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The method of correlated basis functions is used in the study of the ground-state properties of a
one-dimensional system of bosons interacting through a repulsive 8-function potential. Ground-state

energies are determined numerically for intermediate values of the coupling constant in three steps: (l)
a trial form of the radial distribution function generated by the Bijl-Dingle-Jastrow (BDJ) type of wave

function is introduced to obtain approximate ground-state energies, (2) the paired-phonon analysis is

applied to improve the BDJ description of the ground state, and (3) leading corrections to the

improved approximate energies are evaluted from the second-order perturbation energy generated by the

three-phonon vertex. The obtained energy values are found to agree closely with the exact results

calculated by Lieb and Liniger.

I. INTRODUCTION

Many recent theoretical studies on various many-
particle boson systems are concerned with the
method of correlated basis functions, which is often
based on the variational description of the ground
state with the use of a Bijl-Dingle-Jastrow' (BDJ)
type of correlated wave function. ~ In the case of
liquid 'He, the procedure usually leads to serni-
quantitative agreements with experimental observa-
tions. While it is generally rather difficult to find

the optimum form of the BDJ-type wave function in
a direct way, one can first start with a non-optimu1rl

wave function and then successively improve it to
obtain the optimum or a near optimum form by us-
ing the paired-phonon analysis developed in Hefs.
3 and 4. The application of the procedure to liquid

He generates a negative correction to the varia-
tional ground-state energy, considerably reducing
the amount of the discrepancy with experimental
results. In principle, the discrepancy may be at-
tributed to non-BDJ components, but there are
several other factors involved in the liquid- He

problem, which make it difficult to estimate the
non-BDJ contribution. They include (I) unavoidable

experimental errors are not generally small enough

to be neglected, (2) the ground-state energy cannot

be mea. sured at absolute zero, (3) the exact form
of the two-body potential is not known in the theo-
retical calculation of the energy —it is often approx-
imated by the I ennard-Jones potential, and (4) the
three- (and more-) body potential terms are usually
neglected in the theoretical determination. On the
other hand, these types of difficulties do not exist
if one considers a model system such as the
charged-boson system, ' but in most cases there
are no results available for the exacI; ground-state
energy (except for extreme limits of i.he coupling),

with which the theoretical values obtained using an
approximation method may be compared. However,
the problem of the one-dimensional boson system
with a 5-function potential is an exception, as exact
results for many quantities including the ground-
state energy were obtained not only in the limits of
small and large couplings, but also at intermediate
values of the coupling constant. 7

In this paper, we present' evaluation of the
ground-state energies of the one-dimensional boson
system in three steps. First, a trial form of the
radial distribution function is introduced to evaluate
approximate ground-state energies in the BDJ-func-
tion space by using an improved hypernetted-chain
(HNC) equation for the correlation function (Sec. II).
Secondly, the BDJ description of the ground state
is optimized by means of the paired-phonon analysis
(Sec. III). Finally, leading energy corrections
coming from a, non-BDJ component are obtained by
evaluating the second-order perturbation energy
generated by three-phonon vertices (Sec. IV), The
obtained ground-state energies are found to agree
quite closely with the exact values determined in

Ref. 7. Very small improvements are made by
the inclusion of the leading perturbation correction.

II. GROUND-STATE ENERGY IN A BDJ DESCRIPTION

The system under consideration' consists of X
one-dimensional bosons interacting in a line of
length I. through a two-body potential

v(x) =2cn(x), c&0 .
When the ground state is described by a BDJ-type
wave function

(2)

~;he expectation value of the Hamiltonian « the sys-
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tern is given by (with p =N/L)

(H) h p du(x) dg(x) p I ( ) ( )
N 8m dx dx 2 "

Besides Eq. (10), g(x) or S(k) must satisfy
several other constraints. They include:

(a) At x=0, g(x) ~0 requires

h
k W(k)[S(k) —1]dk

16&m p ~

+ -,' Npv(o) + —
Jl v(k)[s(k) —i]dk,

1

(b) At &=1, for s «a,
g(x) =(I+P)(x/a)' —(2+P)(x/a)" + . ~0, (12)

and consequently

where

W(k) = pJ e""u(x) dx,

&(&) fe' v(x) dx2 , v

(4)

P —1 (if & =1) .
(c) For small k,

(13)

and g(x) and S(k) are the radial distribution function
and liquid-structure function defined, respectively,
by

and hence S(k) ~0 requires

P sp (if—™»).

(14)

g(x, ~) =N(N —1)p Jl @ dx34 ))(

S(P)=1+pfe' [d(x) —1]dx .

It is convenient to use g(x), rather than u(x), as
the variational function. " To compute approximate
ground-state energies, let us introduce a trial
form'~

(d) Since a is a positive-valued scale parameter,
Eq. (9) gives

p) P (if n)0) .
To evaluate (H) given by Eq. (3), we need a

formula for u(x) or W(k) expressed in terms of g(x)
and/or S(k). A useful one is the HNC approxima-
tion

Ixl ' Ixl ''
g(x) = 1 —o.' 1 —P exp-

a a

where

a= p
2~p(p —P)r(I+ I/p) ', p&Q

(s)

(9)

u„„c(x)= lng(x) — e' dk ."li -S(k)l',.„
271p~

An improved form is'

u(x) = usNc (x) + &u(x)

where

(is)

and n, P, and p are variational parameters. The
scale parameter a given by Eq. (9) is so chosen to
satisfy the normalization condition

h(x) =g(x) —1 .

hu(x) = —,
'

p'JIJ dx, dx h(x, )h(x )h(x, )h(x, -x)h(x -x),
(i9)
(2o)

p [1-g(x)]dx= 1 . (io) Substitution of Eqs. (1) and (1S) into Eq. (3) yields

(H) h'p2 h p,
l

dg(x) 1 n' "[1 —S(k)]'
N 2m Sm & dx g(x) 16vm p. S(k)

fff x ddddedld( edvd(Px)l(( &(Pd)(( d(P ))(( d(dp))(( d(P )I(( d(& e)), (21)

where

y=2mc/h' p (22)

is the dimensionless coupling constant.
We have evaluated Eq. (21) numerically using the

trial form of g(x) given by Eq. (S). The approxi-
mate energies per particle E/N obtained by mini-
mizing (H)/N with respect to &, P, and p are listed

in Table I together with values of the optimum pa-
rameters. It can be seen that all of the values of
these parameters satisfy the conditions given by
Eqs. (11), (13), (15), and (16). It is interesting to
note that the optimum value of P is zero for all
values of y. In Fig. 1, the solid line represents
the liquid-structure function S(k) evaluated with the
optimum parameters at y= 5.
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P P E/N E/N E2 /N g/N

TABLE I. Ground-state energies and parameters.
is the coupling constant defined by Eq. (22) and z, P, and

p are variational parameters appearing in Eq. (8), E/N
=E/N+AE/N is the optimum energy per particle resulting
from the paired-phonon analysis. 8/N=E/N+E&/N in-
cludes the second-order perturbation correction given by
Eq. (35) but is nearly the same as E/¹ Energies are
given in units of h' p'/2m.

In terms of

, („) (dS(k; $)

d(

s'(a) a'a' 1 s(a)
S(k) 4m S(k)

(25)

(2'7)

(2S)

1
2

3
4
5

6
7
8

9
10

049 0 092
0 63 0 0 95
0.71 0 0. 97
0. 77 0 0. 98
0 80 0 1.02
0 83 0 1.04
0 86 0 1.06
0 88 0 1.08
0 89 0 1 09
0. 90 0 1, 10

0.653
1.085
1.407
1.659
l. 888
2, 065
2. 216
2. 346
2. 459
2. 560

0, 638
1, 050
1.352
1.586
1, 796
1, 956
2. 091
2, 205
2. 307
2. 397

—0. 3x10
—0, 9xl0 4

—l. 5x 10
—2, 1xl0 4

—2. 8x10 4

—3.4x10 4

—4. Ox 10
—4. 6x10 4

—5. 1x10
—5. 7x10 4

0. 638
l. 050
1 ~ 352
1 586
1, 796
1.956
2. 091
2. 205
2. 307
2. 396

c(k) =a k'/2IS(k),

e(a) = [e'(k) + 2~(k) ~(k)]"',
the corrections to S(k) and E/N are given by

2e(k) ~(a)s(a)
e(k)[e(k) + 6(k)] '

(29)

(30)

&E/N = —(4&p)
' [e(k) + &(k) —e(k)] dk . (32)

III, OPTIMIZATION OF THE BDJ DESCRIPTION

The ground-state energies and liquid-structure
functions obtained in Sec. II can be improved or
optimized within the BDJ description by using the
paired-phonon analysis first developed by Jackson
and Feenberg' and later refined by Campbell and
Feenberg, 4 In this procedure, g(x) and S(k) are
generalized as

z(xi2; V=,I &

exp $~v*(x;,) +'dx„..., ,
N(N 1)-

21

S kS (k) =S (k)|' (k) —
1) 5'(k')

2n p s'(a)

x [1 —S (k —k') ] dk'

where

(33)

As can be seen from the above formulas, a most
important quantity is S'(k). Unfortunately, it is
not easy to evaluate S'(k) exactly. However, an
approximate form can be obtained from the integral
equation '

S(k; &) =1+p [g(x; $) -g(; $)]e'""dx,

where

v*(x) =v(x)—
k' d'u(x)

1.0

(23)

(24)

(25)

V (k) = p g(x)v*(x)e'""dx, (34)

whose derivation is based on the use of the HNC

equation of Eq. (17). We have evaluated S'(k) nu-
merica. lly by iterating Eq. (33) with the starting
approximation S'(k) =S (k)V (k); at y=-5, this is
represented by the dashed line in Fig. 2. The solid
line in the figure is the solution for S'(k). The
HNC approximation was also used to evaluate V*(k).

0.5

0
0 0

FIG. 1. Liquid-structure functions at y = 5. The solid
line represents the starting form of S(k) generated by the
trial radial distribution function of Eq. (8). The dashed
line represents the optimum form S(k) =S(k)+M(k). (k

is given in unit of mc/8 . )

k

FIG. 2. Starting function and solution for S'(k) (in
units of 5' p /2m). The dashed line represents the satrt-
ing function S (k)V*(k) and the solid line is the numerical
solution obtained from Eq. (33) by an iteration process.
(k is given in unit of mc/I~. )
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IV. PERTURBATION CORRECTION

As mentioned in Sec. I, the ground-state energy
E optimized in the BDJ-function space is not the
exact energy eigenvalue. While there is no known
simple procedure of evaluating the exact energy
correction, Davison and Feenberg derived the
formula for the leading (second-order) perturbation
energy correction generated by the three-phonon
vertex. Their result is

dk dk
6(6 P)' - ' ';= S(k,.) (~)

x 2 „— . 8& (35)

where

k&+k&+43 =0,
e(k) = k'k'/3mS(k),

(f&=f(k )+f(k )+f(k,),

(36)

(37)

(36)

The function S(k) in Eq. (33) is, of course, gen-
erated by the trial form of g(x) of Eq. (8).

The addition of 4S(k) given by Eq. (31) to S(k)
yields the optimum liquid-structure function S(k)
=S(k)+M(k). At y=5, this is represented by the
dashed line in Fig. 1. Although S(k) does not seem
to differ substantially from S(k), there is an im-
portant difference. For small values of k, our nu-
merical results for S(k) shows that S(k) is linear
in k, whereas S(k) is quadratic in k [see Eq. (14)].
It may be pointed out that all of the first three lead-
ing terms of the analytical formula for the optimum
liquid-structure function obtained in an infinite
series also exhibit linear behavior near k =0.
Thus, there are strong indications that the correct
form of S(k) is indeed linear in k near the origin.
Our results for E/N = E/N+ hE/N obtained numer-
ically from Eq. (32) are listed in Table I. We find
that E is a considerable improvement over E.

We conclude this section by pointing out that our
results for S(k) and E/N are not really the exact
optimum quantities, since the HNC approximation
was consistently involved in the determination of
S'(k). This means that we may have to repeat the
entire procedure of optimization by using the ob-
tained S(k) and E as the non-optimum starting
liquid-structure function and energy. Our some-
what crude estimation for y=5 shows that very little
changes are made for S(k) and E in this procedure
and hence we have not carried out the second opti-

mizationn.

0
0 l0

FIG. 3. Ground-state energies per particle in units of
h p /2m. The solid line is the exact result obtained in
Ref. 7 and the dashed line represents E/N=E/N+E»/N.
Note that the same dashed line can also represent E/N,
since E»/N is extremely small (see Table I).
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components is found in the next-higher-order term
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at all in zeroth and first orders in the energy
series. )

In Fig. 3, the dashed curve represents our re-
sult for 8/N In actuali. ty, the same curve also
represents E/N because of the extremely small
difference between 8/N and E/N. The solid line
in the figure, which represents exact ground-state-
energy eigenvalues, is taken from Ref. 7. Com-
parison of the two curves in Fig. 3 reveals that the
two results agree very closely although they were
obtained with substantially different methods. The
discrepancy generally becomes greater as y in-
creases, the maximum difference in the range 0
&y~10 being about 3.7/o at y=10. The close agree-
ment here clearly demonstrates the accuracy and
power of the method of correlated basis functions.
It also indicates that the optimum or near-optimum
form of the BDJ-type wave function can describe
the ground state quite accurately.

and S(k) is the liquid-structure generated by the
optimum BDJ-type wave function.

Using the results for S(k) determined in Sec. III,

We are grateful to Dr. W. Liniger for sending
us some of the unpublished numerical data related
to the work of Ref. 7.
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