff lattices and the apparent diffi-
culty of getting g &5.

What then is the nature of the known high-T, ma-
terialsY Table IV shows our estimates of the pa-
rameters of Nb3Sn, the best known of high-T, ma-
terials. The striking feature is that A. has in-
creased by a factor of 2 over Nb N)ithout sacrific-
ing too much of ~&~. This can only happen by a
still further increase in q. The source of this in-
crease in q is not clear, but the A15 crystal struc-
ture must play an important role. The structure is
cubic, but the Nb atoms are on sites of low point
symmetry, with only two first neighbors which
make the anomalously close-packed chains. This
close-neighbor distance and low coordination num-
ber is an indicator of covalency, and may invalidate
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the muffin-tin assumption which lies beneath Hop-
field's analysis of q. It is tempting to speculate
that the large g arises from the breakdown of muf-
fin-tin analysis. Another crystal structure with
Rnomalously close neighbor distances is the AlBz
structure, which exhibits among the highest 7,'s
of any hexagonal metals. It is also interesting to
note that Hopfield's work indicates that large g re-
quires the simultaneous presence at the Fexmi sur-
faces of electrons of two different partial-wave
symmetries satisfying hl = + 1, This requirement
18 Rlso cleRrly beneflclRl to covalent-bond forma-
tion, as directional bonding is best accomplished
by mixing partial waves of different symmetry.
This provides a qualitative picture of why high-T,
materials (with large values of q) seem to be sub-
ject to covalent instabilities.

It has been repeatedly pointed out'~ that strong
empirical evidence points to some special virtue in
a cubic crystal structure. We suggest that cubic
systems resist covalent instabilities. In all sym-
metry types except cubic, there is at least one
structural parameter (such as c/a ratio) which can
adjust without altering either volume or symmetry.
As an example, hexagonal Be ha, s a, c/a ratio of
1.5V, rather than the "ideal" value 1.63, The rea-
son for the distortion is that at R slight cost in
Madelung energy the lattice can adjust to maximize
the size and effectiveness of the covalent band

gRps, obtRln1ng R 1Rl ge x'educt1on 1n band-stx'uctu1 e
energy. If the symmetry were cubic, Be would

probably have a lower melting point, higher N(0),
and higher X and T,. The cubic 215 structure fre-
quently permits very high values of N(0) which
would probably not be stable in a system of lower
symmetry. The coexistence of directional bonds
and symmetry-stabilized large N(0) may be the key
features of high-T, materials. This analysis of the
benefits of cubic symmetry differs from the argu-
ment of Cohen and Anderson ' based on umklapps.

To summarize, high-T, superconductors are
characterized by large values of A. (near 2) which
occur in lattices which are relatively soft (in the
sense that niobium has M(uP) smaller by 2 than

Mo). However, the increase in X between a good
superconductor like Nb and a very good one like
Nb38n comes more from an increase in g than a de-
crease in M(aP). The benefit to T, from increas-
ing ~ from 1 to 2 is 2, 6 times greater if q is in-
creased leaving M(&u ) fixed than if q is fixed and

M(uP ) decree. ses. The available high T, mate-rials
probably represent cases where especially large
VRlues of 'g ale poss1bl.
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APPENDIX A: SOME PROOFS

lim v„= v&~=- exp de lnug (d
ff 0 0

(A2)

„.o x„for all @'& n & 0,

f(s)= d~g(~) 2 2 - fs(s)=- a a
(~')

0 +0 (0 ) +Cf

(AS)

(AC)

Property (A2) is almost trivial. We write ~„ in
the form

CO„= d%8 g (d

and then expand the exponential for small values of
nin~. Our weight functions g(&u) vanish above an
upper frequency &u, and are well behaved (i.e. , do
not diverge) at small &u. Therefore at very large
or very small, , where the first two terms in the
expansion are a poor approximation, the contribu-
tions to the integral in (Ae) are negligible. Thus
for very small n we can write

OO j jn
1+n dv ln(dg m (A6)

Then formula (A2) follows immediately from the
mell-known limit

lim (1+nx)~~"=e" .
tl» 0

(A'7)

The proof of properties (AS) and (A4) will be
based on a theorem quoted by Wheeler and Gor-
don. We give her a special case of the general
theorem, which deals with the problem of approxi-
mate evaluation of integrals over non-negative
weight functions A(x) for which a finite number of
moments p, 0, p,„.. . , p, „are known. Let us sup-
pose that the moments p, 0 and p. , are known and
construct a 5 function approximation h~(x) to h(x)
which has the same moments:

To prove various properties of integrals of
c.'E(ur), it is convenient to define

g ((u)
-=(2/(uk) o.'E((u),

so that g(~) is a non-negative weight function nor-
malized to unity on the interval (0, ~). Then the
characteristic frequencies (v") are the moments of
g(ur), and &u„denotes the nth root of (e"). The
properties we will prove are
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dxx"5 x
0

4(x) i/ o~ (x // 1/I/ o) ~

(A8)

(A9)

be proved in a more general form, namely,

J
2 ( n)2/n

do/g(&) 2 a = i ni 2/n 2
ur +a yw g +a (A13)

Then the theorem gives an estimate of the error in-
volved in replacing h by k~ inside an integration,
namely,

dxE(x)k(x) = dxE(x)k (x)+k F '(() .
0

(A10)
In this theorem k i.s a positive number which can
be constructed from k(x) (and vanishes only if
k = kz) and E' ) ($) is the second derivative of the in-
tegrating factor E(x) evaluated at some (unspeci-
fied) point $ in the range of integration. Theorem
(A10) yields rigorous inequalities provided E(x) has
a second derivative of fixed sign in the range of in-
tegration.

We now use theorem (A10) to prove A3). Assume
that ro„ is known for some (fixed) value of n. Let
us change variables and redefine the weight function

valid for n= 2. All of the inequalities mentioned
here become exact equalities only if g(o)) is a 5

function. Thus the inequality (A13) would lead to a
more general theorem on T, than the one given in
the text; namely, given A., p, *, and &„for an arbi-
trary value m =2, the maximum T, consistent with
these parameters is obtained when (and only when)
n F is an Einstein spectrum. For simplicity we
will give the proof only for n= 2 on the grounds that
(o) ) is the most "physical" moment of n F. We
make the transformation (All) for the case n= 2 to
rewrite f (a) [as defined in A4)j:

f (a) = dxg(x)
D x+a

x= (d

k(x) = )dg (o/)/nx .
(A11)

Then the first two moments of k(x) are known:

dxA x = d(dg(d =I
0 0

dxxk x = d(0 M g (d
0 0.

Then we can construct a &-function approximation
to k(x),

ks(x) = &(x -(o/")) . (A12)

dxx k(x)

dxx h&x if a&1

Now consider an integrating factor E(x) = x, where
n is assumed positive. The second derivative
E )(() is positive or negative depending on whether
n is greater or less than 1. Thus from theorem
(A10) we have the inequalities

The integrating factor x/(x+ a ) has a negative sec-
ond derivative for all positive values of x. Thus
(A4) is immediately proved using theorem (A10).

APPENDIX B: ASYMPTOTIC LIMIT OF BCS THEORY

It is often incorrectly supposed that BCS theory
puts an upper limit of eD on T,. This conclusion
follows from the famous equation

Oa -y/x(0) v
1.14

y=n(o)vJ
0 x

(S2)

where x= ) /2kaT, . If the coupling N(0) V is large
enough, it is clear that the limit of integration
Oo/2T, must be small because the integrand,
tanhx/x, is approximately unity. The asymptotic
behavior of the BCS model is then

However, Eq. (Bl) is only a weak-coupling approx-
imation to the BCS-model equation given below:

dxx'h& x if n &I . T,- Zoo/2, (a3)

Using the definitions of x, g(x), and gs(x), these
inequalities translate into

«(o/") ' if n & 1
an)

~.(~") if 0&o) &1 .

Finally, taking the I/n/a power of these inequalities,
theorem (A3) is proved.

Using very similar methods, theorem (A4) can

where the coupling constant N(0) V has been de-
noted X. This result has not escaped notice, but
there are qualitative arguments for not taking it
seriously. BCS theory is a weak-coupling theory
based on a "reduced" Hamiltonian. "Renormaliza-
tion'" effects are omitted in the reduced Hamilto-
nian, and these are often thought to diminish the ef-
fective coupling constant from X to X/(1+))). This
replacement occurs in McMillan's equation, and is
accurate if A. & I.5. However, for very large cou-
pling we have seen that McMillan theory breaks
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down and Eliashberg theory gives T,~ A. . We
suspect that the occurrence of X ~ follows from
the fact that the interaction Hamiltonian in Eliash-
berg theory scales as Xr~ . [The effective elec-
tron-electron interaction X/N(0) is quadratic in the
electron-phonon interaction M». , which oeeurs in

the true Hamiltonian. ] In BCS theory, the Hamil-
tonian contains a direct electron-electron interac-
tion scaling as I/N(0). It would not be completely
surprising if the actual asymptotic behavior of such
a theory (using the full, not reduced, Hamiltonian)
where 7.', fx A. as in the reduced theory.
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