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The upper critical field H„ in layered superconductors is calculated from a microscopic theory in
which the electrons are assumed to propagate freely within the individual layers subject to scattering off
impurities and to propagate via tunneling between the layers. For the magnetic field parallel to the
layers, there is a temperature T* & T, below which the normal cores of the vortices fit between the
metallic layers, removing the orbital eff'ects as a mechanism for the quenching of superconductivity in
the individual layers. In this temperature regime, H, 2~~

is thus determined by the combined eff'ects of
Pauli paramagnetisrn and spin-orbit scattering, and for sufficiently strong spin-orbit scattering rates, '
H„~~{T =0) can greatly exceed the Chandrasekhar-Clogston Pauli limiting field H~. This unusual
behavior is found to be most pronounced in the dirty limit for the electron propagation within the
layers and when the electrons scatter many times in a given layer before tunneling to an adjacent
layer. Our results are also discussed in light of the available experimental data.

I. INTRODUCTION

Recently there has been considerable interest
in the properties of layered superconductors. The
most unusual of these, the transition-metal dichal-
cogenides intercalated with organic molecules,
mere first investigated by Gamble et al. and mere
found to be extremely anisotropic with regard to
their superconducting properties. Since then,
many workers have investigated the superconduc-
tivity of these materials. Initially, much of this
work was directed at studying fluctuation phenom-
ena above the suyerconducting transition, in the
hope of finding fluctuation behavior characteristic
of a two-dlmenslonal superconductor. After coIl-
siderable effort, both theoretical 4 and experi-
mental, 5'6 the consensus nom appears to be thai
for the materials investigated to date, the fluctua-
tion behavior is, for the most part, like that ex-
pected for a three-dimensional though highly aniso-
tropic superconductor rather than for a two-dimen-
sional one. Two- dimensional fluctuation behavior
is expected to occur at high temperatures, above
a dimensional crossover temperature, but apparent-
ly the present experimental data do not extend into
this regime.

The absence of promin. ent tmo-dimensional fluc-
tuations does not imply that the superconducting
properties of these materials are not strongly ef-
fected by their two-dimensional nature, however.
As me have pointed out previously, "the quasi-
two-dimensional nature of these materials is ex-
pected to manifest itself most dramatically before
T, in. the fully superconducting regime. Moreover,
numerical estimates indicate that presently avail-
able materials should be favorable for the observa-

tion of these effects, if suitably good crystals are
available. Specifically, me have found that if the
individual layers in these materials are sufficiently
decoupled, the upper critical field parallel to the
layers H,2„ is not limited by the usual orbital ef-
fects (i. e. , vortices) and would in fact be infinite
at low temperatures in the absence of other limiting
effects. One obvious possible limitation on H, 2 is
the Pauli paramagnetic limit, but other more ex-
otic possibilities have also been considered. In
this payer, me present a thorough discussion of
our theory of the upper critical field in layered
superconductors and its physical interpretation,
developing in detail the results described briefly
in our earlier reports.

Historically, the first attempts to calculate the
upper critical field of layered superconductors
mere carried out by Eats and by Lawrence and
Doniach (LD). In these papers, the anisotropic
Ginzburg-Landau (GL) equations were justified and
then used to calculate H,2(8, T). It was found that
sufficiently near T„where the GJ equations are
valid, H,2 is given by

H„(8, T)= C'0
~ 2 1/22m('(T)[cos'8+ (m/M) sin'8]'" '

where Co is the flux quantum, $(T) is the GL coher-
ence length in the plane of the layers, m/M is the
GL anisotropic mass ratio, and 6) is the angle of
the applied field measured from the direction per-
pendicular to the plane of the layers. Kats further
suggested that for fields parallel to the layers
(8 = —,

'
m), H„,~

might be limited by the Chandrasek-
har- Clogston Pauli paramagnetic limiting field,

H~ =4Tg/&ps
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where p, ~ is the Bohr magneton. In this paper we
use the natural units S=c =k~= &.

However, since the anisotropic GI. theory is only
valid sufficiently close to T, such that the GL co-
herence length perpendicular to the layers $,(T) is
much larger than the layer separation s, it is not
expected to be even qualitatively correct at lower
temperatures where $,(T) can become less than or
comparable to the layer separation. Moreover,
since the parallel critical fields in these materials
are observed to exceed the Chandrasekhar-Clogston
Pauli paramagnetic limit by as much as a factor of
5, ' ultimately any proper theory of H, 2 must include
Pauli paramagnetic limiting along with the quench-
ing effects of spin-orbit scattering. The theory
developed in this paper is free of both of these
deficiencies. In addition, as indicated above, it
clarifies the manner in which the two-dimensional
nature of layered compounds is expected to affect
their superconductivity and predicts some novel
behavior in the temperature dependence of H,a for
layered compounds.

This more complete theory is developed in two
steps. First, in Sec. II we calculate H, ~ using the
Lawrence-Doniach equation, in which layered com-
pounds are modeled as a stacked array of two-di-
mensional superconductors coupled through Joseph-
son tunneling. We find that the LD equations pre-
dict the existence of a temperature T* less than

T, [defined by the relation $,(T*)= s//2] below
which the upper critical field parallel to the layers
is infinite. We interpret this result physically as
evidence that the normal cores of the vortices
present in the mixed state of layered superconduc-
tors can, under the appropriate conditions, effec-
tively fit in between the layers, thereby removing
the orbital effects as a mechanism for the quench-
ing of superconductivity. In this situation, the up-
per critical field parallel to the layers becomes
determined by those mechanisms responsible for
the destruction of superconductivity in the individ-
ual layers, and as regards H,~„, the layered com-
pound is effectively behaving two dimensionally.
Moreover, it is only for T & T* that the Josephson-
coupled nature of these materials is expected to
manifest itself prominently.

After this phenomenological treatment, we pre-
sent a full-fledged microscopic calculation of the
critical field for layered compounds. This calcula-
tion begins in Sec. III, where we present a model
Hamiltonian for layered compounds that includes

free-electron propagation within each layer, tun-
neling of the electrons between the layers, an intra-
layer BCS-type pairing interaction, the effects of
the magnetic fields on the electron spins, and both
potential (spin-independent) and spin-orbit scatter-
ing within the layers. In Sec. IV, we use this mod-
el to calculate H, z for all interlayer tunneling
strengths. The results of this calculation are quite
complicated due to their generality. However,
based on the insights gained from our results using
the phenomenological LD theory, we may gain con-
siderable understanding of the predicted behavior
by investigating those values of the material param-
eters for which the upper critical field behaves
anomalously, i. e. , with a temperature dependence
of H 2]~ that rises faster with decreasing tempera-
ture than in the case of an ordinary type-II super-
conductor.

In Sec. P, we examine the behavior expected in
the temperature region near T,. We find that in the
dirty limit for electron propagation within the
layers, the interesting region of the material pa-
rameters is obtained when the electrons scatter
many times in a given layer before tunneling to an
adjacent layer. Under these conditions, it is found
that the upper critical field is determined by the
solution of a single eigenvalue equation (related to
the I.D equation), which is of the form of a Schro'-
dinger equation with both an harmonic and a periodic
potential. The solution of this eigenvalue equation
i.s discussed in detail in Sec. VI. In Sec. VII, we
focus on the case when the field is parallel to the
layers and find that for large spin-orbit scattering
rates the equation for ff,2„(T) reduces to the usual
pair-breaking form, with a pair-breaking param-
eter that depends in a complicated fashion upon the
magnetic field strength. It is also found that in
practice the Chandrasekhar- Clogston limit may be
greatly exceeded in layered compounds if the spin-
orbit scattering rate is extremely large, just as
one would expect when the limits due to the usual
orbital effects are ineffective.

Finally, in Sec. VIII, our results are discussed
in light of the available experimental work on the
critical fields of layered compounds.

II. PHENOMENOLOGICAL LAWRENCE-DONIACIH MODEL

In terms of the order parameter @,(r) for the
position r in the jth layer, we write the Lawrence-
Doniach free-energy functional in gauge-invariant
form,
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where

e(= [2m)'(T)] ',
P=7&(3)/2mNT, v'v$ (0)

are the usual GL parameters in the dirty limit,
q is the interlayer coupling parameter due to the
Josephson tunneling of electron pairs, and H is
the local magnetic field which is assumed constant
and equal to H, since we are only interested in cal-
culating H, &. A and A. are the magnetic vector
potentials parallel and perpendicular to the layers,
respectively, and V is the gradient operator par-
allel to the layers.

Equation (3) has been previously used by
Yamaji, 4 for the case A, = 0 to calculate the effect
of fluctuations. It describes the free energy of a
system of metallic layers, indexed by j, which
obey the two-dimensional GL equations and are
coupled by Josephson tunneling. Upon variation
of Eq. (3) with respect to 4'*, and Fourier series
transformation with respect to the variables per-
pendicular to the layers, we have

(o.'+ (1/2m)(- i% —2eA)s

+ 2q[I —cos(q, s —2', s)]]4 = 0, (4)

where we have neglected the term of order )4 ) 4,
which has no influence on H, 2(T). Using the gauge

(A, A, ) =H(0, x cos8, —x sing), (6)

we have the one-dimensional Schrodinger equation
with both an harmonic and a periodic potential,

1 -d~ 2.-
+ 2eH x cos8

2m, dx I

1
+ 2[1—cos(q, s+ 2eHsx sin8)] q= —u4,Ms

(6)
where we have identified q= (2Ms ) for compari-
son with the results of anisotropic GL theory.

To calculate H,2, we set —n equal to the lowest
eigenvalue of Eq. (6), which occurs for q, = 0 and
determines the highest field for which a nontrivial
solution to Eq. (4) exists. We observe that for
the field perpendicular to the layers (8= 0), Eq.
(6) leads to the GL result for a bulk type-II super-
conductor, H,z~= C()/2vg (T). For H parallel to the
layers, Eq. (6) reduces to Mathieu's equation

(
1 d 1 , [1—ees(«eeess))) «= —««. (7)2m dx Ms

For small magnetic field [H «(m/M)' /es ] the
cosine term may be expanded, the lowest eigen-
value of Eq. (7) is nearly proportional to the mag-
netic field, and we recover the expected anisotropic
GL [Eq. (1)] result for H, z Fo)r(large magnetic
fields [H»(m/M) ~~/es ], however, the electron

H r'2 T
m

«~( / r )= 4M 2 4[1 — ~/2(~(T)] (6)

where $,(T) = (m/M) ~2((T) is the GL coherence
length perpendicular to the layers.

From Eq. (6), we note that if $,(0) &s/(t2, there
is a temperature 7.'* defined by the relation

$,(T")= s/g2

at which the upper critical field parallel to the
layers becomes infinite as the temperature is de-
creased [E.ven if $,(0)& s/V"2, the temperature
dependence of H, 2 is quite anomalous. ] We inter-
pret this extremely unusual behavior as an indica-
tion that at low temperature (T & T*), the normal
cores of the vortices fit between the layers, allow-
ing the individual layers to remain superconducting
in much larger magnetic fields than would be pos-
sible for an ordinary bulk type-II superconductor
with the same GL coherence length. Moreover,
our results strongly suggest that at low tempera-
tures (T & T*) layered compounds should behave
as a series array of coupled Josephson junctions.

W'e note, however, that since the LD model is
only valid near 7."„the above calculation is only
qualitatively correct at best. Moreover, even
though the normal cores of the vortices may indeed
fit between the layers, the divergence of H,2 at T~
is clearly unphysical and results since any effect
of a magnetic field on the superconductivity in the
individual layers is completely neglected in the
simple LD theory. The most obvious limitation
for such thin layers is Pauli paramagnetic limiting
as modified by spin-orbit scattering. In order to
correct these shortcomings of the LD theory, it is
necessary to carry out a calculation of H,~ using
microscopic theory. Such a calculation is carried
out in Secs. III and IV.

III. MODEL HAMILTONIAN

As a first step in developing a microscopic
theory of H,z, we construct a model Hamiltonian
for the superconductivity of layered compounds.
We define the field ())&,(r) corresponding to an elec-
tron with spin o. at position 'P in the jth layer in
terms of the appropriate annihilation operator

())z,(r)= (As) '~ ge'"'az, (k),
k

(10)

where'. is the area of a layer, assumed the same
for all layers, and sufficiently large so that bound-
ary effects can be neglected. We assume periodic

pairs see the average of the periodic potential, and
the lowest eigenvalue of Eq. ('7) is nearly indepen-
dent of the magnetic field. Carrying out a large
magnetic field expansion, we find that the first-
order corrections to the eigenvalue are of the order
of H, and obtain
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boundary conditions with regard to the layer in-
dexes. The creation and annihilation operators
obey the usual fermion anticommutation relations,
and the field operators obey

In terms of the field rlr, the Hamiltonian we shall
consider is of the form

3C0+ 3CT+ 3Cimy+ 3CPCS (12)

In Eq. (12), Ko is the single-particle Hamiltonian
for an electron in the presence of a magnetic field,
and is given by

3Cp= df s
g

r

x — V'- ie — o ~ H r

where p, ~ is the Bohr magneton and p- is the Pauli
spin matrix. The next term in the Hamiltonian,

3CT, is of the form

J
3CT 2

'YS
gfy

0+1)s
xexp —ie A.,dz + H. c.

)S
(14)

where H. c. indicates the Hermitian conjugate.
3CT is the gauge-invariant tunneling Hamiltonian
and serves to couple a given layer to the two adja-
cent layers. The tunneling energy J is assumed
independent of layer index and position in the
layers.

The term in the Hamiltonian denoted by 3C, , is
due to the presence of impurities in the layers,
and is of the form

and where R~ ls the position of the nth lmpurlty ln

the jth layer, P and q are unit vectors on the Fermi
surface, and Vz and V„are the contributions to the

scattering due to spin-independent and spin-orbit

scattering, respectively. This term describes the

scattering of an electron in a given layer due to the

presence of impurities and is analogous to the term

Z, ,= d x d x's g rfrJ, (P) V 1('P, r')rlr„(P),
(15)

where the scattering potential V»(r, r ) is given

by

Vrr(r, 1' )=s 5rrg d P d rf(271)

x exp(ip ~ [-', (r+ r') —R'.]+ ill ' (r —r'))

x(V, +iV.,pxq ~ rr)

used by Abrikosov and Qorkov. We have only in-
cluded scattering within a given layer and have
therefore completely neglected the scattering pro-
cess that might take place during the tunneling
from one layer to the next. Physically this implies
we have restricted ourselves to the "clean limit"
for propagation perpendicular to the layers.

The final term in the Hamiltonian is the BCS-
type electron- electron interaction responsible for
superconductivity, which we write as

&BCB= 2 P d+trt (r)r)rj', .(r-)yr, .(&-)rfr.(r), (I'~)

which is the appropriate analog of the BCS pairing
interaction due to the electron-phonon interaction.
The coupling constant X is negative, as the inter-
action is attractive, and we assume that only elec-
trons with energies within a narrow range of the
Fermi energy may participate in the interaction.
We note that this term in the Hamiltonian only pairs
electrons of opposite spin and momentum in the
same layer. We neglect pairing of electrons in
different layers, within the spirit of the BCS theory
for bulk superconductors, where the interaction
is assumed to be pointlike.

Thus, this model describes a series of "two-di-
mensional" superconductors, coupled only through
interlayer electron tunneling. As the tunneling en-
ergy J goes to zero, we might expect some prob-
lems to arise, as it has been shown that in the
strict sense there is no long-range order in two-
dimensional systems. However, as long as J is
finite, even though possibly very small, there will
be sufficient coupling to allow for long-range or-
der, and this model should have some validity.
This conclusion has been reached by Tsuzuki '
using a LD-type theory, and also by Qerhardts.
The arguments are similar for this model.

IV. CALCULATION OF H, 2 (O, Tj

We now calculate the upper critical field within
the framework of our model of "two-dimensional"
BCS-like superconductors coupled by electron tun-

neling between adjacent layers. We are principally
interested in those values of the parameters of the
theory for which H,a( —,

'
rr, T) is anomalously large.

In order to fully characterize such regions, we
make no limitations upon the magnitude of any of
the parameters, other than to assume that the dirty
limit applies for electron propagation in the layers,
and that the spin-orbit scattering rate is much less
than the total scattering rate. In particular, we

would like to determine those values of the inter-
layer coupling strength J for which H, a( —,

'
rr, T) be-

haves anomalously and curves upward with decreas-
ing temperature, as was found in the vicinity of 7*
in the I D model discussed in Sec. G.
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We define the temperature Green'8 functions in.

the usual way. For example,

Gear . pg gq . &~ [4t (r r) (Js(r &
~ )s1 & (18)gg %rp ~p (I)

and the oyerators are all in the Heisenberg repre-

sentation. In Eq. (18), the averages indicated are
statistical averages in the grand canonical ensem-
ble. From Eqs. (18) and (19), we see that the nor-
mal-state Green 8 function Q ~ which de8c11bes the
pl'opRgRtlon of Rn electx'on 1Q the Rbsence of the
pairing interaction responsible for superconductiv-
1ty, 18 obtRlned from 0 by set'ting X= O. Fox' the
Hamiltonian described in Sec. III with X set equal
to zero, the equation of motion for the normal-
state Green's function t"" is found to be

['LQ7+ V /2m+ p + ps P ' H —pel(kp + Ay )]G~~gg(1, I' ) —s Q

where we have taken the usual Fourier series
transformation with respect to the variables g and
7', and g is the chemical potential. In Eq. (20),
we have defined the index raising and lowering op-
erator to obey

&y+4go(~) = 4y~x, e(r) ~

The quantity G" is then found from the normal-
stRte Gx'een8 function ln the Rb8ence of 1mpurltles,
G, by the usual impurity-avex'aging technique,
The Fourier transform of G is found, from Eq.
(20), to be

G', (k, k,) = (i&a $f-Z—cosh, s) ', (22)

time are those of the form shown in Figs. 1(b),
1(e), and 1(f), in which the electrons scatter
twice off the same impurity site, and in which
there are no crossed impurity averaging lines,
such as shown in Fig. 1(g). Diagrams with an
odd Qumbex' of lmpux'lty scRttex'lng potentials do
not contribute to the electron lifetime, but serve
to redefine the Fermi energy, We therefore keep
only the diagrams of the type shown in Figs. 2(a),

$f= k'/2m —g .
We define the total scattering time v by

1 1 1
(23)

j m m nnWrn

where

1—= nN~z, (0) de I'i(s)
r

/
p

/4 / 'I

=nN2n(0) d8 sin 8 P'„(e) (25) l tTl rn

are the two-dimensional spin-independent and
spin-orbit scattering times, respectively, n is
the number of impux'ity sites yer unit area of a
layer, and Nan(0)=m/2m is the two-dimensional
density of states for a single electron spin. The
diagrams corresponding to the lowest-order im-
purity-averaging processes ax'e shown in Fig. 1.

Assuming E~v»1, the only diagrams in Fig. 1
thRt contribute slgniflcRntly to the electx'on l1fe-

A
N Al l t N N 1 l

v

FIG. 1. Shown are typical diagrams contributing
to the normal state Green e function M the presence of
impurities. The solid lines represent the normal-state
Green' e functions in the presence of tunneling but in
the absence of scattering, and the dashed curves refer
to the simultaneous averaging of the bvo indicated im-
purity sitee+
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FIG. 2. (a) Diagrams to fourth order in the impurity
potential that make a significant contribution to the elec-
tron lifetime. (b) Diagrammatic representation of the
integral equation for the normal-state Green's function
in the presence of both tunneling and scattering (thick
line) that results from summing the series indicated in
Fig. 2(a).

Z (k, k,)=ns d

dpi'

(2m)",g, 2m

x [V&+i V„(p xk) ~ o ]

xG"„,(p, pg)[Vg+iV„(kxp) ~ '(f] . (27)

In Eq. (27), the integral with respect to P, is due

to the tunneling of an electron from a given layer
to any other layer and back, scattering an even
number of times in any of the layers to which it
propagates. From the structure of the self-ener-
gy, it is seen that the integration with respect to

p, serves only to renormalize the Fermi energy,
as it is only the imaginary part of the self-energy
that gives rise to an electron lifetime. We there-
fore obtain

G„,(k, k,) = (i(d. —)I —Zcosk, s) ' (26)

where the renormalized frequency is given by

1
+

I l

+Lp~o~ H (29)

which, when summed, give the integral equation
shown diagramatically in Fig. 2(b).

Taking the Fourier transform of this equation
with respect to the variables parallel to the layers,
and the Fourier series transformation of the vari-
ables perpendicular to the layers, we find that the
normal-state Green's function G" can be expressed
in the usual mass operator form,

[G"„,.(k, k, )] = [G „~(k,kg)] —Z„(k, k ), (26)

where the self-energy Z (k, k, ) is given by

Thus, the effect of impurities on the single-elec-
tron normal-state Green's function for a layered
superconductor is completely analogous to that for
impurity scattering in a bulk superconductor, ex-
cept for the definitions of the scattering times.
The simultaneous effects of impurity scattering and
interlayer tunneling upon the normal-state Green's
function appear to be independent, the impurity
scattering serving only to renormalize the frequen-
cy, and the tunneling processes giving rise to the
single-electron states of the tight-binding form with
regard to motion perpendicular to the layers.

In order to calculate the upper critical field, we
assume, as in the calculations of Maki' and of
Werthamer, Helfand, and Hohenberg (WHH), 0 that
II,3 is given by a supercooling field, which corre-
sponds to the points at which the superconducting
state can form with an arbitrarily small gap. We
therefore form the linearized Gorkov gap equation
for a layered superconductor, keeping only the
lowest-order term in the expansion in power of the
gap &, and are led to the result

~„( (
Ix(7 ZJ' *dk, f d (,

,g, 2v (2w)'

x (G"„,(k, k, ) G"„,(q - k, q, —k,)) &~ (q, q,),
(30)

where the trace implies the sum over the two pos-
sible spin configurations, and the average is over
the impurity sites. An equation for the upper criti-
cal field can be found from Eq. (3) by making the
replacement

(q, q, ) —(q —2eA, q, —284,) (31)

which is valid in the dirty limit and where the
gauge is given by Eq. (5).

Since we have already found the effect of impuri-
ties upon the single-particle normal-state Green's
function, we need now only calculate the simulta-
neous effect of impurities upon the product of two
Green's functions. Thus, we average one impurity
site in the expansion of one Green's function with
a site in the expansion of the other Green's function,
The internal lines are the normal-state Green's
functions in the presence of impurities, as given by
Eq. (28). We retain only the ladder diagrams, as
the remaining diagrams contain crossed impurity
averaging lines, and are thus negligible for E~z»1.
We thus have the integral equation shown diagram-
atically in Fig. 3.

For the case of bulk type-II superconductors, the
analogous integral equation has been solved by
Maki' and by WHH. The general procedure we
use is similar to that of WHH, and is discussed
more fully in the Appendix. In the limit that the
spin-orbit scattering rate is much less than the
total scattering rate (v»7,",), and in the dirty
limit for the electron propagation in the layers
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(i.e. , I «$0, where I = v~z is the mean free path
in the layers, and g0 is the BCS coherence length
in the layers, respectively), we have the implicit
equation for H,0(8, T)

(cg» + Qp + a»+ a )/2+ 5
T,0 „„~ ((of+ a,)(~~+ a ) —b'

where

5 = I/3~. . .
a, = b+ Q,/2r

(g~ = [~', + J'(I —cosa, s)/2]'~' —I/2r

[1—Z0(1 —cosq, s)/4~0] v0~q~

8~,'[I + 8 (I —cosq, s)/2(o,']
1 . la„1
i

'J:
2~ &n

and mhere I= p, ~H contains the effect of the Pauli
paramagnetism, ~„=(2n+ I)gT is the fermion
Matsubara frequency, and the magnetic field is
introduced as in Eq. (31). In Eq. (32), we have
used the analogous BCS-type (or mean-field) rela-
tion for the zero-field transition temperature of
the layered superconductors, which for J «&D is
nearly independent of 8 (see Ref. 3),

~~~A(0)in(2», /, T ) =I,
where X{0)= m/2vs is the electron single-spin den-
sity of states for a layered superconductor, y=1.78,
and ~~ is the Debye frequency.

In Eq. (32), we have made no restrictions upon
the magnitude of the interlayer tunneling energy J.
However, as me expect that the anomalous behavior
of interest occurs only in the "decoupled" regime,
we anticipate that J must be "small. " (We also
must establish the appropriate quantity to which J
should be compared. ) In particular, we wish to
isolate those values of J and the other parameters
fol' wlllcll H~a(0 v~ T) cul'ves upward wltll decl'eas111g
temperature. We note that in contrast to the case
for bulk type-II superconductors, here the choice
of the dirty limit requires only that the coherence
length in the layers be much larger than the mean
free path, or more precisely Q, «1. Unlike the
dirty limit in the conventional theory, this assump-
tion places no restrictions upon the total scattering
rate relative to T,o. However, since we expect that
the materials of physical interest mill satisfy the
condition 7T& «1, in our subsequent discussion,

we shall focus upon that limit. The case for YT,o
»1 has been discussed elsewhere. '

V. THE UPPER CRITICAL FIELD NEAR THE ZERO-FIELD
TRANSITION TEMPERATURE

From our results using the LD theory (Sec. II),
very near T,o me expect P,2 to behave like an ordi-
nary anisotropic bulk superconductor, that is, with
a temperature dependence H„(T) 00 T- T,0. We
therefore anticipate that a power series in T- T,o
should provide a good expansion for H,z in the vi-
cinity of T,o. Moreover, it is clearly the term
quadratic in T- T,o that, to lowest order, mill con-
tain any of the usual effects predicted in Sec. II.
In the LD theory, H,0( 2 ~, T) can be shown to have
a positive coefficient for the quadratic term in the
power series expansion in T- T,o, whereas for an
ordinary bulk type-II superconductor this coeffi-
cient ls negative, Thus the sign of the quadratic
term is a convenient indicator of anomalous be-
havior of H,s(2 v, T).

To determine H, a and to establish the values of
the material parameters leading to anomalous be-
havior, we must first transform Eq. (32) back to
position space with regard to the variables parallel
to the layers. This is equivalent to rewriting Eq.
{31)as

(q, q, ) - (- iV —2eA, q, —282.,) (34)

We must then find the lowest eigenvalue of the re-
sulting operator equation, mhich occurs for q, =O.
We observe that the transformed Eq. (32) is a
function of two separate operators I.'= g, + ~,*,
where g, and ~,* are themselves operators due to
the transformation. We therefore must solve the
eigenvalue equations

L»~0 E0 y0 (36)

where E, and P, are the lowest eigenvalues and
eigenfunctions of the respective eigenvalue equa-
tions.

The operators L' may each be broken into tmo
parts: one that is of the form of the Schrodinger
harmonic oscillator, giving rise to an eigenvalue
proportional to H; and one that may be treated as
a perturbation, giving a correction to the eigenval-
ue of order H0. Equation (32) may now be solved
for the coefficient of the quadratic term in the
T- T,o expansion for H,3. The solution for all val-
ues of the parameters is given elsemhere. ' For
7.T,O

«1 and for the field parallel to the layers, we
have

& H,0(2 P, T)
co 8T2

56$(3) . 2rT,0 1 2'p, ~(q;,)
w (&v)' n '(sv ~ s&r)'
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where

g(~,.) = Q (2n+ 1) ' [2n+ 1+2/3m'„T„]-',
n=o

»„(p p, T)
BT

—8
PQCJS'U ~T

The right-hand side of Eq. (36) separates naturally
into three parts: the first two terms in the brackets
together comprise a negative contribution to the
curvature of H„and represent the usual correc-
tions to the GL result obtained from the presence
of Pauli paramagnetism and spin-orbit scattering,
and also tends to decrease the curvature of B,3 as
it does for a bulk superconductor. The middle

term, however, is due to the layered structure of
the materials in question and can be of either sign,
depending upon the ma, gnitude of (Zv) . Inspection
of Eq. (36) shows that the quadratic term in the
expansion for H, ( p7$pT) in powers of T Tp can-

be positive only for (Jr) & —,', and then only for cer-
tain values of the remaining parameters. [We re-
mark that similar results ' are obtained for wT, o

»1. In this case, the quadratic term can be posi-
tive only if (J/T~) & '7. ]

T 1 b
'r'-r' "'

Tco 2
I

b 1 1
]

+ 1+
ga 12 rr2 2+P-

(37)

p, =(2vT) ' [b+ ~e(b' I')'~'],
and e is the lowest eigenvalue of the equation

(36)

Inspection of the above results indicates that the
upward curvature of H, p( ,'w/—T) predicted by our cal-
culations is most pronounced when the Pauli para-
magnetic limiting is highly quenched by spin-orbit
scattering. Therefore, since 7;, ~ 7 always, the
most promising case for obtaining an upward cur-
vature is when p T,p

«1 and (Jr)p «1, i. e. , in the
extremely dirty limit and when the electrons scat-
ter many times in a given layer before tunneling
to an adjacent layer. In the opposite case when

rT,p»1, g(p„) is of order 1 and cannot be made
small by even the maximum allowable spin-orbit
scattering rate.

With the favorable conditions, we may rewrite
Eq. (32) in terms of the usua, l digamma functions

—d 2D —z+ (2eHx cos8)
4x

I

+ 8'r [1 —cos(2eHxs sin8)] y =2'. (39)

For strong spin-orbit scattering, A»I, which is
necessary to give a, pronounced upward curvature of
of H„(~/2, T), Eq. (37) reduces to

ln --- + 2+ — 2
-—0

where the pair-breaking parameter n is given by

&= &+2 7„I

Thus, for (Z~)'«1 and rT„«l, we obtain an ex-
pression for H„(8, T) differing from that for a bulk

superconductor only in terms of the eigenvalue c.
This eigenvalue is not a simple function of the rel-
evant parameters, however, and we study its be-
havior in the following section,

I"IG. 3. Digrammatic repx'esentation of the integral
equstion for the produot of two Green's functions in the

px'888nce of iDlpU, x'ities.

vr. &HE HGExvwLUE EgU&noN

In order 'to f111cl H~p(8, T) as given by Eq. (37),
we must first find the lowest eigenvalue of the
eigenvalue equation, Eq. (39). We observe that
this is a one-dimensional Schrodinger equation with

botll an harmonic Rlld a periodic potential, Fox'

the field perpendicular to the layers, we have only

the harmonic potential, and for the field parallel
to the layex's, only the periodic potential. Since
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for the periodic potential alone, a solution valid
for all values of H cannot readily be expressed in
terms of a finite set of elementary functions, we
anticipate that for arbitrary angles of the magnetic
field, the best analytic solution will be an expan-
sion for small magnetic field strengths, and one
for large field strengths.

Near T,o, H, 2 is small, and the eigenvalue may
be expanded in powers of H to give

(eHs j)2rsin 8
16a'(8)

(eHs2)'ja7'sin 8 Vjasavsin 8 0(H4)
384a (8) 2Da (8)

where

a(8) =[cos 8+(j'7s /2D) sin 8] ~'

g4~2ex coshy —1 g27s2 3

8DeH cos8 o y D
dy — +0

where

g =eKs' sin'8/cos8 .

(44)

(45)

We observe that Eq. (44) is an expansion in powers
of j' s't78a/nD for y«l, and in powers of j'r/D
(eHs sin8)' for lf» l. It is convergent for all an-
gles. In pa.rticular, as 8-0, a DeH, the bulk
isotropic result. As 8 -m/2, we have

z'v''-
2 -16D",H (46)

is the anisotropy factor. We observe that the term
linear in H is of the form expected for a dirty, an-
isotropic bulk type-II superconductor, and that as
8-0, the other terms disappear. As 8- —,'~, the
expansion is in agreement with the low-field expan-
sion of the eigenvalue of the Mathieu equation. "

The "high-field" expansion is more subtle. If
one is interested in the behavior of &near 8 = —27t,
then one might be tempted to treat the periodic po-
tential as the unperturbed potential and treat the
harmonic term as a perturbation, using the high-
field expansions for the periodic eigenfunctions as
the basis. This approach turns out to be unaccept-
able, however, as the perturbation is unbounded,
and therefore has regions where it exceeds the un-
perturbed potential, except exactly at 8 = —,

'
m. In-

stead, we treat the periodic part of the potential
as the perturbation for all angles. A simple ex-
pansion parameter is not readily apparent, how-
ever. Carrying out the calculations, we obtain

J' 2 ya'=DeHcos8+ (1 —e )2

2+ 1-cos2y

where

@ = eHs 2 (2D/j 7's ) (48)

is a reduced field. The eigenvalue & may be writ-
ten in terms of a dimensionless function f defined
by

f(l ) =2e/rZ„,

where r =j'7/T, o is a parameter gauging the inter-
layer coupling strength and was used previously by
the authors2 to distinguish the regions of two- and
three-dimensional behavior in the fluctuation
regime above T,o. In order to compare our re-
sults with those for a bulk anisotropic type-II
superconductor, we make the identification

m/M =j 7's /2D (5o)

where m/M is the ratio of the GL effective pair
masses.

In Fig. 4, we have plotted the function f(lz). For
h «1, f-0, so that for small magnetic fields,
and H„(-,'a', T) reduce to the familiar GL result.
For Iz» 1, however, f-l, which characterizes
the "decoupled" behavior, that is, when the vorti-
ces are centered between the layers and do not
contribute significantly to the destruction of super-
conductivity in the layers. Since the parallel
upper critical field of a thin film depends upon
the thickness of the film, the field-independent
region of the eigenvalue in the limit as y 0 cor-
responds to the upper critical field we might ex-
pect for an "infinitely thin, " or more precisely,
purely Pauli paramagnetism-limited film. 24

If we now neglect the effects of Pauli pa, ramag-
netism and spin-orbit scattering (or, equivalently,

which is the result of the high-field solution of the
Mathieu equation. " We further note that Eq. (44),
if expanded in powers of H, is in agreement with
Eq. (42) expanded in powers of j'7sa/D. That Eq.
(44) can be considered to be the high-field expan-
sion is due to the fact that it reduces to the high-
field form of the eigenvalue for 8 = —,'w, although
as 8-0, the form of the solution is the same with
both perturbation techniques.

VII. THE UPPER CRITICAL FIELD PARALLEL TO THE
LAYERS

From Eq. (44) we see that the eigenvalue is
nearly proportional to H for 8 c —,'~. Therefore, it
is only for the field parallel to the layers that the
behavior of H, 2 is strongly anomalous. We now
examine this limit in detail.

In this limit, the eigenvalue equation may be
written as a function of a single parameter,



assume that the spin-orbit scattering rate is in-
inite), we then may use the pair-breaking equa-

tion, Eq. (40), combined with Eq. (47) to obtain
a more accurate equation for T* the te emperature
at which II ~—'mt h', ~~—,', T~ would become infinite in the ab-
sence of these effects,

5.0
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ln(T */T, o) + P(—,'+rT, o/4vT*) —|t (-,') = 0 . (51)

3f(ho)+4 rsoTcor o' ho =f(ho)+ /ho =v/yr (52)

where

o' = (M/I)'~ p, ~/eD (53)
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pIG. 4. Plot of the dimensionless eigenvalue
2~(h)/xT, p of the eigenvalue equation for the field paral-
lel to the layers as a function of the reduced field k

es (I/m) . The broken lines are the results for an
anisotropic bulk superconductor and for the completely
decoupled limit.

In the insert of Fig. 5, we have plotted T*/T„as
a function of y. We observe that for g & n ~

T* &0
or z n~y,

&0, whereas in the LD theory of Sec. II, T* &0
for r&8/v.

A complete characterization and interpretation
of the types of critical field curves predicted by
our model would be quite tedious owing to the rel-
atively complicated form of the results when the
orbital effects, Pauli paramagnetism, and spin-
orbit scattering all simultaneously affect the be-
havior. In order to gain some insight, however,
we have attempted to identify the values of the
material parameters for which one or another of
the various factors influencing H, s(—,'v) dominate,
and also those values of the parameters for which
clearly anomalous H, ~ behavior is expected.

For economy of exposition we restrict ourselves
to the physically interesting case of strong spin-
orbit scattering 7„T,o «1. Moreover, we further
restrict ourselves, at least initially, to a discus-
sion of the value of the critical field at T =0

1 phH, 2&—,n, Og. In this case, the pair-breaking equation
leads to the following results

~ 4.0
O

I
0

d

I- Xo
oJ

CV

X

2.0

I.O

0 I I I I ~ I

0 0.2 0.4 0.6 0.8 I.O 1.2
T/Tco

FIG. 5. Plot of H,2(2&, T)/Hp as a function of T/T
for 0. =-1 v T&p

= 0 ~ 015 and for various values of y.
cp

Yhe ~=0 curve is the result for a purely Pauli-limited
thin film. Insert: Plot of T~/T

p as a function of x.
T~ is the temperature at which H, 211 would become in-
finite in the absence of Pauli param t'magne asm an spin-
orbit scattering.

(54)

is the appropriate anisotropic generalization of
the pair-breaking parameter for Pauli paramag-
netism, and H, o(~or, 0) is obtained from the va, lue

ho given by Eq. (52) using the definition of h given
in Eq. (48).

From Eq. (52) it is clear that under these con-
1i io,s(—, , 0) depends on the two parameter

r and f. Figure 6 shows the value of H (—
' 0)c2 2

obtained from Eq. (52) as a function of t for var-
ious values of z. Figure 7 indicates the impor-
tant factors governing H,s(—,'w, 0) under any given
condition. The domains and boundaries depicted
in this figure are established as follows.

From Fig. 4, we observe that the extrapolated
curves corresponding to bulk anisoti o ropic pe-II
behavior (f=h) and fully decoupled behavior (f=1)
become equal at h=ho=l. That value of H, s(—,'m, 0)
for which ho= h~ therefore represents a crossover
field separating the region of 3D-like bulk behavior
from that of 2D-like behavior in wh h H,w ic,2 is purely
Pauli limited as in a very thin film.

Since in Eq. (52) H, o(,'v, 0) is determined —by two

terms, one depending upon Pauli paramagnetism
and spin-orbit scattering and the other depending
upon the field dependence of the orbital effects,
we define the reduced field h~ to specify when these
contributions to H„(-,v, 0) become equal. We thus
choose A~ to satisfy

f(h~) =gh~~ .
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FIG. 6. Plot of the hp=H 2(2&, 0) es (M/m) as a
function of f=47'„T«e ~ for ~=0.1, 1, and 10. Also
shown is the value hD= 1, which distinguishes the re-
gion characteristic of a bulk anisotropic superconductor
from that characteristic of a purely Pauli-limited thin
film,

teresting region of H,~(—,'m, 0) is for h& h~ and for
K(ho) & t(h, ), where the spin-orbit scattering en-
hancement is so strong that it causes H, 2(—,'m, T) to
greatly curve upward with decreasing temperature.

In order to display the H,2(-,'m, 0) values attain-
able for various values of ~, in Fig. 6 we have
plotted the ho versus f curves for three different
r values. The dimensional crossover curve, AL)

=1, is also shown. For x=0. 1, H2(-,'v, 0) is pri-
marily determined by Pauli paramagnetism and
spin-orbit scattering effects and is similar to the
H,2(-,'m, 0) for a purely Pauli-limited thin film. For
r = 10, H,2(2v, 0) lies generally in the region where
Pauli paramagnetism and spin-orbit scattering are
not important, and exhibits basically three-dimen-
sional behavior. For r=1, H,2(,v, 0) is—inthe in-
termediate region both with regard to dimension-
ality and with regard to the importance of the ef-
fects of Pauli paramagnetism and spin-orbit scat-
tering.

In order to illustrate the dependence upon tem-
perature of the effective dimensionality of the ma-
terials, in Fig. 5 we have plotted H,2(-,'v, T) versus
T/T, o for a fixed spin-orbit scattering rate T„T,O
=0.015, a fixed n =1, and for various values of ~,
including x=0, which corresponds to a purely Pauli-

Thus, for h&h~, the effects of Pauli paramagne-
tism and spin-orbit scattering are important in de-
termining H, 2(—,'v, 0), whereas for h&h~, the orbital
effects are important.

In addition, there is a reduced field A,, that dis-
tinguishes between the possible shapes of the
H, 2(-,'v, T) curves as a function of temperature. In
the absence of Pauli paramagnetism and spin-orbit
scattering effects, the anisotropic bulk supercon-
ductor would have an H, 2(2v, 0) given by

40
Ol

O
OJ

IOO

h, = /yr. (55)

t' = [h, —f(h, )]/h.' . (56)

Examination of Fig. 7 reveals that the most in-

Since for strong spin-orbit scattering rates,
H, 2(,'m, T) increases mon—otonically with decreasing
temperature, if ho& k„ then H, a(-,'m, T) would be en-
hanced above the curve for an ordinary bulk type-
II superconductor with the same degree of anisot-
ropy. Thus, the enhancing effects upon H,2 of a
large spin-orbit scattering rate would outweigh the
Pauli paramagnetism limiting. For k&h„H, ~(-,'m, T)
would lie below the curve for the bulk supercon-
ductor with the same anisotropy in the absence of
paramagnetic effects, the enhancement due to
strong spin-orbit scattering rates being outweighed
by the Pauli paramagnetism limiting. For a given
value of &, in order to determine which of these ef-
fects will dominate, we must solve for f in terms
of h, . Employing both Eq. (52) and Eq. (55), we
find that & is given in terms of h, by

O. I

IO IO I

/4~soTcoa r
2

IO

FIG. 7. Map of the regions of different physical
significan. ce of the reduced field hp = H, 2 (2&, 0) es (M/rn)
The boundaries of these regions are the curves h& and
h~, which are functions of f =4vgpT«G x The reduced
field hp distinguishes the region where Pauli paramag-
netism and spin-orbit scattering are more important
than the orbital effects in. determining H,2(27I, 0) from
the region in which the opposite is true. The reduced
field h, distinguishes those H,2(27', T) curves that rise
more rapidly with decreasing temperature than an ani-
sotropic bulk superconductor in the absence of pauli
paramagnetism and spin-orbit scattering does from
those Ho2(2~, T) curves in which the opposite is true.
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limited thin film. We observe that the r =10 curve
is indistinguishable from that of a bulk anisotropic
type-II superconductor, and that the x=0. 1 curve
is very similar to that of a purely Pauli-limited
thin film except in the region in temperature very
near 'to Tco where the thin film curve goes to zero
with infinite slope, whereas the x=0. 1 curve goes
to zero with finite slope. The x=1 curve is inter-
mediate to the ~=10 and x=0. 1 curves, more close-
ly approaching the curve characteristic of a bulk
type-II superconductor for T& T*, and more close-
ly approaching the curve for a purely Pauli-limited
thin film for T& T*. The "dimensional crossover"
behavior at T* is thus clearly evident.

In Fig. 8, we have plotted H,2(,'v, T) v—ersus T/
T,o for ~=10, for ~ =1 and 5, and for various spin-
orbit scattering rates. We observe that for a =1,
the shapes of the H, ~(-,'m; T) versus T curves are
relatively independent of spin-orbit scattering rate,
as predicted by Figs. 6 and 7. For &=5, however,
the Chandrasekhar-Clogston limit can be consider-
ably exceeded, and the effects of Pauli paramagne-
tism and spin orbit scattering are significant in de-
terrnining H,z(—,'v, 0). We note, however, that since
T*&0 for ~=10, there are no regions of upward
curvature of H, a(—,'v, T).

In Fig. 9, we have plotted H,z(—,"v, T) versus T/
T,o for x=0. 1, for ~=1, and for various spin-or-
bit scattering rates. We observe that H„(-,'~, 0)
depends sensitively upon t he spin-orbit scattering
rate, and that H, 2(—,'m, T) curves upward at T*, which
is very near to T„. For other values of ~, the re-
sults are similar, except very near T,o, where the
slopes are different, Thus, the behavior of
H,a( 2m, 0) is essentially independent of n, but does
depend strongly upon the effects of Pauli parmag-
netism and spin-orbit scattering.

Finally, in Fig. 10, we have plotted H„(-,' &, T)

r = O. l

a= I

0
~O

3
I-
CV

CV0

I I I I I

0 0.2 04 0.6 0.8 $ I.O 1.2

T/Top

PIG. 9 Plot of H,2(~~, T)/Hp versus T/T p for
~= 0.1, o, = 1, and for various spin-orbit scattering
rates.
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I

7soTcp 0 001

r= 1.0
a=5

for x=1, for a =1 and 5, and for various spin-or-
bit scattering rates. We have also indicated the
curves for infinite spin-orbit scattering rate, which
diverge at T". We observe that H, 2(-,'v, 0) is rela-
tively insensitive to the value of n, being deter-
mined primarily by the effects of Pauli paramag-

3,0—

0
~V
ct'~ 20

CV
Ox

1.0

0.5

7so Tcp 0 01

r = 10

Q = 5

a ~ I---

3.0a
I-

N

2.0
N
Ox

1.0

0 I I

0 0.2 0,4 0.6 0.8 1.0 1.2
T/T 0

0 I

0 0.2 04 0.6 0.8 1.0 I.2
T/ Tcp

plG. 8. Plot of H,2(&7I, T)/Hp versus T/T, o for ~=&0,
e =1, and 5, and for various spin-orbit scattering rates.

FIG 10. Plot of H,2(2~, T)/Hp versus T/T, o for r= 1,
e= 1 and 5, and for various spin-orbit scattering rates.
The curves for v»T, o= 0 are equivalent to those for
which the effects of Pauli paramagnetism and spin-orbit
scattering have been neglected, and thus diverge at T*.
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netism and spin-oxbit scattering, as was the case
for v=0. 1. However, for T&T*, H,m( 2m, T) de-
pends strongly upon n and weakly upon the spin-
orbit scattering rate, being similar to the curves
fox respectively anisotxopie bulk type-II supercon-
ductors. For both a=1 and a=5, there is evi-
dence of upward curvature near T* for sufficiently
strong spin-orbit rate, although for ~=5, the min-
imum spin-orbit scattering rate necessary for this
to occur is greater than for n =1.

We remark that Bulaevskii ' has independently
performed similar calculations of the upper crit-
ical field. He has not, however, stressed the im-
tance of strong spin-orbit scattering in allowing
such large values of H,~(-', v, 0) that seem necessary
to explain experiment. At the LD theox'y level,
H~p~~) has been calculated by Boccara et aE. , 6 who
have also noted the expected upward curvature.

VIII. DISCUSSION

Qn the basis of the theory developed in this pa-
per, the magnetic properties of superconducting
layered compounds should be quite unusual, pro-
viding the interlayer coupling strength can be made'
sufficiently weak. When only orbital effects (i.e. ,
vortices) are considered the parallel critical field,
H„„ is found to be infinite at low temperatures.
We suggest physically that this result arises be-
cause the normal cores of the vortices in these
materials can effectively fit inbetween the layers.
This remarkable possibility suggests that layered
compounds should show some equally unusual vor-
tex dynamics and possibly Josephson-like behav-
ior, although we have not investigated these pos-
sibilities here. As one would have guessed, the
addition of Pauli paramagnetic lixniting within the
individual layers xestores a finite H, &~~, but should
not alter the conclusion that in these materials the
vortices are probably constrained between the lay-
ers. Also, according to our theoxy, as the tem-
perature is reduced below T„ there is a kind of
"dimensional crossover" expected in which the be-
havior of H,2„(T) changes from being bulklike (i.e. ,
determined by orbital effects) to two-dimensional-
like in that H p] f is de te rmined by the prope r tie s of
the individual layers, even though long-range or-
der is well established from layer to layer. This
crossover is expected to produce a characteristic
upward curvature in tbe texnperature dependence
of H pJ( providing the Pauli paramagne tie limiting
is sufficiently quenched by spin-orbit scattering.
Both very large critical fields and upward curva-
ture of H,s„have been reported for layered com-
pounds, and it is interesting, therefore, to discuss
our theoretical results in light of these experi-
ments.

Wollman et a/. have reported a pronounced
upward curvature of H,2() in MoS3 intercalated with

Cs and Sr. Their curves can be fit by the Joseph-
son-coupled LD xnodel of layered compounds, as
recently pointed out by Bulaevskii and Guseinov 8

on the basis of calculations similar to ours. How-
ever, in order to fit the data, they found it neces-
sary to assume that the conducting layers in these
compounds are -100 A apart, whereas the layer
repeat distance is known to be -10 A. Thus, the
fit is only qualitative at best and does not consti-
tute a definitive confirmation of the theory.

Woollam et al. have also pointed out that a resid-
ual upward curvature of H,z(T) very near T, (usu-
ally followed by a linear variation with tempera-
ture) is a common feature of the temperature de-
pendence of H, & in layered compounds. However,
this residual curvature is normally present in both
the parallel and perpendicular directions, and
therefore not obviously due to the anisotropic (much
less layered) nature of these superconductors.
Moreover, in view of the broad transitions exhib-
ited by these materials, we feel the intrinsic ori-
gin of this curvature has not been unambiguously
established. The effect is ubiquitous, however, as
%bollam, et a/. have stxessed.

Qf the layered superconductors presently known,
the best candidates for the effects predicted by oux'

theory are the layered compounds intercalated with
organic molecules (e.g. , TaS~ or TaS, .SSe, , inter-
calated with pyridine). For these materials we
estimate r&m/y and therefore T~&0. A systematic
study of the temperature dependence of H, ~ in these
materials is presently underway. ~9

However, even without precise data on the tem-
perature dependence of H„, it is possible to ad-
dress the question as to whether the observed mag-
nitude of H,s„at low temperature is consistent with
Pauli paramagnetic limiting. For a purely Pauli-
paramagnetic -limited supercondue tor with strong
spin-orbit scattering

H,2(0) = (v T,/Sr„yp~~)'~~ =0.602 (~„T,O) '~2H~, (57)

where H~ =18.4T, kQe is the Pauli paramagnetic
limiting fieM in the absence of spin-orbit scatter-
ing. Tbe layered compounds in which the critical
fields appear to exceed H~ most dramatically are.
TaS& and Ta8&.SSe0.4 intercalated with organic mole-
cules. Extrapolating the available data to zero
temperature suggests values of H,2„(0)&200 kOe. ' '
For these materials T, is relatively low [(2-4) 'K],
yielding HJ =—36-72 kOe, and thus by Eg. (57), re-
quiring spin-orbit scattering times of at least-5 x10 '4 sec in order to account for the data.

We have suggested previously' that these very
short spin-orbit scattering times might be less
than the total transport scattering time v, and
therefore signal a fundamental problem in applying
the standard ideas regarding Pauli paramagnetic
limiting to these materials. This suggestion has
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led to some alternative possible interpretations.
However, recent low-temperature optical absorp-
tion studies by Benda et al. ' on TaS,.6Se0.4, both
intercalated and unintercalated, yield optical trans-
port scattering times -4 x10 "sec on the basis of
a simple Drude theory analysis of the data. If cor-
rect, this implies v„=—10 ', which is perhaps not
unacceptable for a material containing atoms with
a high atomic number such as Ta.

Thus, it seems that the very large critical field
exhibited by the layered compounds is not neces-
sarily inconsistent with the existing theory of
Pauli paramagnetic limiting. It should be clearly
noted, however, that this conclusion is based on
accepting the very short scattering time w found by
Benda et al. As emphasized by those authors, this
time is surprisingly short but not unacceptably so
in their opinion. Final judgment must await a more
complete understanding of the normal-state trans-
port properties of these materials, including per-
haps the effects of the recently discovered charge-

density waves. "
In conclusion, it is clear that the superconducting

properties of layered compounds continue to be of
considerable interest both theoretically and experi-
mentally. Indeed, as we have seen from the simple
theory presented here, these superconductors seem
quite likely to exhibit some rather novel type-II
superconducting behavior. At the same time many
interesting theoretical questions remain to be stud-
ied, in particular, the nature of the vortex dynam-
ics expected in such layered or periodic systems
and its relation to true Josephson behavior.
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APPENDIX

We wish to solve the integral equation for the product of two Green's functions given in the text. To do

so, we define

d~ r «/s der
(»&*)=

~(O) (2,)~ 2„* (~".(P', Pl)G", .(p-p', P. -f!)), (Al)

(A2)

and S„(p,p, ) is obtained from S„(p,p,) by averaging the two Green s functions over the impurity sites in-
dependently. The integral equation corresponding to Fig. 3 is found to be

d2pr
t

&/s dprs.(p, p.)=s'.(ip, )(1+~~/
g J 2

f('Vg+I'V (E'XP')'~)S (P P')('Vj I'I (PRE'')'7)]),
27f / 271

where p is a unit vector parallel to the layers. To solve this integral equation, we proceed analogously
to WHH, 0 and obtain

&.(P, P.)=&.'(5, P.)(~ g ~.~~ P'(~'4d'(i''I+f~i' l~;!(i &)'Je'(i')~ HHK»-&), (A2)

where we have written

S„(p,P,) =S„"'(P)+S„"'(P)o ~ Hsgn&u. (A4)

In Eq. (AS), the factor —, arises from the fact that
the electron spins are not restricted to the direc-

tions parallel to the layers, whereas the momenta
of the electrons are restricted to those directions
during the scattering process. Solving for S, we
then use Eg. (SO) to obtain Eq. (32), the implicit
relation for H,a. '
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