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Exact result for bimetallic interfaces
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Exact analytic expressions for the change of electrostatic potential across either half of a bimetallic

junction and across the metallic region of a metal-vacuum surface are derived in terms of bulk

properties, The results for the bimetallic interface are compared in detail with numerical calculations

based on the density-functional formalism. The result for the metal-vacuum surface coincides with the

one obtained by Budd and Vannimenus using a different method.

The electrostatic dipole layer at a jellium-vac-
uum surface gives rise to a potential difference be-
tween the jellium boundary and the region deep in-
side the metal. Budd and Vannimenus have de-
rived an exact expression for this potential dif-
ference which, for a, jellium system occupying the
half-space x &0 up to the plane x=0, is given by

Here V (x) denotes the electrostatic potential, p
the uniform background charge density, and P the
bulk electronic pressure. The numerical results
of the microscopic theory of metal surfaces of Lang
and Kohn are in rema, rkable agreement with Eq.
(1), which provides a useful test of the internal
consistency of these calculations.

In the present paper we derive results analogous
to Eq. (1) for the important case of an interface be-
tween two metals in close contact. More pre-
cisely, we shall obtain exact expressions for the
total electrostatic potential change across either
half of the junction in terms of bulk properties of
the two metals. The usefulness of these results
lies primarily in the fact that they provide rigorous
tests for the validity of self-consistent microscopic
calculations of electronic properties at bimetallic
interfaces.

For reasons which will become clear shortly,
our results for the bimetallic case differ qualita-
tively from Eq. (1). We show however that the
present analysis may also be applied to the metal-
vacuum surfa, ce, in which case it leads back to
Eq. (1). In fact, we believe our proof of Eq. (1)
to be simpler and conceptually more satisfactory
than the one given in Ref. 1 because it does not re- .

ly on a deformation of the jellium background; the
latter is held rigidly fixed, just as in previous
microscopic analyses.

Let x=0 define the plane of contact between two
metals 1 and 2 occupying the regions x & 0 and x & 0,
respectively, and characterized by uniform back-
ground charge densities p» p2. The electron num-
ber densities in the two regions are denoted by

n, (x) and n2(x), respectively, and verify the con-

ditions lim„„,„en,, 2(x) = p~, 2 (- e = electron charge).
The electrostatic dipole layer in the interface re-
gion is the source of a bounded electric field E,,2(x)
= —dV&, 2(x)/dx which generates locally an electronic
pressure gradient in the x direction. For an elec-
tron gas in equilibrium, the electronic pressure
change dp across an element dx is balanced by the
electrostatic force acting on the electron distribu-
tion in that element. This lea, ds to the relations

dP& 2
———en& 2(x)E&,2(x) dx, (2)

Deep inside the metals where the system is uni-
form, the electronic pressures have well-known
values denoted by p~ 2. Equation (4) defines the
local electronic pressure at a distance tx) from
the bimetallic contact plane in terms of the values
of the electric field and of the electrostatic poten-
tial at that distance. We note that the second term
on the right-hand side of Eq. (4) gives the magni-
tude of the total electrostatic force per unit area
(electrostatic energy density) acting at a plane
placed parallel to the interface at a distance

~ x~ .
Therefore, the pressure at a point x is identified
by Eq. (4) as the sum of three well-defined con-
tributions. The first term represents the bulk
electron gas pressures, which would be the true

which are in fact a. direct consequence of N'ewton's

law as applied to the electron fluid in the presence
of an electric field E,,2(x) a.cting as an externally
applied field. These relations stand for the equa, —

tion appropriate for region 1 when all indices a,re
taken to be 1, and for the equation for region 2
when these indices are taken to be 2. The same
notation will be used in some equations below.
Since dP, 2 is a perfect differential Eq. (2) com-
bined with Poisson's equation

d' v, ,(x)/dx'= -4m
I
- en, 2(x) + p, 2],

may be directly integrated from points deep inside
the solids to points x in the interface region. This
lea, ds to the results

p1,2( ) p1&2++1,2(x)/ ++ Plp2I Vl&2( ) V.li2(+ )1
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pressures for all values of x if the electron gases
in both regions were uniform right up to the plane
x= 0. The second term in Eq. (4) gives the total
electrostatic contribution to the pressure and cor-
responds to the Coulomb attraction between the
electrons which have been transferred from one
metal to the other one and an equal amount of posi-
tive background charge which has been left behind.
However, since the electronic pressure gradient
in Eq. (2) involves only the force acting on the
electrons, the actual electrostatic contribution in
the pressure is given by the difference between the
total electrostatic energy density and the change
in the electrostatic energy of the positive back-
ground, p~ z f,*„dxE, 2(x), due to the electric field
of the interface dipole layer.

In general, the explicit expressions for the pres-
sures in Eq. (4) will be known only after the elec-
tric field and the electrostatic potential profiles
have been determined from a self-consistent first-
principles calculation. Of course, explicit forms
for the pressures P& 2(x) are known, independently
of Eq. (4), in some current approximations for
inhomogeneous systems. 1n particular, in the local
density approximation, P(x) is given by the bulk
pressure evaluated at the local density n(x) of the
system. In such a case Eq. (4) provides a test
of the self-consistency of the microscopic calcula-
tions from which n(x) and E(x) are obtained. How-
ever, here we are mainly interested in deriving
exact expressions for the electrostatic potential
differences

where V(0) denotes the common value of V~, 2(x) at
x= 0. A first equation relating ~V~ and 4V2 fol-
lows immediately from Eq. (4). Indeed by ob-
serving that the electric field, the electrostatic
potential, and the pressure are continuous across
the interface, we get from Eq. (4) at the contact
plane x=0

(6)

In order to determine 4' z, we need an additional
relation which is obtained by requiring the elec-
trochemical potentials deep inside the solids to be
equal. 3 With the definitions (5) this condition may
be written in the form

(7)

where p, &
and p, ~ denote the bulk chemical potentials

of the individual metals. By combining Eqs. (6)
and (7) we then obtain explicitly

+~i ~& ac iPi=/@ ~ +QX'Cg Z

Si

~&gC, iPi=&i&zi
5

—
3&S Z +Si

(9)

(10)

where the index i refers to the ith species and
where n; is the electron number density, sr, the
Fermi energy, &„„ithe exchange-correlation en-
ergy per particle, and finally, (x,&

as)~ = 3/4n'n;.
For the correlation energy, we use Wigner's inter-
polation formula which has usually been favored in
connection with surface studies. In atomic units
(where we put e2=as=l), we thus have

0.458 0.44 z-1, 2,

where the first and second terms are the exchange
and correlation contributions, respectively. Using
Eqs. (9)-(11), one may verify explicitly that the
square bracket in Eq. (8) is proportional to (p2
—p~) for p~ p&. This shows that the potential
differences 4V&, z vanish, as they must, in the limit
where the constituents of the junction are identical.

Numerical values for the electrostatic potential
differences hV& 2, based on Eqs. (8) and (11), are
listed in Table I. We have also studied the same
quantities using other available expressions for the
correlation energy, ' and the results turn out to
be similar to those.of Table I. Our Eq. (8) may
serve as useful tests for possible future calcula-
tions applying the density-functional formalism to
bimetallic junctions with similar accuracy as the
Lang-Kohn treatment~ for metal-vacuum surfaces.

TABLE I. Numerical values of electrostatic potential
change 1026U& across a metal 1 bounded by a metal 2,
in atomic units. For given x,&

and x», the value 10 ~U&
of the potential change across metal 2 is given by the
number occupying the symmetric position of hU&, with
respect to the principal diagonal.

$2
si

express ~V, ~ in terms of properties of a bulk
electron gas. While the total electrostatic potential
difference across the bimetallic junction is fixed
by Eq. (7), the way this difference is distributed
between the two metal halves is determined by
Eq. (8).

In order to estimate b, V, 2 using Eq. (8), we first
recall the necessary results for the homogeneous
electron gas

while &V2 is obtained from &Vz, by changing indices
1~2. These equations are our basic results which

0
7. 65
9, 36
9.54
9.25

—7.40
0
1.73
1, 98
1.75

—9.26
—1.84

0
0. 36
0.22

—9. 90
—2. 41
—0.47

0
—0. 049

-10.17
—2. 62
—0. 58
—0, 03

0
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We now wish to compare our results with recent
calculations for a, bimetallic interface by Bennett
and Duke~

s-8 who applied the Hohenberg-Kohn-
Sham formalism in an approximately self-con-
sistent way and required Eq. (7) to be satisfied.
Numerical results are given for a model junction~'
with n& = 10~ cm ', (r,~

= 5.44) and n2 102~ c——m 3,

(r,2
= 11.72), and are based on Eq. (11). From

Fig. 5 of Ref. 7 and Fig. 2(c) of Ref. 8, we get,
after subtraction of the exchange-correlation po-
tential from the effective potentia3. , hV~ = 0.0019
a.u. and 4 V2= -0.021 a,.u. The corresponding
exact values obtained from Eqs. (8) and (11) are
4&~ = 0,00478 a.u. and APz = —0.0173 a,.u. In this
connection, we note that similar discrepancies
exist between the results of Ref. 8 and the results
of Ref. 2 for the eleetrostatie potential differences
in the ease of a metal surface bounded by vacuum
(which we take to be region 2). Indeed, for the
case r,~=5.44, one obtains from Fig. 2(a) of Ref.
8: 4&&=0.027 a,.u. , AV&=0. 016 a.u. , while the
averages of the values for the potential differences
for x, =5 ands, =6 in Ref. 2 are 4V,"=0.0084 a, .u.
and 4Vz = 0.014 a..u. Qn the other ha, nd, the exa.et
value of 4V&, given by Eqs. (1) and (ll), is &V&
=0.0077 a.u.

We now sketch our derivation of Eq. (1) of Budd
and Vannimenus which is, in fact, a natural con-
sequence of Eq. (4) as applied to the metal-vacuum
ea,se. The jellium is assumed to occupy region 1,
and the electron distribution has a tail extending
into the vacuum region 2. By applying the second
of Eq. (4) to the electron gas in the vacuum region,
we get

(12)P,(x) = E,'(x)/av,

since Pa= p2 ——0 in this case. Equation (1) fol-
lows now by comparing Eq. {4) for region 1 with
Eq. (12) at the contact plane x=0, after not-
ing that P,(0) =P,(0) and Z, (0) = E,(0). The latter
relations are a consequence of the continuity of the
electronic pressure and of the electric field across
the interface. The present derivation of Eq. (1)
contrasts with the one given in Ref. 1 in that, in
our case, the positive background is held rigidly
fixed. One may note that, like Budd and Vanni-
menus, we are unable to give a general expression
for the electrostatic potential change 4V30 across
the vacuum region because Eq. (12) does not de-
pend explicitly on V&0(x) —V20(~). We believe that
the determination of this quantity and, eonsequent-

ly, of the work function of a jellium system~ re-
quires an explicit -first-principles calculation.

As noted above, Eq. (4) for the jeliium region
and Eq. (12) for the vacuum region could be used
in the local density approximation (where the func-
tional dependence of p(x) on the local density is
known), in order to test numerical accuracy and
self-consistency in obtaining the density profile
n(x) and the electric field in the calculations of
Lang and Kohn. This test is not inferior to a, nu-
merical test based on Eq. (1) because the latter
equation turns out to be exa,ctly verified in the local
density approximation. ~ On the other hand, the
fact that Eq. (1) is true in the local density ap-
proximation provides additional support for the
validity of this approximation from a physical point
of view.

We concj.ude our discussion of the metal-vacuum
interface with two further remarks. The elec-
tronic pressure in the vacuum region, as defined
by Eq. (12), is identical to the electrostatic en-
ergy density. Therefore the introduction of an
electronic pressure may be somewha, t superfluous
in this case, since it may be replaced by a more
famHiar quantity, na, mely, the magnitude of the
attractive force between the electronic charge which
has leaked out of the jellium and the equal amount
of positive background charge which is left behind.
We also note that in a real system, the electrostatic
pressure given by Eq. {12)is balanced by elastic
restoring forces of the ions just as the electronic
pressure in the jellium region. Indeed, from the
point of view of equilibrium, there is no essential
difference between electrons in region 2 and elec-
trons moving between ion cores in region 1, al-
though in the jelli.um model the electron gas in the
va.euum region would appea, r to be unsupported by
the positive background.

We conclude by emphasizing the difference be-
tween the bimetalbc case and the metal-vacuum
case. We note that if we were to consider the
metal-vacuum ease as a limiting case of a bimetallic
interface in which x,» say, tends to infinity, we
would not recover the result for this case, Eq.
(1). This is because the equality of electrochemi-
cal potentials, Eq. (7), which is true for two met-
als in contact, no longer holds in the metal-vac-
uum limit. Indeed, in the metal-vacuum case, the
difference between the electrochemical potentials
in the two regions is precisely the work function
of the metal. "'
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