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Theory of nuclear spin diffusion in a spatially varying magnetic field
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Spin diffusion driven by either a magnetization gradient or a field gradient is viewed as a flow of
magnetization current. An expression for this current in a nonuniform field is derived. The
magnetization current is the vehicle for a cross relaxation between the nuclear dipole-dipole energy and

the spin energy of interaction with the inhomogeneous part of the magnetic field. From a measurement

of the decay rate of dipole energy in the presence of large field gradients, which are present in type-II

superconductors or at normal-superconductor interfaces, the spin-diffusion coefficient can be determined.

Coupled differential equations describing magnetization and dipole energy densities are deduced and

their solution is discussed.

I ~ INTRODUCTION

In nuclear-magnetic-resonance experiments the
inhomogeneity of an applied magnetic field is ordi-
narily regarded simply as an obstacle to obtaining
a large signal or good resolution. However, a
number of new effects emerge in the presence of
large magnetic field gradients which can be under-
stood within the context of the spin-temperature hy-
pothesis. They involve the spatial diffusion of mag-
netization in a field gradient with concomitant dis-
sipation of spin energy. The effects are especially
pronounced in the mixed state of type-II supercon-
ductors or near an interface with superconducting
materials, where fieM gradients larger than 107

G/cm are typical.
Vile have conducted experiments in the mixed state

of vanadium i.n which we have measured the decay
of nuclear dipole-dipole energy, which is an energy
associated with the partial alignment of nuclei in
the dipole fields due to neighboring spins. We found

anomalously rapid relaxation' which we attribute to
cross relaxation between the dipole-dipole and Zee-
man energy reservoirs, which are coupled by the

presence of a nonuniform magnetic field. This has
led us to develop a general theory of spin diffusion,
incorporating purely diffusive effects separately
from dissipative effects in a potential gradient, as
is traditionally done in the case of ionic diffusion
and conductivity,

Spin diffusion was first invoked by Bloembergen'
to explain the significant influence of a small con-
centration of paramagnetic impurities on spin-lat-
tice relaxation in ionic crystals. He suggested that
only a small number of nuclei in close proximity
to an impurity spin are strongly relaxed by direct
interaction with its fluctuating magnetic moment.
He assumed that the rest of the nuclei relax pri-
marily through a diffusion of magnetization from
nuclei surrounding the impurity.

The elementary processes involved in spin diffu-
sion are mutual spin flips of neighboring spins.
Such spin flips are induced by the dipole interaction
between the spins and correspond to a flow of mag-
netization across an imaginary surface between the
two spins. In a uniform field, spin flips tend to
suppress any nonuniformities of magnetization. It
has been noted that in an inhomogeneous field mag-
netization ordinarily flows towards regions of higher
field, resulting in a reduced Zeeman energy for
the spin system. If we can neglect the effect of
spin-lattice relaxation, the reduction in Zeeman
energy must be taken up by the dipole energy sys-
tem since the total spin energy is conserved.

It is difficult to obtain an accurate value for the
diffusion coefficient D from relaxation measure-
ments in samples containing paramagnetic impuri-
ties since the impurity concentration cannot be pre-
cisely determined. In addition the details of mag-
netization transfer among nuclei which experience
the large fluctuating magnetic fields near the im-
purity have not been worked out quantitatively, Near
the magnetic ions, spin diffusion is dynamically
quenched when the difference in field due to the
magnetic ions at neighboring nucelar sites is com-
parable to the dipole field due to neighboring nuclei,
since then the change of Zeeman energy in a mutual

spin flip cannot readily be taken up by the dipole
energy system. This quenching of spin diffusion is
most often accounted for phenomenologically by as-
suming the existence of a diffusion barrier around
the impurity, Inside the barrier spin diffusion is
assumed to be completely suppressed, while beyond
the barrier the diffusion coefficient is taken as a
constant. For more information about spin diffu-
sion in paramagnetically doped crystals the reader
is referred to Refs. 5-7.

We have shown that the value of D can be obtained

using a technique that does not depend upon the
presence of magnetic impurities. D can be inferred

12 78



12 THEORY OF NUCLEAR SPIN DIFFUSION IN A SPATIALLY. . .

from the rate of decay of dipole energy to diffusion
of magnetization in the presence of a nonuniform
magnetic field. Thus we were able to obtain a value
for D in vanadium by observing the relaxation of
dipole energy due to diffusion driven by the field
gradients in the mixed state. ' We found a value for
D of 2. 8x10 '~ cm2/sec, which is twice the value
obtained by Redfield and Yu on the basis of a mo-
ment-method calculation.

The approach can be applied even to nonsupercon-
ducting substances by observing the decay of dipole
energy induced by an externally applied field gradi-
ent. Large field gradients in normal metals might
be obtained by exploiting the proximity effect, in
which super conducting properties, and particularly
flux expulsion, are continued into the adjacent nor-
mal metal over short distances. If the magnitude
of the field gradients are known, an accurate value
for D can be obtained.

It has previously been generally assumed that
spin diffusion would proceed whenever there is a
variation of magnetization density on a microscopic
scale. In type-0 superconductors the spatially
periodic variation of'magnetic field and relaxation
properties give rise to a magnetization that varies
over the dimensions of the vortex lattice spacing.
It has been supposed that the diffusion of magnetiza-
tion from the relatively rapidly relaxing nuclei in
the vortex core is the primary mechanism for spin
relaxation in such samples at low temperatures. '

However, we give arguments below which tend to
show that the diffusion of magnetization is thermo-
dynamically quenched in the field gradients of a
type-II superconductor. ' This occurs because the
energy for the diffusion process must be supplied
by the dipole-dipole energy reservoir mhose heat
capacity is very small compared to the, t for the en-

ergy system associated with the nonuniform mag-
netic field. On the other hand, the diffusion of mag-
netization driven by large field gradients results in
a rapid depletion of the dipole-dipole energy reser-
voir which we have reported, Some new explana-
tion for the relaxation of magnetization in type-0
superconductor s must be sought.

One of the special points of interest in dealing
with nuclear spins in solids is that they represent
a. simple yet nontrivial example of thermodynamics.
In Sec. II, we show that an understanding of spin
diffusion can be obtained by using a heuristic pic-
ture as well as from a more formal treatment. In
Sec. III spin diffusion is described by two coupled
differential equations in the magnetization and di-
pole energy densities. It is shown that spin diffu-
sion in a nonuniform field is equivalent to a cross
relaxation of a part of the Zeeman energy system
and the dipolar system. The nature of spin diffusion
in a variety of circumstances is explored in Sec.
IV. In Sec. V we discuss a new method for obtain-

exp(- Xz/kT, -X,'/kT, )
Tr[ e(x-pSC / zk)Texp(-X,'/kT, )]

' (2)

The spin interaction energies are so small that we
can almost always make the high-temperature ap-
proximation yielding p = (I/Z)(1 Xz/kT, X~/kT~), --

ing accurate values of D by observing the decay of
dipole energy in the presence of large field gradi-
ents. In Sec. VI we discuss the application of our
results to related systems.

A detailed treatment of the coupling of spin diffu-
sion with the dipolar reservoir, and its possible
use to measure the diffusion coefficient, was de-
veloped independently while our work was in prog-
ress, by Stengers and Jeener. '

II. MAGNETIZATION CURRENT

A. Spin interactions

Before attempting to derive an expression for the
magnetization current we need to consider briefly
the interaction of nuclear spins in a solid. Spins
in a rigid lattice interact with an externally applied
field H, mhich is of the order of several kilogauss
in typical NMR experiments, as mell as with local
fluctuating dipole fields produced by neighboring
spins which are of the order of 1 G. If we neglect
the quadrupole interaction, which vanishes in a
perfect cubic crystal, the spin Hamiltonian is the
sum of the Zeeman and secular dipole interactions,
X=Xz +K„. The truncated dipole Hamiltonian K„
is that part of the total dipole Hamiltonian which
commutes withe~, and is the only part which is
effective in inducing spin transitions in high
fields. '

The spin Hamiltonian for a single nuclear species
of gyromagnetic ratio y can be written

K-Xz +Kg
0

y21 2 ~ 1 3 cos28

ye )gy ggy

x (3I~ I„-I~ ~ I„) (1)

The field H is so far assumed homogeneous and is
taken to be in the z direction, and RI, =SZ&I~ is the
total s component of spin angular momentum ob-
tained by summing over all lattice sites i, In the
expression for the truncated dipole interaction r»
is the distance between nuclei j and k and 8» is the
angle between r» and the s axis.

Since K~ and 3C~0 commute with 3C, the Zeeman en-
ergy and dipole energies are separately constants
of the motion and the spin system may be described
thermodynamically with Zeeman and dipole spin
temperatures T, and T„."-' The degree of align-
ment of spins in the external or local field is a
Boltzmann distribution described by a density ma-
trix
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)( (T) = y h NI(I + 1)/3kT = C/T (4)

and C is Curie's constant.
The Zeeman energy density is MH= -—lt(Tz)H .

The dipolar energy density, which is —,
' the sum over

all spins i of the energy -u,. ~ h,. which the magnetic
moment p, , of spin i has with respect to the local
magnetic field h, due to neighboring nuclear mo-
ments, has a similar inverse dependence on the di-
polar temperature T„as a consequence of the high-
temperature approximation. Therefore, in what fol-
lows it is convenient' to represent it as

E~ = —g(T, )H„= —CHz~/T~

H„ is in effect the root-mean-square average of h,-
and is a constant of the spin system. For a one-
species dipolar system having a Hamiltonian of the
form of (1) it is 1/(u 3y) of the square root of the
Van Vleck second moment. ' The ma.gnetic sus-
ceptibility g(T„) is here a, purely mathematical
function equal to C/T„, where C is a property of
of the sample given by Eq. (4) and T~ is the dipolar
temperature.

Because of the interaction of nuclei with nonspin
degrees of freedom of the solid, the spin system
approaches equilibrium with the lattice with char-
acteristic spin-lattice relaxation times for the Zee-
man and dipole-dipole energy systems, which we

denote respectively as Tyz a.nd T~. We often im-
plicitly take these times to be infinite, unless other-
wise stated.

We must emphasize that we restrict our discus-
sion to the case H»H„. In this case, although the
untruncated dipolar Hamiltonian possesses matrix
elements which change total M, these are nonsecu-
lar and completely negligible, and the truncated
Hamiltonian (1) is an excellent approximation which

is used below. Thus, we continue to assume that
total M is invariant, except as affected by spin-
lattice relaxation.

What, is new here is to consider effects of a mod-
erate field inhomogeneity —not moderate in the usual
sense, but small enough that the difference in ex-
ternal field between neighboring spins is small
compared to H„. This means that mutua, l spin flips
are not dynamically quenched; e. g. , mutual spin
flips continue to occur. The field gradients must,
on the other hand, be large enough that the spatial

where Z is the partition function. From this densi-
ty matrix it follows that the magnetization along the
field direction obeys Curie's law

M = Tr(pyhI, ) = (y'h '/ZkTz)Tr (I2)

=y h NI(I+1)H/3kTz

where N is the nuclear spin density. The magneti-
zation can thus be written as M = l((Tz)H, where
the static susceptibility is

variation in H be large compared to H„over a dis-
tance equal to the spin-diffusion length in a spin-
lattice relaxation time:

H, /(DT, )"'« ~V ~ff~ ~«H, / (6)

where a is a. lattice spacing, ~V j H~ I is the magni-
tude of the gradient of the magnitude of H, and D
is the nuclear-spin-diffusion coefficient. Gradients
of this order of magnitude occur in type-II super-
conductors although either inequality can be vio-
lated in them, depending on the sample, field, and
temperature. In another paper' we will present an
experimental study of spin diffusion in a variety of
field gradients in the mixed state of superconducting
vanadium. For the case of large field gradients,
VH- H~/a, the diffusion coefficient will be partially
quenched but the theory we will develop here will
remain essentially valid with the diffusion coeffi-
cient becoming a function of field gradient.

In the present case, we assert that the truncated
Hamiltonian is still of the form (1) if H is inter-
preted as the magnitude of H, and the I& are repre-
sented in a coordinate system which spatially varies
so that its z axis is along the local direction of H.
Henceforth, we use the symbol H in this sense. The
coefficients of the terms in the double sum in the
term of (1) would be altered slightly, but only to the
second order in ~VH pa'/H'.

In this case the two terms in (1) no longer com-
mute, their commutator being proportional to I

V'H ),
so E„ is no longer conserved by (1) even though the
total magnetization is conserved. (Total magnetiza, —

tion is the volume integral of M, which is the mag-
nitude of M. In our essentially thermodynamic
treatment, M and H are always assumed collinea, r. )

E„changes locally and these changes of dipolar en-
ergy are compensated by changes in Zeeman ener-

We will discuss this problem quantitatively in es-
sentially the same way that diffusion and conduction
in a semiconductor or ionic conductor are tradi-
tionally treated, to relate diffusion rates and rates
of flow of magnetization driven by the gradient of
H. The problem is unusual, though, in that the only
"lattice" is the dipole-dipole interaction which has
low heat capacity (assuming T, infinite). Analogous
systems would be: an ionic conductor in which the
applied field gradient is so large and the lattice heat
capacity so small that lattice heating produces ap-
preciable countercurrent due to diffusion, or a
half-filled inpurity band at an extremely low tem-
perature where local electron-electron interactions
might provide the dominant heat capacity. In these
analogs, the electric field must be determined by
external conductors and voltage clamps which must
not, however, accept or donate charge to the con-
ductor. Probably a realistic electric analog could
not be found.
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B. Simplified model for spin diffusion

In a rigid-lattice mutual spin flips lead to a ran-
dom walk of magnetization which brings the spin
system to equilibrium. A simple picutre of diffu-
sion in which only spin flips due to nearest neigh-
bors are included, and in which the spin-spin inter-
action is treated phenomenologically, can be used
to obtain the form of the magnetization current
density in a nonuniform field. The use of such a
simplified model gives a clear picture of the under-
lying processes involved in spin diffusion.

We introduce the idea of magnetization current
and current density, The magnetization current
density I is defined as the vector whose divergence
gives the rate of change of M:

dM
cft

= —V ~ j,
In the presence of spin-lattice relaxation, (7) would
be augmented in the usual way. The magnetization
current across a surface is the surface integral of
normal j as usual.

We will first consider the case of diffusion in a
uniform magnetic field, following Bloembergen's
approach. ' He considered spins —,', which are
spaced at intervals a on a linear chain and interact
only with nearest neighbors. If p,, is the z compo-
nent of the spin magnetic moment, then a mutual
spin flip of oppositely aligned spins changes the
magnitude of the net magnetic moment on each side
of the plane between the two spins by 2p,

The rate of spin flips due to interaction with a
single neighbor will be denoted as S'. It is a. frac-
tion of the rate of spin flips assumed over all
neighbors, due to the interactions of a spin with
the total local field, and has been estimated to be
of order ~i' T3. When two spins are oppositely
aligned, the rate of mutual spin flip is 2S', since
there can be no mutual spin flip in the equally
likely circumstance that the interacting spins have
the same orientiation.

We will assume the spins at position x have z
component of magnetic moment of either plus or
minus p,, with probability P, (x). The contribution
to the current of magnetization arising from inter-
actions of the pair of nuclei at positions x —a and
x along the chain is the sum of the contributions
due to each of the two possible initial states of op-
positely aligned spins and can be written as

J(x) = 2WP (X)P,(x —a)(2p, ,)

J(x) = —Wa p,,8x

The use of T„ in this equation is discussed at the
end of this section.

The energy difference can be expressed as 5E
= g~ 8&/Bx, where a is the distance between
neighboring spins, and 0 is the spatially varying
magnetic field. Using the high- temperature ap-
proximation we obtain

(13)

The flow of magnetization across an imaginary
surface between two spins at x and x —a is given
by an expression similar to Eq. (8):

J(x) = 2WtP, (x —a)P (x)(2p, )

+ 2WIP (X a)P, (X)( 2p,,)--(14)

Since Wt = W, (13) and (14) can be combined to
yield

If the chain of spins we considered is taken as a
component of a simple cubic lattice, we can ex-
press the magnetization density in the field direc-
tion as M(x) = p, P(x)/a', and obtain an expression
for the magnetization current density

~8Mj„=—TVa
Bx

If we identify the coefficient S'a as the spin-
diffusion coefficient D and ignore, for simplicity
of notation, its tensor character" we can extend
(10) to three dimensions; j = DVM-. Since the
magnetization is conserved if we neglect the spin-
lattice interaction of the diffusion equation follows:

BM

8t
= —Vo j =DVM

We now consider how this must be modified in
the presence of a nonuniform field, where mutual
spin flips no longer exactly conserve Zeeman ener-
gy. There is an increase in the probability W4 of
spin flips which lower the Zeeman energy relative
to the probability W4 of spin flips which raise the
Zeeman energy. Spin flips are induced by the di-
pole interaction and the change in Zeeman energy,
PE, is taken up by the dipole energy reservoir.
The ratio of the rates for the two types of processes
should, therefore, be given by the Boltzmann factor

+ 2WP, (x)P (x —a)(- 2y,,) . (8) J(x) = 2WP, (x —a)P (x) (2p, )+ 2WP„(x —a)P, (x)(- 2 p,,)

The probabilities P, (x) can be expressed in terms of
a single parameter, p(x)=P, (x) P(x), since we-

have the relation P, &g)+P (x) = 1. We assume p(x)
is slowly varying so we can write P(x -a) =P(x)
—a &P(x)/Bx, and if we linearize Eq, (8) we get

(15)

The first two terms on the right-hand side of (15)
represent a contribution to the current that would
flow in a uniform field. An additional term pro-
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portional to the field gradient emerges. The
magnetization current density due to this last
term can be written as

~2 U8 1 ~H ÃP2 9H

uniform field ~0 is added in one case. This would

not change the flow of magnetization or the local
change of E„. The latter invariance can be proven
by transforming MI0 away by a rotating-frame
transformation, which leaves the truncated dipolar
interaction and M invariant.

C. Thermodynamic approach

Including all the terms contributing to j in a non-
uniform field, and generalizing to three dimensions
we find

j = —D[VM —X(T„)VH] (17)

If we identify the coefficient of TH as the mag-
netic conductivity o =DX(T~), we obtain the mag-
netic analog of the ionic charge current; j,.

D,V(ne)+-oE., where D, is the ionic diffusion
coefficient, n the ionic density, e the electronic
change, and 0. the conductivity. The coefficients
of the two terms in the expression for the ionic
current are related through the Einstein relation
o/D, =ne2/kT, where T is the temperature of the
solid. The diffusion coefficient D,. can be obtained
either by measuring the time variation of the densi-
ty n or from a measurement of n and o utilizing
the Einstein relation. 2

In our ca.se of a magnetic current we have an
analogous relation,

where (p2) is in general the avera. ge value of the
square of the z component of a spin's magnetic mo-
ment and is equal to the eigenvalue p,

2 above for
I= —,1

In analogy with the case of ionic diffusion, the

diffusion coefficient might be obtained either from
a measurement of D or of g . In our experiments
on vanadium it is measured calorimetrically, by
observing the increase in T„as the system is
heated up by a.n applied field gradient.

The key assumption above, beyond the usual con-
nection between D and 0, is the use of the dipolar
temperature T~ in Eq. (8). It is justified to a
greater extent in Sec. IIC, but at this point we may

say the following: In this type of problem the
Zeeman temperature is not really a statistical tern-
perature but only expresses the ratio of H to M.
The dipolar temperature is truly a, temperature in
the sense, for example, that it can be measured

by a thermometer consisting of another, dilute,
spin system. An example of this occurs in nuclear-
polarization experiments, where the nuclear polar-
ization reaches a value which, interpreted by
Curie's law in terms of a spin temperature, yields
the electron's dipolar temperature. In the present
case, the irrelevance of T~ can be seen by com-
paring two cases where the spa, tial variation of

M, V'H, and E„are the same, but in which an extra

In a nonuniform field, the spin temperature is
not necessarily uniform while magnetization flows.
It is useful to divide the Zeeman Hamiltonian into
a homogeneous part K~& associated with the aver-
age field in the sample, H„, and an inhomogeneous
part Kz, associated with the deviation 4H, from
H~. The Hamiltonian can be written in a form
which emphasizes the interactions at each nuclear
site,

K Kzt, +Kz~ +K 0

= yh H~Ig —ykQ 4H; I;

2h2 1 —3 cos28
+

4 QQ, "(3I I, —I ~ I)

0—Kgb +~ Kg ~. + ~Kg. e (19)

Ksl Ks cg K &g 20

The transport of spin energy due to spin diffu-
sion will continue until Sp/sf = (i/h)[p, Z] =0. It is
evident from expression 20 for p that this condi-
tion is only obtained when T„ is uniform and equal
to T~;. At equilibrium the density matrix is

1 RSf RSi +d
Z kT „kT„

gee then have

where M is the average value of the magnetiza-
tion in the solid.

The spin operator I, commutes with K, and the
total magnetization is, therefore, conserved if we
neglect the spin-lattice interaction. Further,
since K» commutes with K a single constant homo-
geneous Zeeman spin temperature Tz„can be de-
fined. The inhomogeneous Zeeman Hamiltonian
and dipole Hamiltonian do not commute and there
is an exchange of energy between these spin sys-
tems. This leads to local variations of spin en-
ergy which can be described statistically in terms
of spatially varying inhomogeneous Zeeman and

dipole temperatures which take values T~;. and

T„.at the ith nucleus. The density matrix for the
spins can now be written approximately as
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—= DV ~ [VM —)((Tg) VH] .
8t

(22)

We note that the term proportional to y(T„) in the
square brackets of Eq. (17) cannot be V[X(T~)H]
since this would lead to a buildup of magnetization
in the case of nonuniform M and H, but uniform
Tzg = Tz ' = Td whereas in this case ther e should be
no changes in M since the spin system is at equi-
librium at a single temperature.

III. COUPLED DIFFUSION EQUATIONS

The Zeeman energy of the spin system is altered
as a result of the redistribution of magnetization
in a nonuniform field described in (22). The en-
ergy of the spin system must be conserved in
mutual spin flips and the local change in Zeeman
energy must be taken up by the dipole energy sys-
tem, The dipole energy reservoir thus serves as
a heat sink for spin diffusion.

To complete the description of spin diffusion it
is necessary to give an expression for the rate of
change of dipolar energy due to the flow of mag-
netization in a magnetic field gradient. Such an
expression is apparent from analogy with ionic
diffusion, where the electrical energy density is
the charge density times the electrostatic potential
and the rate of Joule heating is the current times
the field. In our case the potential energy density
is -MH and the rate at which energy is absorbed
by the dipole energy system is j ~ VH. The dipole
energy density E„also changes as a result of a
tendency, which exists even in a uniform field,
of mutual spin flips to wash out any nonuniformities
in E„. Combining these contributions we have

8E"=j ~ VHyDdV Ed, (23)

where Dd is the diffusion coefficient for dipole en-
ergy. This coefficient can be shown to be of the
same order of magnitude as D using a moment-
method calculation.

Equations (5), (22), and (23) provide a, complete
description of magnetic transport in a inhomo-
geneous field, ignoring spin-lattice relaxation. It
is easy to eliminate (5), though it somewhat ob-
scures the physics of the problem. The result is
the two coupled equations

The condition for equilibrium can be written
equally well as a local relation,

VM = )((Tq) VH . (21)

An expression for the magnetization current which
is consistent with the above equilibrium condition
and reduces to the usual diffusion current in the
absence of a, field gradient is (17), I = -DpM
—It(T~) VH], which yields the diffusion equation

—=Dv [vM ~(T„)vH], (24a)

By(T) j VH
+D.v X(T~)

d

In Eq. (24b), y(T, ) is not the really significant
quantity, but it is a way to express the size of E„
without extra notation. These equations would have
to be modified in case N, the density of spins per
unit volume, were not uniform.

The effect of spin-lattice relaxation can be taken
into account by adding appropriate relaxation terms
to these equations. To the right-hand side of Eqs.
(24a) and (24b) we would add, respectively, —[M
—M(T~)j/T, z and —[y(T~) —y(Tz)j/T~~, where Tr,
is the lattice temperature. These relaxation terms
can be ignored when analyzing spin diffusion for
metallic samples in which large field gradients are
present at low temperatures since, as we will
show presently, cross-relaxation effects due to
diffusion occur on a faster time scale than spin-
lattice relaxation. Relaxation effects will, how-
ever, be considered implicitly since they can be
the source of an inhomogeneous magnetization, as
in the case of type-II superconductors.

Applications and solutions of the coupled diffu-
sion equations (24) will be considered in Sec. IV.
At this point it is useful to write Eq. (24b), which
describes the dissipation of dipole energy in a
field gradient, explicitly in terms of spin tempera-
tures. Once this is done it will be apparent that
spin diffusion can be described as a cross relaxa-
tion of spin systems. '

The result of spin diffusion is the equilibration
of the dipole and inhomogeneous Zeeman spin tem-
peratures. This equilibration is a. very slow pro-
cess since the entire sample must reach a uniform
final temperature with Td= Tz;. Because the final
value of Tz; is a property of the sample as a whole,
it is not useful in describing the dynamics of spin
diffusion, which is a local process. Specifically
Tz; is not a useful parameter in describing the
initial rapid diffusion of a spin system far from
equilibrium since spins only sense the energy of
their immediate neighbors in a short time inter-
val. This reflects the fact that the rate of spin dif-
fusion is influenced by the spatial derivatives of
M and not by the inhomogeneous magnetization den-
sity itself. It is useful, therefore, to define the
gradient spin temperature Tz~, which describes
the gradient of M along the direction of the field
gradient;

vM vH/(VH)'= C,/T„. (25)

The gradient temperature has the significance,
for example, that the magnetization flow stops lo-
cally when Tz, equals the local dipole tempera-
ture T~, In that case Eq. (17) becomes zero.
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We may now express (24b) in terms of spin tem-
peratures or, more conveniently, inverse spin
temperatures Pz, —-1/Tzz and Pz= 1/T„. Dividing
through the equation by C we obtain

BPz D(V H)
(Pg —Pzz)+DERV Pz ~

d

(26)

=DV ~ (V ~ j) —D(j . 0H)VH/H, . (28)

The first term on the right-hand side of Eq. (26)
gives the change of P„due to a cross relaxation of
the dipole and Zeeman energy systems. The
cross-relaxation rate for P~ and Pz is 1/w = D(VH) /

2H„.
In the case that the field gradients are large and

the system is far from equilibrium the dipole dif-
fusion term is negligible compared to the cross-
relaxation term on the right-hand side of (26). Pz

rapidly approaches Pz~ and the ma, gnetiza. tion cur-
rent density j will be quite small. The equilibra-
tion of pd and p~„which tends to be established by
the cross-relaxation term, is upset by the slow
diffusion of dipole energy. A small magnetization
current density will consequently persist until a
uniform value for pd = p~~ is established in the sam-
ple. A more detailed discussion of the various
stages of spin diffusion is given in Sec. IV.

IV. SPIN DIFFUSION IN REAL SYSTEMS

Explicit solutions of Eqs. (24) are difficult even
for simple model situations. In general, however,
the discussion of Sec. III shows that if the system
is initially far from quasiequilibrium and I VH) is
sufficiently large, there are two time epochs. In the
first, there is a relatively large, exponentially
decaying magnetization current, which produces a,

rapid local change in y(T~) because of energy dis-
sipation in the field gradient. In the second epoch
the system is relatively close to a local equilibrium
in which VM = y(Tz)VH, but since Tz is in general
nonuniform there is a further slow diffusion medi-
ated by the last term in Eq. (24b).

For example, suppose that initially M and g(T„)
are uniform, while there is a large variation of H
in the sample, of magnitude ~H, with bH»H„.
This is the case in type-II superconductors in many

practical experiments, where 4H is more than an

order of magnitude larger than H„. During the
initial stage of spin diffusion j = ~(Tz)VH and we
can neglect the dipole diffusion term in Eq. (24b)
compared to the cross-relaxation term since

DzV g(Tz) DV y(Tz) Hz Hz
( 7)I.VH/H', D X(Tz) (VH)'

The rate of change of the magnetization current
density is

sj BM Bg(T I

)et st Bt

8X(T,) (VH)z
st

—
Hz X d

d
(29)

Thus, it(T„) decays exponentially with the time
constant already mentioned.

The second epoch of the time evolution starts
when the two terms on the right-hand side of Fq.
(24b) are approximately equal and we can no longer
neglect the second term. The two terms are un-
equal and the inequality (27) holds as long as the
magnetization current density can be written as
j- D)f(Tz)VH. It follows, then, that the two terms

It is expected that the spatial va. riation of j, y(T, ),
and M will be similar in extension to that of H;
V ~ j and %H are then, respectively, of order of
magnitude j/Ro and AH/Ro, where Ro is the nomi-
nal radius of a vortex and ~H is the difference be-
tween the field at the vortex center and at a point
Ro from the vortex center. The second term on
the right-hand side of Eq. (28) is larger than the
first by a, factor of order (bH) /H~~ 10'. The first
term can, therefore, be neglected and j decreases
exponentially toward zero with rate constant
D(VH) /H„. Concurrently there is an exponential
decay in M and y(Tz) which can be estimated by in-
tegrating Eqs. (24a) and (24b).

If initially M is constant and y(Tz) is of order
M/H, as would be the case in studies of Zeeman
energy relaxation in the mixed state, then the
change in M during the first epoch will be negligi-
ble compared to the initial value. Physically this
is because of the relatively small heat capacity of
the dipole energy system, which serves as a heat
sink for the energy dissipated by the inhomogeneous
Zeeman energy system. If we were to consider a
sample with a sinusoidal nonuniform field equal to
(4H/2) sinkx, the ratio of the heat capacities for
equal temperatures of these two spin energy sys-
tems would be 8Hzz/(&H)z.

A related example of thermodyna, mic quenching
has been considered by Buishvili for a case in
which nuclear spins are relaxed primarily by
fluctuating fields due to the dipole-dipole interac-
tion of magnetic ions, This may occur in systems
with large ion concentration at low temperatures.
The energy of the relaxing nuclei is transferred to
the dipole reservoir of the magnetic ions and from
there to the lattice. But the small dipole reser-
voir may become heated, thereby becoming a bot-
tleneck for the flow of nuclear Zeeman energy to
the lattice.

Elsewhere' we will describe experiments in which
the magnetization is not monitored as is usual but
rather the average time variation y(T~) is observed.
In these experiments we start with M = 0 but y(Tz)
large. Initially the current is j =Dx(T~)VH, and
the time variation of the dipole susceptibility is
given by
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Bt
= D[VM ~ VH —y(Tq)(VH) ]/Hg ~ (30)

We will first consider a situation in which the term
Dy(T„)(VH) /H~ predominates on the right-hand
side of Eq. (30). This term can be made large
by first adiabatically demagnetizing in the rotating
frame (ADRF) to produce a low dipole-dipole tem-
perature, and then lowering the magnetic field in
order to bring the sample into the superconducting
state, where there may be large field gradients,
as will be discussed in Sec. V. The dipole tem-
perature after ADRF can be made either positive
or negative. If it is positive it is clear from (17)
and (30) that the magnetization current density will
be in the direction of the field gradient and that the
dipole temperature mill increase. If a negative
dipole temperature is produced, j will flow op-
posite the direction of ~H and a magnetization
aligned opposite to &H will develop, while T~ will
decrease, becoming more negative.

The term DVM ~ VH/H~ in Eq. (30) may become
large in the mixed state of a type-0 supercon-
ductor. In the magnetization in the superconductor
is saturated by large rf pulses, the magnetiza-
tion will increase more rapidly near the vortex
core. A large magnetization gradient along the
field-gradient direction is thereby created. The
magnetization current will then flow opposite to the

are roughly equal when j = [H2~(EH)~]Dg(T, )VH.
Since the difference of the two terms in the ex-
pression (17) for j is much smaller than the larger
term Dy(T„)VH, the two terms must be nearly
equal. During the second epoch, therefore, a
kind of local equilibrium is approached with V'M

=y(T„)VH. We have seen that this corresponds to
the equalization of T„and T~~. Spin diffusion con-
tinues with the approximate equalibrium value V'M

keeping step with local changes of dipole tempera-
ture as a uniform dipole temperature is established
in the sample. At the outset of this second stage
of spin diffusion, the magnitude of the magnetiza-
tion current density may therefore be estimated as
j= D[H~/(VH) ]VM. This is a factor (VH)~/H2„

smaller than would be obtained on the basis of the
relation j = —DV'M, which is appropriate only in a
uniform field, but which had been used to estimate
the diffusion current in type-II superconductors.
The role of spin diffusion in spin-lattice relaxation
in type-II superconductors must, therefore, be
reconsidered.

On the basis of the foregoing discussion of spin
diffusion, a variety of experimentally realizable
situations can be characterized. During the first
interval of spin diffusion, the spin system is far
from equilibrium and we can neglect the dipole en-
ergy-diffusion term in Eq. (24b). The expression
for Blt(T~)/&t then becomes

direction of VII, thereby lowering the dipole en-
ergy. The opposite sense of flow is produced in a
field-cycling experiment in which the nuclei are
first aligned in a field larger than Hca before the
field is lowered into the mixed state. The rela-
tively rapid spin-lattice relaxation within the vor-
tex core causes the lowest magnetization to exist
within the region of highest field. Spin diffusion
will then result in a flow of magnetization towards
regions of high field whichwill drive the dipole tem-
perature negative in most of the sample. It is inter-
esting to note that if the magnetization in a sample is
uniform and the dipole energy is zero, there would
be no spin diffusion in a nonuniform field since the
inhomogeneous Zeeman and dipole systems would
be at equilibrium at infinite spin temperature.

V. DETERMINATION OF D

The diffusion coefficient has generally been in-
ferred from measurements of enhanced spin-lattice
relaxation of magnetization in paramagnetically
doped crystals. ' '" In these experiments a dif-
fusion current is driven by a nonuniform magnetiza-
tion in a uniform field. Elsewhere we describe the
first measurement of D that does not depend upon
the nuclear interaction with paramagnetic impurities
nor indeed upon the existence of a nonuniform mag-
netization. We will show here that a value for D can
be obtained from measurements of the relaxation
rate of dipole energy of samples in the presence of
a nonuniform field. Accurate values for D could be
obtained for samples in which the field gradients are
known. The spin-diffusion coefficient has recently
been obtained for protons in Y(czH, SO4)3 ~ 9H20 using
another technique in which paramagnetic impurities
are not inherently involved. D is inferred from the
rate of nuclear relaxation in crystallites of varying
size which is due primarily to the diffusion of mag-
netization from the crystallite's surface.

We have already mentioned that a large dipole
energy in the presence of large field gradients can
be created by use of a field-cycling technique. The
sample is adiabatically demagnetized in a large
homogeneous field and then the field is lowered,
thereby bringing the sample into the supercon-
ducting state. After a variable time in the super-
conducting state, the field is raised to resonance.
The sample is then adiabatically remagnetized by
applying a slowly increasing resonant rf field. The
residual alignment of spins in the local dipole fields
is converted to an alignment in the applied rf field
which can be detected. The signal obtained is pro-
portional to the internal dipole energy remaining in
the sample just before the field was raised.

The observed relaxation rate, 1/T„„„is the sum
of the rate of dipole energy dissipation due to spin
diffusion, 1/T, „,«, and the spin-lattice relaxation
rate, 1/T, ,„„=1/T, ~«+ I/T, „. We will consider
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here only the initial relaxation rate, since this al-
lows us to make the simplifying assumption that the
dipole energy density E„(r) is uniform in the sample.
The initial decay rate of dipole energy due to dif-
fusion, for the experiment we have described, can
be obtained using (29),

drsZ, (r)-
(31)

The relaxation rate due to diffusion is the weighted
average of 1/7 =D(VH)'/H, '. The rate 1/r varies
spatially since V'H does. The diffusion coefficient
itself ls also a function of O'H since nelghborlng
spins are effectively detuned by the field gradients.
The rate of mutual spin flips is, therefore, reduced.
The decrease in D becomes significant when the
field difference between neighboring spins is com-
parable to the local dipole-dipole fields.

For an accurate determination of D it is helpful
if 1/v &1/T,„. This condition is often satisfied at
interfaces involving superconducting materials and

in type-II superconductors. For example, below
the bulk critical field H„ type-I superconductors
exhibit the Meissner effect, excluding flux from the

interior of the sample. Surface currents cause the
field to be exponentially damped inside the sample
in a distance A., which is of order 500 A. A field
gradient of order H, /%=10' 6/cm . will, therefore,
exist on the surfaces of a sheet of superconducting
material aligned parallel to a magnetic field. The
decay of dipole energy in a stack of such sheets
could be measured using the field-cycling technique
in which an rf field is applied only when the applied
field is larger than H„The rf field is applied in

a direction perpendicular to H and parallel to the
pla, ne of the sheets.

Even larger field gradients and more rapid cross-
relaxation times can be produced in a superconduct-
ing surface sheath, which exists in fields larger
than the upper critical field for the bulk material
but below a field H„. The superconducting state
nucleates at the surface of almost all superconduct-
ing materials except for some pure type-I super-
conductors. For a sheet aligned parallel to an ap-
plied field less than H, , the fields at the sample's

can

surface and in its interior are equal to the applied
field whi, le the field in the surface sheath may be
appreciably lower.

The diffusion coefficient can be obtained for nor-
mal metals by exploiting the proximity effect in

samples composed of alternating normal and super-
conducting layers. Cooper pairs leak from the
supel conducting to the normal region up to a typical
depth of 10' A and large field gradients are thereby
created in the normal material.

In our own experiment w'e observed spin diffusion
driven by the field gradients which exist in the
mixed state of vanadium. By varying the applied

field and temperature in such experiments a wide
range of field gradients can be produced.

VI. APPLKATIONS TO OTHER SYSTEMS

A. Dynamic quenching

It has been stressed that the considerations
above are independent of, and complementary to,
previous predictions that diffusion will be dynami-
cally quenched when the field difference between
neighbors a I VH l becomes comparable to H„. Pre-
sumably the theory outlined above would still be
applicable but D and D„would be reduced because
over-all energy conservation is required in a mu-
tual spin flip. These diffusion coefficients could
be calculated using previous methods4'" by includ-
ing a spatially linearly varying field in the starting
Hamiltonian. An experimental study of dynamic
quenching is presented in another paper. '6

B. Electric quadrupole interactions

In the presence of quadrupole interaction the
above theory would be modified in that H~ would be
replaced by H~+H, where CH, is the sum of the
traces of the square of the quadrupolar interaction
for the X spins in a unit volume. The sum would

have to exclude spins with a quadrupolar interac-
tion so large that they would not cross relax with

other spins in a relevant time, and this would be
delicate since these spins would otherwise contrib-
ute heavily to the sum. Thermodynamic quenching

would occur when the total spatial variation of H is
greater than H~. The large quadrupolar interac-
tions present in the superconducting alloys studied

previously may thereby be sufficient to avoid ther-
modynamic quenching of diffusion, although this
seems unlikely particularly since dynamica, l quench-

ing due to the quadrupole interaction would then

significantly limit the rate of spin diffusion.

C. Spectral diffusion

The present theory outlines a precise and tract-
able treatment of spectral diffusion for the case of

spatially slowly varying spectral position. Of

course, any theory of spectra. l diffusion must take
account of the requirement of local energy con-
servation, It ls possible that the ldeRs in this pape1'

may be useful for developing the theory of spectral
diffusion in the more difficult case where spectral
position is spatially random. The present paper is
closely related to idea, s long used in the theory of
cross relaxatlon of spectlRl llnesp w'hlch Rl 6 Rlso

thermodynamically quenched. '
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