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Theory of multiphonon absorption in crystals: The wings of internal vibrational modes of
molecular impurities
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The correlation-function approach of Bendow, Ying, and Yukon is applied to obtain the multiphonon
absorption in the wings of internal vibrational modes of impurities in ionic host crystals. Expansion of the
interaction potential in powers of displacements is avoided; we thus obtain expressions containing various
classes of phonon processes summed to infinite order. Simplified results for the absorption are obtained by
averaging over impurity sites, and by utilizing an Einstein model for the lattice. The results imply that the
shape of the multiphonon wing is determined largely by the host-lattice density of states, and that in typical
instances the spectrum will display an exponential-like frequency dependence similar to the intrinsic case. The
rate of fall off is determined primarily by the range of the impurity-host interaction potential, Explicit results
are obtained for a model of a substitutional point impurity in a diatomic host, and applied to the case of
OH in KC1.

I. INTRODUCTION

A variety of papers have recently investigated in-
trinsic multiphonon absorption far above the rest-
strahl in pure crystals. These include both theo-
retical and experimental studies of the fre-
quency and temperature dependence of multiphonon
absorption. However, extrinsic rather than in-
trinsic absorption appears to be dominant through-
out significant portions of the transparent regime
of many state-of-the-art crystals of interest for ir
applications. This is evidenced by observed ab-
sorption coefficients a which exceed theoretical
predictions, often by many orders of magnitude, '
and by considerable structure which deviates from
intrinsic behavior. For ionic crystals, the inter-
alv'b at l de f ol l i p ite

an important source of absorpti. on in the i.r. For
example, contributions to absorption in the mid-ir
from impurities such as CO, , OH, HCO3, ClOS,
and NQ~ in host crystals such as KCl have been in-
vestigated extensively. The purpose of the pres-
ent woxk is to analyze theoretically the effect of in-
ternal vibrational modes of a low concentration of
molecular impurities on the residual absorption in
the transparent regime of ionic crystals. Our pri-
mary interest here will be the high-energy wing of
the absorption, which lies many host phonons in
frequency above the peak of the impurity-mode ab-
sorption. A preliminary report of aspects of the
present work has been given previously.

We wi. ll adopt the correlation-function approach
of Bendow et al. , applied previously to intrinsic
multiphonon absorption, to treat absorption in the
impurity-host-crystal system. Attention will be
restricted to absorption due to just linear moments,

a procedure which has generally led to good agree-
ment with experiment for intrinsic spectra in ionic
crystals. Moreover, we assume a random distri-
bution of noninteracting impurities, and perform
averages over impurities at appropriate stages in
the development. Such approximations are designed
to. simplify the calculations, in what otherwise
threatens to become an overly complicated. problem.

The plan of this paper is as follows: The formal
theory i.s presented in Sec. II, and an expression
fOl' Q lS d81'lVSd Ill tSI'IIIS Of Gl'88II 8 fllllCflOIIS (GF)
for the effective multiphonon interaction potential.
Employing the harmonic approximation for these
GF s, we obtai. n a simpli. fied result for n in Sec.
III. In Sec. IV we calculate the absorption in the
nigh-frequency wing of the impurity mode, within
an Einstein model for the host phonons. Various
implications of the present treatment are discussed
ln See. V.

II. FORMAL THEORY

We take for the Hamiltonian of the lattice-impur-
ity system

H=H, + v; a, =80+Jr,'; v= v, + v, :

+0 =~ lfe &i n ~ife )

Ho = ~ cggc~gc~8
n8

&I= K~I(I I, ff.,) . —
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H p and H p are the unpe rturbed host- lattice and im-
purity-mode Hamiltonians, V~ is the host-lattice
anharmonicity potential, and V, is the impurity-
host-lattice interaction potential. %e omit the in-
ternal anharmonicity of the impurity, which is re-
sponsible principally for absorption at harmonics
of the internal modes, a situation which we will not
be concerned with here. In Eq. (2. I) r„and R„„
are the positions of the sth lattice atom in cell l,
and of the yth impuri. ty atom at site yg, respective-
ly; restrictions of the sums to occupied sites is un-
derstood. The a 's and c~'s are creation-annihila-
tion operators of lattice modes on branch n and of
impurity mode P, respectively. V~ is the harmonic
portion of the lattice interaction energy, which is
already contained in H p. The quadratic portion of

VI is taken to be a small perturbation, and thus re-
ta, ined in V. This is motivated by the observation
that molecular-impurity modes undergo just small
shifts (as low as a, few percent) when placed in a
host matrix. "

%e here calculate response to the photon field
from linear moments alone. The complex dielec-
tric susceptibility is given by"

7(o)) = (I/hQ)G„(M(f); M(0)),
(2. 2)

G„= (27)) ' dt e'"'G(t),

where G„[G(f)] is the retarded GF '" in frequency
[time] space for the operators (A, B); 0 is the crys-
tal volume; M(t) is the electric moment operator M

in the Heisenberg representation, with'

)o. (o)) = Imp [7(o))]„„,3'g Q) y

(2. 5)

where y indicates Cartesian components and where

g is the refractive index, which is slowly varying
in the wing regions of interest here.

The calculation of X proceeds directly from Eqs.
(2. 2) and (2. Ba), whence

7(o)) = —— P&mo, mo ' 'gPi" (ooo))
0fS,

Q s

+ Z (&)'"mo. , mo, tg Ps'(0~~)+goof(~»H
Qs

One

~ Q m,'„m,', .S,", )m )), '

Bnr
8'n'& '

where the g's are defined in t space as

g, ,'(kk'f) = G(A„-.(f); A;, (O)),

g,,'(knf) = G(A„-.(t); C„,(0)},

g, ,'(&k&) = G(c„„(f);A„-,(o)),

g,,'(nn'f) = G(c„.(f); c„,(o)) .

(2. 7)

g» is the host-lattice GF in the presence of impur-
ities, gzz is the impurity-mode GF, and g, 2 and @2~

are the interacting impurity-lattice GF's. Our ob-
jective will be to evaluate these GF's employing ap-
proximations appropriate to the multiphonon ab-
sorption problem.

Below we will utilize Fourier transforms of the
v(o)'s defined by"

M = Q e~ u„+Q e„' tJ„„,
ls nr

(2. Sa)
(r r, , ) =Q ( )ss e'o ')')s t' 's),s

~s
Q

where u„and U„, are the displacements from equi-
librium of the sth host-lattice atom in cell l and the

xth impurity atom at site n. Since we have a dilute
concentration of impurity atoms distributed at ran-
dom, we will utilize the usual normal mode expan-
sion for u„; then, taking N- X, =N, where N and

X, are the total number of host and impurity atoms,

respectively,

M = (N) ~ Q m~f„Af, |)f+Q mo„C„o,

(2. 8)

I
v'-' = e "'a'v„(R,),

7[i

where I(., is the position vector of the sth atom in

the unit cell; p; is defined in an obvious analogous
fa.shion.

%e now apply the equation-of-motion method' '

to g»', one obtai. ns di.rectly

Apa, = a~a, + akim y Cn8 = Cna+ ng
(2. Sb)

g
~ os' Ig„(kk o)) =go(ko)) ~)),-i &mo

+go (ko)) P,",o(kk'o)) go(ko)) (2. 9)

m,'„=e„(2p.„o),) '~'fo„,

with the e's charges, p's masses, and f's polar-
ization vectors. Below we will also require the

conjugate operators

where g(} is the unperturbed host-lattice GP, 6g &.

is zero unless k —k is a reciprocal-lattice vector,
and

g, —(u-„/)). (o) —o));,), P„(kk o)) = 2o (- —,
' [E (k), I3„-,,]

t
&k —a ko a -},o y Dng CnO Cna (2. 4) +2&G.(P'(kf);P'(k'0))], P =P;+P;, (2. Io)

The absorption coefficient follows for optically iso-
tropic crystals asoo (8, c = I), P, (k) =,.'- [f~-„,, V, ], P;(k) = —,

' [fl-„., V, ] .
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(2.14)

+d t(((d) Q Q22 (nn (d) g"„(n n(U),
nssy

d (&((U) = ((U(&//&() ((d2 —(U22)
'

P'„'(~) = (2v}'-G„(f'„(t);I'„'.(O)),
+ ~ ~ ~

Pi2 = "i2 +

(b) + Q -- 0 + ~ ~ ~
l2 22

FIG. 1. Relationship between P's and 0's; the solid
horizontal lines represent the noninteracting host GF go,
and the broken line its impurity counterpart do. Some of
the indices have been spelled out explicitly in (a), but are
omitted in (b).

Since the first term in brackets is real it does not
contribute to Imp in the regimes of interest, and

may be henceforth omitted. The F's are the effec-
tive interaction potentials responsible for multi-
phonon absorption. Explicitly,

Fu(k) = 2t ei "+&'"1 ("1(q ~ f"')
pl l'ss'

X(V-)"'(2tVy. s(d ) ' '

x[e"'"is "1"'—iq ~ (u„- u, , )],

F~(k) =i p e+(" '1 'u "(q ~ ff ') (v )
qlnsr

(2. 11)

&( (2~(( (U
)-1/2 eiu (uis Unr&

where r and R' are, respectively, the host-lattice
and impurity equilibrium positions,

(2. 12)

For notational simplicity we will omit the super-
script "0" in r and R in what follows.

It is useful in certain instances to recast Eqs
(2.9) in terms of a function tl» as

g11 (kk ((&) g(& (k+) ~f, -rc'~as

+g,"(k(U) 2 fl(,r (kk" (U) g",', (k"k'(U),
(2.13)

where P» is related to 0» by the graphical r epre-
sentation indicated in Fig. 1(a); 0» represents all
the graphs which cannot be disconnected by breaking
a single solid line. In the harmonic approximation,
e.g. , one has simply P»=G„.

A similar analysis to the above yields for g»

g,2 (nn (U) =d'(&((U) 6„„.5»,'

+d(&((d) P2222 (nn'(U) d('(2(&),U

g22'(nn'(U) = d (&((U) (&„„, t&(»&

I2(n) = —,
' [D, I/]=i ge" ('&-"u& (q. f„) (vl)sr

qlsr

x (2p N )-1/2eiu (uis Um&
r 8

where we have used [D, I/'t, ] =0 and have omitted the
term in P22 proportional to ([E2, D„.2.]), which does
not contribute to ImP». The relation between P»
and 0» is again finally the same as between P» and

0» [see Fig. 1(a)], and P22 =022 in the harmonic
approximation.

For the mixed GF g» one obtains

g'„' (kn(U) =g(& (k(U) P,", (kn(d) d s(&((U)

P,*,'(kn(U) = (2») G„(F (kt);I'„(0)), (2. 1.5)

g(2'(kn(U) =Q g(((kk (U) 0",2(k n (U) g22(n n(U) .
ya

k'n'

where the relation between g» and 0» is indicated
graphically in Fig. 1(b).

III. EVALUATION OF Imx

~ In this section we obtain an explicit expression
for Imp in terms of displacement-displacement
correlators, for the case where the interaction
GF s P, &

are evaluated in the harmonic approxi-
mation. This is the simplest procedure to cut off
the infinite chain of equations ' involving the GF's
for the interactions V~ and VI. Extensions to more
general approximation schemes will be discussed
in Sec. IV. %e will utilize averages over impurity
sites, a convenient standard approximation, '
which is most appropriate for a dilute distribution
of impurities.

A. Evaluation of gl I

In the harmonic approximation 0» = (2&i) G(F;F )
[see Eqs. (2.S), (2. 10), and (2. 18)]; to obtain Im)t
we will require ImG„(F', F ). It is more convenient
for the present purposes to work with the correla-
tor J, related to ImG„by'

d„(A, B) = (A(t)B(0))„=—2[n(((&) + 1]ImG„(A (t);B(0))
(S.1)

where n is the Bose-Einstein function, n((U)
=(e2" —1) ', with p = (/2»T)

' the inverse tempera. -
ture. Denoting harmonic approximation by a super-
script 0" and suppressing the k and t dependences
for notational simplicity,

(F F')' =(F;F',)'+(F,F,')'+(F, F",)'+(F, F,')' .
(S.2)

The first term on the left-hand side is just the host-
lattice interaction correlator studied in detail in
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Ref. 16, which takes the form

(Ff(kt)Pi(k, o)) = (I/4w ) Pf~(kt) 5)-, )-.. . (3.3)

(F;(kt) P,'(k'0)) = ——

with the function P displayed explicitly in Ref. 16.
When an average over impurity sites is performed
the host-impurity interaction correiators (FzFz, )
vanishes if qv~'-0 as q-0, as demonstrated in
the Appendix. Thus, within the present approxima-
tions the principal task in obtaining g]y ls the eval-
uation of the impurity correiator (Ez Fz) „where
"av" indicates an average over impurity sites.

Utilizing Glauber's theorem one obtains directly

with similar expressions for the remaining C's.
D is a time-independent Debye-Wailer factor which
has little influence on Imp at moderate tempera-
tures, ~6 and will be omitted henceforth. With the
present break up of the Hamiltonian —the mixed
host impurity C's vanish identically. Also, if one
averages over impurity sites, the host-lattice cor-
relator may be taken to be translationally invari-
ant, i. e. ,

C(lst; l's'0) = C(l —l', s, t; os'0)=—C„(l—l', t).
(3.6)

Neglecting the interactions between impurities im-
plies

x exp iq+k ~ r, +i q +k ~ r, ,
q lsnr

q' l's'n'r

c(nrt, n'r'o) = c'„„.(t)~„„,.
Thus,

(3. 'I)

—iq ~ R„—i q' ~ R„.]H", ",
',,",",' (qq't) (v,-')'"(vl)" "'

&&(q I„-")(q.
'

I,'-, )(4t(, V. ~f.~f8) "', (3.4)

where

H= exp( —q [V(lst, l's'0) —C(lst, n'r'0)

—C(nrt, l's'0)+ V(nrt; n r 0)] ' q +D "t

(3. 5)

with the C' s displacement-displacement correla-
tors; for example,

C(lst, l's'0) = (u„(t)u, ...(0))o,

&= exp( —q [C„,(l —l', t) +C'„„.(t)t' „)„,] q~] .
(3. 8)

I et us define

ii"„'(k, t) = (4~'/N, .) ((E,"(k, t); E 6
( -k, 0))}„; (3. g)

with ii((()) the Fourier transform of II(t), the average
over impurity sites in Eq. (3.4) yields, after some
algebra

( ) )
(Eg (kt)Eg(k 0))„=imiiii (k(())Ni5), , )-, ',

(3. io)

Imli&& (kt) = —2m Q e"""''"'(v,')'"(v'g. )""'(q ~ i„. ,)(q' ~ f.-„,,)(4p, t(,, (vf, (o „-s) "f,,",",'(iraq, t)[n((())+ I]-~f)

Vq, 'lsrs'r'
(3. ii}

&,",".(lqq, t) = exp(q ~ [C„.(lt)+ C', (t)] q'],

where N, is the total number of impurities.
It is instructive to recast the expression for ImII„

in an alternative form, which emphasizes interac-
tions in position space. In Sec. IV we will consider
absorption in the wings of the fundamental impurity
mode; in this instance we need keep just terms

I

linear in C . Restricting consideration to a point
impurity at a, single site (the cell origin) and a, sin-
gle phonon branch, we may drop the (n, P) and

(r, r ) indices; then taking k= 0 and assuming the
form q ~ C™„,q'= (g, q)(rt, . q')C for the correia-
tor, we find '

1 B~' v(r, —R, &, +il(+f P) 8' v(,, —R„+iT, +ii,(+f()},
eV" a(t (,g=o

gl l 'ss 'n

&& C'(t)[C„.(l —l', t)]'(4t(, ,p, .(o,) '"[n((d)+ I] '. (3. i2)

While the above result is unwieldy in general, it is
useful as a starting point for various approxima-
tions, such as the noninteracting cell limit, in a
diatomic crystal, for which r, = r, .=R„=O. For a
linear vibration model where )I, and fz point in the
same direction, for example,

sf+2 I 2

(3. iS)

The jth term is the j-phonon contribution to the ab-
sorption; the strength of this term is seen to be
determined by the (j+ 2)th derivative of the impuri-,
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x Q [P "(ku)) + N, II,',"(k~)]g,"f(kk'(o) .
(3.14)

If we neglect the coupling between different branches
then

'(k ) —I (k~)+VII" (k~) ' ' '

where for notational simplicity we henceforth omit
the bars over averaged quantities, except for rea-
sons of clarity within derivations.

B, Evaluation of g22

To evaluate Imp. we require g„„F2' (nn'v); in
keeping with the picture of noninteracting impurities
adopted in this section, we take gzz(nn v) = &„„gzq(&u).
The averaged form of Eq. (2. 14) then leads to

g22 (&) = d o(&)668 '+ d 0(&)p NPa2(~) ga2 (+) r

N, 11622(e) =Q Q~+, (nn'&u) .
(3, 16)

Utilizing procedures identical to those for IIfz, one
obtains for ImII»

ty-host lattice interaction potential in position
space, evaluated at their intracell separation dis-
tance I iT., —Pc„l = v, . Note that these results are
similar to those obtained for the intrinsic multi-
phonon case in Refs. 7 and 16. This noninteracting
cell limit will be considered in greater detail in
Sec. IV.

Returning to g», denoting averages by bars, we
thus have

g|&(kk v) =go(k&u)5|-, |...5~~+go(kv)

one has

P g,g'(kn(o) = —N,g g „'(k&u) II "„(k(u)g „((o),

with

H'lss 'rr'

x (p)'"(p, )
"

(q ~ f )(q' ~ f,)

x(4p, p. .. ) "'I.","'(Iqq't)6;„". (3 19)

Perfectly analogous results follow for g» and II&f,
which we therefore do not display explicitly.

D. Expression for Imx

Within the approximations of the present section,
the imaginary part of the susceptibility follows di-
rectly once Eqs. [(3.15, 18, and 19)] have been
inserted into Eq. (2. 6). For the present purposes
we will be concerned specifically with the absorption
in the high-frequency wing of a single impurity
mode; then one finds

Imhy=- —p, g I mg go((d) ImII»(~)go(co)
- eass'

+ ~ Im Ido(+) ™22(+)do(~)

—2 Q m~m „,do((o) Imll»(~)go (u&)
cs

(3. 20)
where pz=NI /0 is the impurity concentration and

AX =
X

—X~, with X~ the intrinsic host-crystal sus-
ceptibility. If one utilizes the result in Eq.
(3.20) and its analogs for the other II's, for exam-
ple, then

Imll'„'= 2v'
8'l srs 'r'

ivor& I sr
Imii„~s(~)=2v Q e"'"& (v;)'"

aa'&ss'n'

x (p ;,)' "
(q f „)(q' f "„,)(4P „p„,(gq(g,„),

xf.,","'. (Iqq'f)[n((u)+1] '6;;.. (3. IV)

For a single impurity mode the (PZ) indices may
be dropped and one has

g28 (&) = ~as'&[do(&) —Nz~22(~)] ~ (3. 16)

If anharmonic interactions are neglected in II&2,
then g» reduces to the standard harmonic impurity-
mode GF.

("-C )' "'(q ' f )(q' f ' )(4u u ~ ~ )
'"

xf,„,(fqq ~)„s6g g.[n(e) 1+] ', (3. 21)

where pA, » (dA:, , B, and fA, B are given in Table I,
and &(v) is the Fourier transform of L, (t) [see Fq.
(2. 11)]. Depending on the model, to be empl, oyed
and the method of calculation, it may be more ap-

TABLE I. Parameters appearing in IIAB .

C. Evaluation of g, 2 and g21

Utilizing g&&(kk') = 5|",,f g&&(k), and defining II&q

through

Qf3 = —XIIIf~,

B=l

&A,B

I"s ~

A, B

oo

fA, B
CKf Os

f 0I

f()s

8fr



VOO BERNARD BENDOW AND CHIN-SEN TING 12

propriate to employ the alternative result for H„~
displayed in Eqs. (3. 12) and (3.13) for II&z, for
example. In either instance, the above formulas
provide a convenient starting point for calculations
of impurity wing absorption; all one requires, in
addition to various standard parameters, is the
unperturbed (harmonic) displacement-displacement
correlators for the impurity and the host, and the
interaction potential between them, vr.

IV. WING ABSORPTION OF AN IMPURITY IN AN
EINSTEIN LATTICE

A wide variety of papers have utilized Einstein 8

or single-particle models for the lattice to in-
vestigate intrinsic multiphonon absorption. Al-
though somewhat artificial, the simplicity of the
model makes it useful for a qualitative investiga-
tion of multiphonon behavior. In this section we
utilize such a model for the lattice to study the ab-
sorption in the high-frequency wing of the funda-

C„.(t) = C„.[e '"0'(np+ 1)+e'"0'no]

C,', = -'@/[~o~o(V. t. )'"]
(4 1)

The above definitions correspond to scaling all
lengths in terms of the lattice constant ao. If we
choose the vibration direction to lie along i, , then
for the Einstein model each of the II»'s in Eqs.
(3. 20) and (3.21) are proportional to

mental &I of an impurity mode, at frequencies many
host Phonons above &dc (~-ec» &Of ). To elicit the
principal physical effects with a minimum of math-
ematical complexity, we restrict attention to a
single-site point-impurity model for a diatomic
host crystal, and vibrations of the lattice and im-
purity which are collinear within each cell.

In the Einstein model only atoms within the same
cell are correlated; with three identical branches
one obtains

C,', .(lt) = 5, C,„(t)

Coc g e'~'&'c "~'"~)e"'"c z)) ~~'v' v' , [(.nz-+ I)/nz]c 1&(2[nz(nz+ 1)] (q ~ )cz, )(q' cccc, ,)c„,)
n ss'

x (q ~ cc)'(q' ~ cc)' f„f 5(&u- &d, -j~z) n = (e'"z- 1) ', (4. 2a)

where we have utilized f c= 1; with t&c the reduced
mass for the impurity stretching mode,

c', (t) = c',e'"c'

C&) = [n (+c)+ 1] tt/u, ,&o,cco

(4. 2b)

v' is the interaction between the impurity and host
atom s and I& is the modified Bessel function. The
absorption in this model is observed to be a series
of 5 functions at & —(d~= jw~. To relate this spec-
trum to behavior characteristic of actual crystals,
one generally averages the absorption over a fre-
quency distribution F(&dz), which then yields n as
a continuous function of frequency (see Ref. 26 for
details). In certain instances very similar results
may be obtained by simply connecting the 5-function
peaks with an exponential envelope function. ~

Rather than analyze the general Einstein results
in Eq. (4. 2), we will here specialize to certain
simplified limits of the latter. At low tempera-
tures such that n(&oz) «I, one may expand each
Bessel function, and keep just the lowest-order
term, Moreover, for the present purposes it is
appropriate 8 to consider potentials v(r) which de-
crease very rapidly with ~. This is so because in
typical instances the many-phonon terms (j» 1)
will dominate the absorption in the frequency re-
gime of interest here; since these involve repeated
derivatives of v, just the short-range portion of v

is important, The latter is indeed a very rapidly

decreasing function of interatomic distance for
typical pair interactions in ionic solids. In this
instance the major contribution to the sums over
(l, s, s') in Eq. (4. 2) will be from the St nearest
neighbors (nn) of the impurity at cell n; the latter
may be approximated as very nearly K times the
single-cell contribution. ~ When all of the latter
considerations have been incorporated into Eq.
(4. 2), one obtains a result equivalent to that given
previously in Eq, (3. 13), namely

m~, p ) (8' v&r))
&

),
r=x:

x (1+nz) ~ 5(&0 —&dc-j&os) (4. 3)

where v is the interaction in position space between
the impurity at the cell origin and the host atom
s = 2 of the diatomic crystal, and a their separation
distance. Details of the algebra leading to Eq.
(4. 3) are available in connection with an analogous
derivation in Ref. 16, and need not be repeated
here.

In the remainder of this section we analyze the
simplified limit given by Eq. (4. 3) with an eye to
extracting the principal properties manifested by
the wing absorption. Utilizing Eq. (3.20) one ob-
tains for ~= ~ —~, » ~

n = ccrc(~)+ nc(&0)

~, (~)= («~inc)lmXz(~),
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ng(M) (4 zM/! c)pl ™y. 1(~)

ImX, (o;) = [Ai(~)+ A, (~)(~z/~')

+AS(~)(~z/~) j &(~)/[&(")+ lj

p (dE 2

Ag =vzr, 2 p& J[L~Qp P, y+ P, g

2 h
Ag= vip p 3 . 2 j~z (~+ ~s) ~s pseo

(4. 4)

COg
1/2

A3= 2iVEJ Ply 2 1/2(~+~&)~ ( i zuzus) eo pi+!Lz

where C = C» andwe have scaled ~ inunitsof E. Thu.
nz is a sum of three terms, each of which, for condi-
tions of interest here, will be exponential-like over
sufficiently small intervals of &. Clearly, Q.~ will be
closest to exponential for small values of Y «1, a
condition which is generally met for the case of
heavy-ion interactions in ionic solids and for par-
tially covalent solids, where the interatomic po-
tentials appear to be much "softer" than in the ionic
case (see Ref. 29), but may not be for light-ion in-
teractions (see Ref. 28). In any case, whenever

nz(o')=A(o')e ", B= —lnI'&0 (4. 6)

where A(u&) is a slowly varying function of 2.
The principal difficulty in applying Eqs. (4. 4)

and (4. 5) to actual cases is that the effective im-
purity-host interaction v(x) is not accurately
known; because of the repeated derivatives in Eq.
(4. 4), the hardness parameter X will be especially
crucial in determining the multiphonon absorption

where yz(v) is the standard host-phonon suscep-
tibility treated elsewhere. It is not difficult to
see that for typical values of parameters the enve-
lope of the high-frequency impurity wing absorption
is exponential-like as a function of , as was shown

previously to be the case for the intrinsic spec-
trum, i. e. , Imp~ vs &. To demonstrate this more
explicitly, we employ a Born-Mayer form for
v(x)= voe ""; in the regime of interest here, we

may take ~ = ( &, so that only variations in ~ need
be considered, yielding for the envelope of the
peaks of the impurity absorption

nz(2)=-(4m~, /qc)voX4e ~Co

x 1A~(~z) exp[a& lnI' —ln(u&! )j

+Az(tuz) exp[a lnI" —ln(7()!) —21n2 j

+Ao(~z) exp[3 lnI' —ln(~!) —In~ j (4 5)

I =(n, +I)C!'

spectrum. One may conceive of a, variety of
schemes for deducing this information: For ex-
ample, measurement of both the TO mode and the
compressibility of the compound X'Y, where Y
is an impurity radical, should provide the effec-
tive interaction v between X' and Y, when ther-
modynamic prescriptions (such as given by Born
and Huang ) are applied to determine v. This v

could then be utilized in calculating ~z in the host-
impurity system XZ: Y . Unfortunately, however,
the experimental data required for the latter and
other similar schemes does not appear to be avail-
able for typical molecular impurity-host lattice
combinations. For this reason, it would not be
meaningful at present to attempt quantitative pre-
dictions of ~z, or the parameters A and B in Eq.
(4. 6).

For qualitative purposes, however, it might suf-
fice to utilize typical values of X characteristic of
interatomic interactions in ionic solids, such as
those given in Born a,nd Huang, for exa,mple,
Guidelines for a reasonable choice are few, but
one possibility is to approximate the interaction of
X' with Z in XY:Z as that of X' with a nearly
equal mass ion 8' in the crystal XW. Let us a.p-
ply this prescription of OH in KCl; then the closest
analogue to the K'-OH interaction is that between
K' and F in KF. Vfe have calculated ~ as a func-
tion of &u/&uz for two values of P from Eq. (4.4).
For this case one finds that the impurity term A~
dominates; interpolating to noninteger +/&uz,

2

n((u/(uz) = a~no[A. Coo(nz+1)j" "z =
co I ((d/cog + 1)

(4.7)
(eo —e„)91 eg !jz v (w)

Qp =
r

Here 1" is the gamma function; &„and &p the high-
and low-frequency dielectric constants of the host;
e*'s are effective (transverse) charges; and oz
= jVz/N is the fraction of impurities in the crystal.
If we take e*,/ez*-1 and utilize &uTo for &uz, we ob-
tain no= 2. 4x10 cm '. In Fig. 2 we display n/
noo'y vs 4&/mz for two values of temperature, and
the results are observed to be nearly exponential,
as remarked previously. A typical value of wing
absorption deduced for this case is ~-0&&10 cm
at co —co~=4cg~, i.e. , four host phonons above the
impurity mode. In ultrapurified alkali halides
oz-10 is not unreasonable, for which case one
predicts a very small n(+/&uz ——4)-10 7 cm ~.

V. CONCLUSIONS AND DISCUSSION

In the present paper we have utilized various ap-
proximations to calculate the multiphonon absorp-
tion due to internal modes of a low concentration
of molecular impurities in ionic crystals. Ex-
plicit results were obtained (for an Einstein model
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FIG. 2. Logarithm of impurity wing absorption coeffi-
cient nI, scaled in units of cTI&p (see text) vs dimensionless
frequency &~/f~z, for stretching mode of OH" in KCl, at
two values of temperature.

of the host) from which the absorption may be com-
puted directly, once the impurity-host interaction
potential has been specified. Among the principal
conclusions:

(a) The shape of the impurity wing is determined
largely by the host-lattice correlation; i.e. , the
host density of states Ho. wever, the relative
strength of the many-phonon terms in ~ are gov-
erned by the impurity-host interaction potential.

(b) In typical instances the absorption is expo-
nential-like as a function of v-+1. A variety of
terms with differing frequency dependences arise,
in contrast to the intrinsic case, but in various
limits a dominant exponential behavior will be
manif ested.

(c) The fall off of n in the wing region is deter-
mined by the phonon parameter A. C, -0.1 for
typical values of parameters. This corresponds
to a decrease of somewhat more than an order of
magnitude per host-phonon frequency.

(d) The explicit temperature dependence of n
is approximately [n(va)+I]~/[n(e)+1] in the j-pho-
non regime, identical to that predicted in the in-
trinsic case. '

The role of the host-lattice correlation in deter-
mining &1(a»~mz) may be ma, de clearer by consid-
ering a. convolution expansion in terms of C~(t) in
Eq. (3.21). Essentially, Imp(f) is a functional of
C~(t) (for simplicity, we consider just a single
C~), so that

(5.1)

where p,. is the jth convolution of C„; i.e. , pj = C„.
It is easily shown that when the position dependence

of C is suppressed that p; is, in fact, proportional
to the e-phonon density of states of the host. '
There are a variety of instances in which struc-
ture will arise in the p&'s, as discussed in detail
elsewhere. In general, repeated convolutions
tend to wash out any structure in C„. If X Co is
sufficiently small, the principal contribution to
Imp„ in the jth phonon regime will stem from the

p& term alone. Thus, we may expect that detailed
structure reflecting selection rules will be mani-
fested in the vicinity of the impurity peaks, but
that it will be weak or absent as & —(dI»w-„. The
latter considerations provide a partial justifica-
tion for the use of Einstein-type models in the
many-phonon regime, although their inadequacy
near to and below the peak is patent. Indeed, ex-
perimental evidence of the suppression of struc-
ture in the intrinsic case is widespread for ionic
crystals.

In the paragraphs to follow we point out various
limitations of the general formulation in Secs. II
and III, as well as the model calculations in Sec.
IV. One general feature of our formulation has
been the averaging over impurity sites which, for
example, suppresses the modifications in the host-
lattice correlation which are due to impurities;
these may be important in highly localized sys-
tems. The crystalline normal mode expansion for
the host moment employed in Eq. (2. 3) will not, in
general take proper account of impurity-host se-
lection rules. However, for the purpose of cal-
culating wing absorption, where k-selection rules
and structure in C are suppressed, such effects
should be relatively minor.

In the model calculations we have treated the im-
purity as a structureless entity. If quantitatively
accurate results are required, it may well be
necessary to include summations over all atoms
constituting the impurity, and to utilize the cor-
responding interactions for each with host atoms,
a formidable task indeed. Another factor which
requires attention is the determination of the ef-
fective charges associated with the various host and
impurity vibrations, which can differ significanQy
from the electronic charge in certain instances
(see Ref. 37). These reasons, combined with the
simplified phonon spectrum utilized and uncer-
tainties in the host-impurity potential v, probab&y
limit the accuracy of the predicted n's to no better
than an order of magnitude, However, it is clear
that more elaborate computations are not justified
unless detailed information becomes available
about the crucial function v.

In this paper we have evaluated the multiphonon
interaction GF's [G(E; E), etc. ] in. the harmonic
approximation. Extensions to include the internal
anharmonicity of the impurity, and the host-lattice
anharmonicity are relatively straightforward.
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Cumulant methods show that the simplest approxi-
mation including anharmonicity is a,ccomplished
essentially by replacement of the harmonic cor-
relators C by their anharmonic counterparts (see
Ref. 29). However, if we wish to include the an-
harmonicity V„due to the interaction between the
impurities and the lattice, then we must also re-
tain various mixed impurity-host correlators which
vanish in the ensemble where V„~ =0. Their
evaluation requires the solution of a simultaneous
set of coupled GF equations; an extensive litera-
ture exists on this subject, and need not be pursued
further here.

One aspect of the temperature dependence of ~
in the wing region is worthy of further discussion:
In Sec. IV we included only the explicit tempera, —

ture dependence due to thermal occupancies, which

imply z- T" ' in the n-phonon regime at high T
»v~, this is identical to the T dependence pre-
dicted in the intrinsic case, as noted previously in
this section. However, it has been pointed out by
various authors that the implicit T dependence due

to T variation of the phonon spectrum, lattice con-
stant and interaction parameters can substantially
affect the overall T dependence of ~ in the many-
phonon regime. The results for typical alkali
halides suggest a strong suppression of the im-
plicit T dependence, which agrees with experi-
mental data. With minor modifications, one an-
ticipates the identical effects to arise in the im-
purity wing case as well.

Finally, we point out various analogies between
the present problem and that of phonon-induced
sidebands in electronic impurity absorption. In
the latter instance the electron-phonon interaction
plays a role analogous to that of VI in the present
case. Since the origin of the sidebands in both in-
stances is interaction with host phonons, one ex-
pects, on general grounds, that the two spectra
will share various features in common. A formal
analogy may be seen by comparing to Einstein-
lattice results within the configuration-coordinate
model of Huang and Rhys. The nth-phonon side-
band is proportional to

+1 ~/~
e ~ I„Sq5((u —&E-mes),

n~+1

limit results at low temperature, as displayed in

Eq. (4. 3). Essentially, these differ from the cor-
responding results in the electronic case just by
the appearance of factors of (8"' v/Sr"'~)„(which
are . unity in the electronic case). The latter fac-
tors are a result of a dynamic treatment of the po-
tential V~, as contrasted with the configuration-
coordinate approach, in which certain effects of
the interaction are treated implicitly through S~.
Moreover, three different types of terms arise in
the present problem due to the sum of u's and U's
in M, while just a single term corresponding to
the U's need be considered in the electronic case.
Other general similarities may be noted by com-
paring the shape function in Eq. (4. 35) of Pryce
in the volume in Ref. 18, for example, with Eq.
(5. I) above; both involve similar types of weighted
sums over n-phonon densities of states. It would

have been possible, of course, to derive results
even more closely equivalent to the electronic ones
by invoking strict analogues of the modej. s and as-
sumptions utilized in that connection, However,
most of these rely significantly on the adiabatic
separation of the electronic and lattice motion.
Such a separation is highly questionable for most
cases of interest in the present problem where the
coupling of the vibrations of the impurity with those
of the host lattice are concerned. Another motiva-
tion for treating VI dynamically is that one expects
the details of the potential to be highly significant
in the regime of interest here (+ —&uz»&uz). In-
deed, this is manifested by the appearance of the
higher derivatives of v in various expressions for
~ obtained in this paper.

At present there does not appear to be adequate
experimental data for comparison with the theory.
For such measurements one requires, in general,
crystals which are ultrapure, except for doping with

just a single impurity species. The detection tech-
nique which appears most promising at present is that
of emittance spectroscopy, which should provide
both the sensitivity and resolution to successfully
probe the multiphonon wing at relatively low values
of the impurity concentration. With the substantial
recent progress in the ultrapurification of alkali-,
halide crystals, ' it should now be possible to
perform useful measurements of impurity wing
absorption to compare with theory.

with e ~ a Debye-Wailer-like factor, and S~ an in-
teraction strength measuring the readjustment of
the impurity-atom equilibrium positions in the ex-
cited electronic state. This result is formally
similar to that in Eq. (4. 2), except that in the lat-
ter a distribution of strengths S(q, q') appea~, and
an appropriately weighted sum over factors such
as in Eq. (5.2) need be taken. The similarities
are more striking when comparing to the localized-
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APPENDIX: EVALUATION OF (Fir

In this Appendix we demonstrate that (EzEz, )
vanishes if qv&-0 as q-0. Explicitly,
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F, (&) F', (&'0)= g (6',)'"(~',)" (q f'r )(q' f~p")(~.m'&r ~re) ' '
~~~mr ~r"
srs's"

&expri(q+k) ~ r, —i q ~ R„+i(q'+k ) r, .—i q' ~ r, -]E„.,'-"„, (A1)

When the thermal average is carried out by
Glauber's theorem, and it is noted that mixed cor-
relators of the form (u»(t) U«(0)) vanish, then E
is seen to be independent of (n, r) If .we now carry

out an average over impurity sites, then g„e"""
leads to a factor of &(q) in Eq. (A1); thus if qv, -0
for q 0, ( F& Fz ) vanishes.
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