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Hopping conduction in a "superiattice"*
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We have used the formulation for the "Stark ladder, " and a two-well model to describe hopping
conduction via acoustical phonons in a "superlattice. " Results show that negative differential

conductance may occur when the "Stark-ladder" energy eFd is greater than the energy bandwidth. The
mechanism is due to the fact that the transition probability at high fields decreases with the increase of
F, because the electronic wave functions become more localized.

I. INTRODUCTION

The transport properties in a man-made super-
lattice exhibiting negative differential conductance,
have been theoretically' ' and experimentally stud™
ied. ' The presence of an additional periodic po-
tential produced by varying the alloy composition
of two semiconductors, such as GaAs and GaAlAs,
along one direction with a period of approximately
100 A, results in a splitting of the conduction and

valence bands into several minibands. If the mean
free path is longer than the period of the super-
lattice, Bragg scattering from the minizone bound-

aries may give rise to "Bloch oscillation" and

negative differential conductance. On the other
hand, if the applied voltage is strong enough, Zener
tunneling between minibands also leads to a cur-
rent peak. It has been shown' ' that the energy
states under extremely large electric fields form
equally spaced discrete levels, the so-called
"Stark ladder, " if the interband matrix elements
may be kept negligibly small. The corresponding
wave functions are localized. Electrons may be
transported via hopping or tunneling. Let us dwell

on this point to further clarify the nature of con-
duction at high electric fields.

If the mean free path is not sufficiently long, the
required field for the carriers to reach Bloch os-
cillation is so high that the Stark-ladder energy
eFd is greater than the energy bandwidth of the
minizone and the quasiclassical theory' becomes
nonviable. The wave funtion under high fields
are extremely localized; however negative dif-
ferential conduction is still possible due to hopping
conduction when eFd is less than the separation
between the first and next minibands. Electrons
from a given cell may hop via phonon emission and

absorption to adjacent cells. ' Because of the de-
crease in the overlap of the wave functions as F
is increased, probability of hopping decreases.
Resonant tunneling may take place whenever eEd
coincides with the separation between the lowest
and next minibands. Without intracellular relaxa-

tion, unlike the case of few barriers treated by
Tsu and Esaki, ' this process merely transfers
the electrons from the ground level to the next
level. Thus transport in this case is mainly de-
termined by the intracellular relaxation. In this
paper, our main purpose is to calculate the trans-
port properties when eFd may be greater than the
energy bandwidth of the first miniband but less
than the separation between minibands. The latter
case is more difficult to treat because of the reso-
nant nature and a perturbation calculation is us-
ually not valid.

Figure 1 shows possible transitions between
electrons localized in a given cell to an adjacent
cell. Under the application of a constant electric
field, a constant potential energy difference exists
between adjacent cells and a ladder structure for
the energy states appears. If eFd in Fig. 1 is such
that the level 1 coincides with level 2', electrons
may tunnel resonantly from 1 to 2' marked by (a),
followed by an inelastic scattering process marked
by (b) to level 1', in order to repeat the process
onto the next cell. This process has been treated
by Kazarinov and Suris. ' Observation of negative
differential conductance in a GaAs-GaAlAs super-
lattice by Esaki and Chang is explained by this
type of resonant-tunneling process. '

eFd

FIG. 1. Energy states under an applied field I . Pro-
cess (a) involves direct tunneling followed by an inelas-
tic scattering (b), and process (c) involves inelastic
scattering.
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In this paper, we treat the direct inelastic pro-
cess from 1 to 1' denoted by (c) in Fig. 1, neglect-
ing the presence of other states such as 2 and 2',
etc. Our results show that negative differential
conductance can take place. In Sec. II, hopping
conduction is calculated from the use of the so-
called "Kane functions"' applicable for a periodic
system under a high electric field. If the elec-
tron mean free path is not much greater than the
period d, the transfer of electrons from one cell
to the next may be approximated by a "two-well
model, "which is treated in Sec. III. At high fields,
the superlattice and two-well models give almost
identical results. This is not too surprising since
the wave function for the superlattiee is extremely
localized at high electric fields.

II. HOPPING CONDUCTION IN A SUPERLATTICE
VIA PHONONS

We shall use the solution of the Schrodinger
equation in the presence of a static electric field
E, when interband terms are negligible. Pertur-
bation calculation is used for electron-phonon in-
teraction. Our results are not applicable for the
case of resonant tunneling because perturbation
calculation is not valid generally for resonant case.
Following Callaway, ' the wave function Q(r) may
be written in the crystal-momentum representa-
tions

g(r) = g P„(k) g„(k) d k,

(„(i)=(—)'*exp (- [c —e„"~(k')[ dk,')

x5(k, —k,') 5(k, —k,'),
e„'[(k) = eEA'„„+e„(k),

(2)

(4)

in which
(2[i)' . , s Un

rlN y n
0 x

and e„(k) is the energy of the nth band. The re-
quirement that (t[„(k) is periodic in k, gives rise
to the quantized levels

II /u

[e„(k)+ eEX„„]dk, , (5)

e„(k) = e(k) = I'k2~/2m+ e, —(-,' e, ) cosk„d,
then

e,(k) =5'k'„/2m+ e, +eEd(v+f. /d), (I)
where I, is a constant coming from the X„„term.
The function P, is then

'=(-.",)"
—2 k'~ vd +I + sink„d2eI'd

(8)
Furthermore, we shall neglect the periodicity of
the real lattice, but not that of the superlattice,
z.e. ,

U(k, r) = U(k„, x),

d
e, „(k) = veEd+—

2 It ~ /g

with v being any integer. Because of the periodic
nature of tf„, the second term in the integral is a
real constant term. We shall consider a one-band
tight-binding model where

where

g„(k) = U„(k, F) e' (2)
where 0 is restricted within the minizone from
—ii/d to ii/d, then

i/~ If/&

g(r) = — e'~~~ U(k„, x) exp i k„(x—vd-I ) — 'd sink„d dk„.
-1)./4

For large I', this wave function is highly localized
with hx-e, /eE, and centered at x=L+vd. In order
for this formulation to be meaningful, the electron
mean free path should be greater than 4x.

The current due to an electron in the cell v (en-
ergy state v) making a hop to the cell v' (energy
state v') is

&-' = Q e("—') dtf(1-f') ~uv f'(I-f) ~, .]-
k, k'

where f =f(e„—V,,) and f' =f(e, —V,„),—in which—

p, and lL(., are the chemical potentials, and ~„
is the transition probability. In our calculation,
equilibrium Fermi distribution has been used for
f and f'. This is a fair approximation if the in-
tracellular relaxation is much faster than inter-
cellular hopping. Since

e8~ &
Il U 7

Eq. (10) becomes

j, , = g e( v' —v) df (I -f ') (v,', , (I —e """' '),
(11)
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with P:(k—sT) '. The (—) sign is for phonon emis-
sion and (+) sign is for phonon absorption. The
total current is the sum of both emission and ab-
sorption processes, although for convenience, we
have not explicitly indicated the sum in Eq. (11).
Using the "golden rule, " the transition probability

u),', (k„k',) = —g l & v', k,', n; ~ 1 la„ l v, k„nq& l

'

x6(e„(k~) —e,(k~) +h(uq) .

where J, , is the Bessel function of the order
v' —v. In order to facilitate computation, we ap-
proximate

I, -(1 —q,d/2w) Z,

and

I, -(q„d/2v) J,
Then the approximate matrix element becomes

(12)
The matrix element for electron-phonon interac-
tion may be written

xU+ ' U„—U
q,d

(15}

(v', k~, nq v 1 lIf,~ l v, k, n-„&

=C(q)(v k le'"'I v, k.&(n;+l+-')",
where C(q), "for the acoustical phonon, is
iC„(lql/2pC, )' ', with p, C„and C, being the den-

sity, the deformation potential, and the longitudi-
nal velocity of sound, respectively. The matrix
element

7I /u-q„
ym(k+qq y.(k) U.dk.

-7I jd
7I /u

eEd(v —v') + (k~- k~") vh(uq =0, (16a)

and

where y = v' —v. To find the total transition prob-
ability from Eq. (12) for u», we need to sum over
q within the minizone, and m from 0 to d/a, with
a being the lattice constant of the semiconductor.
Because of the energy 6 function in Eq. (12), and
the transverse momentum 5 function in Eq. (15},
we have the conditions

PP(k+q) Q, (k) U „dk„ q ~ = k~ +k~ —2k~ k~ cos0 . (16b)

=f,(q„) U„+I,(q„) U„„, (14)

and

for q„=2m/d

for q„=0

sin " for q„= 2/ dQx

ed

where U and U „are defined in Appendix A, and
q„=q„—2sm/d, which states that q„ is also re-
stricted to the first minizone. Using the wave
function of Eq. (9), we find that

J, „' sin '- for q'„= 0,8' d

Given the specific dispersion relation for the pho-
nons, we may solve for p as a function of t/', k~,
q„, and 0, with V= eFd(v- v'). In principle, we
may now compute v~»( k) by integrations on 0 and

q„ together with summation on m. The total cur-
rent is now obtained by summing over k~ for both
phonon-emission and phonon-absorption processes,
and v' —v = 1, 2, 3, . . . . Since the computation is
still a rather formidable task, a number of ap-
proximations have been used to simplify our com-
putations. First, we assume that the dispersion
of acoustical phonons is represented by a constant
speed of sound. Instead of summing on g„ in the
minizone and sum over all the minizone, we re-
place the process by an integration on q„ in the
extended reciprocal space. It may be shown that

q„d &, . Q', d sin 2&„W
l&y, m=~y eFd sin " Um+

2 (Um+s Um) ~y d
sin

2 IV 1 ( IV/2 )

(17)

so that

Qg Inax

CO yk~ (2 )3

x(n, +-,'+-,') 2vr f&l

where for coy, q, ,„. = m/a

2v C', lql
2C,p

(18)

and for 40y

&xmax
=

(eEdy+k'k'„/2m)/KC, if eEy+k'k~/2m& u«

if eFy+k'k' /2m~ ~u„
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emy
2y= 7$' + A

xf(e,) (1 —e ' ' ") de, . (19)

III. TWO-WELL MODEL

If the barrier is such that the tunneling prob-
ability from one well to the next-nearest cell may
be neglected, we may consider only the net pho-
non-assisted transitions between the neighboring
cells. Our purpose is to derive the hopping cur-
rent for this limiting case and compare the
results with those of Sec. II. A general treatment
for large tunneling between cells and long mean
free path, is given in Appendix B.

Figure 2 shows a section of the superlattice po-
tential profile. We assume that all the energy
states other than the lowest levels denoted by A.,
and A, are far away, so that it is meaningful to
consider the lowest stateh only. When the barrier
width l is large, electron wave functions do not
overlap, so that

and X, —X, =V. Obviously for very high field, the
next level A, may be brought to the vicinity of

in which co„ is the cutoff frequency for acoustical
phonons. As pointed out earlier, due to the small
intercellular transition in comparison to the intra-
cellular relaxation, prior to and after a transition
is made, both the phonon and electron populations
are governed by the equilibrium distribution func-
tions, i.e., Bose-Einstein and Fermi-Dirac func-
tions, respectively. The computation may be
greatly simplified if we assume f' -0 in Eq. (11),
because e, —p,, »k~T. Replacing the sum on k
to an integration on energy with the density of
states

N(e„) =(ng/mK') 8(e, —e,(k~ =0)),
we have

y 2 j./2 @2k2
0* + ~2 +

2m ' (20)

where o.' =(1~H, j2), and A., is the longitudinal
energy when V= 0, and a = 0, in which H, is the
coupling operator. Note that 2n is the splitting
for V=O. These two states have wave functions

1
~,: 0, = (». fl&& b&2»

~.: g. = („&. ) V I&& —
I » &,

(21)

where

(22)

If we let

~
1)o: sin(pw/W)(x+ -', l )e "~~

j 2) ~ sin(pm/W)(x ——,
'

1 )e"~',
the matrix element

(23)

(q, ~e "'
~&)&, ) =

~, sin " sin$+b2 q

X
1

24
(q W/27/p)2 4 &J.+ QJ. '(

For P = 1 (ground state), and V» 2o. ,

(y, )e" "~y, ) = sin
'E2Q . Q'~ cE 1

sin(2 q„K)
1 —(q„W/2m)'

(25)

which is identical to Eg. (17) when eFd» e„ if

~„so that level ~„will be coupled to A, more
so than with X, . This belongs to the resonant
tunneling case. As / is reduced, electrons in the
states ~, and A, are coupled so that

V

2
.0

g =&-WA

FIG, 2. Section of the
superi. attice potential pro-
file, A&, A, &, A&, and A& are
the energies of the uncou-
pled wells with width W.
&& and e

&
are the energies

of the coupled wells when
the coupling is increased by
decreasing the barrier
width l .
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we identify e, = 2n, e&d = V, and J,(5)-—', 5. The
transition probability via electron-phonon interac-
tion is then 300'K

-I
I I I IO

TWO-

(26)

The rest of the calculation is identical to Sec. II.
The validity of the two-well model depends on the
extent of the localization of the wave functions,
therefore it is generally not applicable for low
electric fields. Although the two-well model is
only correct at high fields, the approach may be
used to treat the resonant tunneling case more
easily, because at least in principle, as many
higher levels as one wants may be incorporated
into the formulation.

77'K
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FIG. 3. Transition probability for phonon emission at
c~ = 0.1 eV, ~ x 47I'C~pk/C

&
vs the applied electric fieM

at 300 K.

We have computed a number of cases using e,
and temperature as parameters for the well
width W=-,'d, and d=50A. Figure 3 shows the
transition probability for phonon emission at
300 K as a function of &, at a given fixed trans-
verse energy e ~ =5'k2~/2m=0. 1 eV. The
asymptote for large ~ is proportional to & '.
For the two-well model, the asymptotes meet
the horizontal asymptotes near V=0.01, 0.02, and

0.1 eV, respectively for the cases of E, =0.01,
0.02, and 0.1 eV. The curves for e&-,( „=e0.1 eV)
are denoted by superlattice (1). In other words
for y = 1, we only consider the case for transi-
tions between the adjacent cells. Note that these
curves are oscillatory at low fields and have

FIG. 4. Comparisons between the superlattice case and
the two-well model for m x4mC~ph/C& vF at 300 and
77 'K.

peaks near e+d- e, and asymptotically approach
those for the two-well model. The low-field
oscillatory behavior, having extrema whenever
the energy bandwidth becomes integral multiples
of the Stark ladder energy, may be eliminated
when the transitions involving next-nearest neigh-
bors are taken into account. The dashed curve in
Fig. 4 is for &uz=, (e =0.1 eV), and the sum &u,

+ v, is denoted by superlattice (1+ 2), shown as
a dotted curve where the oscillation has been al-
most eliminated. Decreasing temperature to
77 K does not produce a significant shift of the
peak position. Figure 5 shows the hopping current
as a function of the applied field. As pointed out
in the caption, the Fermi level only enters as a
prefactor. This is because we have further ap-
proximated the Fermi function for ~p cfp++ kp T.
The curves denoted as superlattice (1), super-
lattice (2), and superlattice (1+ 2) are for j&
jz-„and j, + j,. Again the oscillatory behavior
at low fields is almost eliminated by taking into
account the hopping involving next-nearest neigh-
bors. The comparable case for the two-well mod-
el is shown as solid curve marked "two-well
model. " In order to examine more closely the
effects of temperature and bandwidth c, on the
position for the peak current, we have computed
few cases for the temperatures, 300 and 77K.,
corresponding to a range of c„much smaller to
much greater than k~ T. The results are shown
in Fig. 6. There is no simple relationship as a
whole, only a. general tendency. For instance,
for &, =0.01 eV at 300 K, maximum occurs around
eI"d =0.009 eV which indicated that the peak is
close to the point c, -0.01 eV; however, at 77'K,
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FIG. 5. Normalized current vs &. The dotted curve is

the sum of the currents due to the hopping between the
nearest neighbor marked as super1. attice (1) and that that
of the next nearest neighbor masked as superlattice (2).
A factor e(C&/2m@ (m/W~p) exp t (ego —&0)4~T], should
be used to obtain the actual current, where &0 and a+0
are the longitudinal energy and the Fermi level, respec-
tively.

the peak is moved down to end = 0.0065 eV. For
very wide bandwidth, c, =0.1 Ev, the peak for
300'R is located near e&d-0.05 eV, but at 77'k,
it moves down to -0.025 eV. Thus, we conclude
that the peak position is moved to lower fields
either by reducing e, or k~T, although the tem-
perature effect is generally smaller. At high
fields, the asymptotic value of the current is
proportional to & ', where s & 1. Note that neg-
ative differential conductivity will not occur until
E& 10' V/cm for relatively large e, -0.1 eV, and
high temperature, 300 K. Thus, negative dif-
ferential conductivity may not occur at all if other
mechanisms were considered.

In conclusion, this type of negative differential
conductivity will appear under the condition of
fairly narrow energy bandwidth. The physical
mechanism is due to the fact that the transition
probability at high field is inversely proportional
to the square of the field. The decrease of transi-
tion probability at high fields is due to the de-
crease of overlap for the electronic wave func-

----- BI=0 OleV
~ ~ ~ ~ ~ ~ ~ ~ ~ o pl -Q QpeV

El = Q. IeV

IO-6 I I I I I I I I I

O.OOI O.OI O. I

APPLIED ELECTRIC FIELD F [2xioe volt/cmI

FIG. 6. Normalized current vs E for the two-we11 model
at 300 and 77 K, for three values of the energy spitting
at zero field, c& =0.01, 0.02, and 0.1 eV.

tions. Suppose it is possible to observe negative
differential conductivity for a real solid where

0
a -2 A and &-5&&10' V/cm, we need an energy
bandwidth e, -ela, in the neighborhood of 0.1 eV.
It is highly unlikely that these requirements can
be met by real solids. Some organic solids and
layered compounds may meet our requirements
if the mean free path were sufficiently long. For
mean free path shorter than 4x-e, /e&, our
formulation in Sec. II breaks down. Due to the use
of perturbation calculation, our results do not
apply whenever the transition rates become com-
parable to the intracell relaxation rates.
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APPENDIX A

r
* 'U*(k, , *)U(l, *)d =2 5(k, +q, —k,'—

vol

where

U = U* 0', x U A'„, x)e~ "~"d'x.
cell

&k,', T,+ qU ~
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Now k„and k, i are restricted to the first minizone, and 2@m/d is the reciprocal-lattice vector. Taking

U(k„, x) = U(x) =,
(2!W)"' cos (vx/w),

0,

U(x- Pd),

jxJ —,'W,

-', W- fx[-«-', d,

pd- —;d-ixi &pa+ ', d, -

U. = [»n(m&W/d}/~vW/dl [l -(~~/d)'1 '

APPENDIX 8

If the tunneling probability between cells is
large and the mean free path is long, for a system
of N cells, we consider a more general case of I'
levels in a given cell v. When the separation be-
tween cells are large, we may assume that all
the states

~ v, P), for a given state P in a given
cell v, are known; i.e.,

H, iv, p) =x„, iv, p),

where v = 1, . . . , N; and P = 1, . . . , P. If the cells
are now brought closer together so that @~i »~
denotes couplings, the new energy states are
p'i.ven by the roots of the determinant

detl (~p, p ~)~pp pp + Q +pp pp (I 5p t p ) ~
0

yt pl

and the eigenstates &„,p can be obtained for each

p Because Xp p A p+ y p e&d, it is now possible
to have resonant tunneling between adjacent cells,
whenever Xp p

—X„~ =erd.

*Research sponsored in part under ARO contract.
$0n 1.eave from Max-Planck-Institute, Stuttgart.
I, . Esaki and R. Tsu, IBM J. Res. Develop. 14, 61 {1970);
P. L. Lebwohl. and R. Tsu, J. Appl. Phys. 41, 2664
(1970); P. J. Price, IBM J. Res. Develop. 17, 39 (1973).

R. F. Kazarinov and R. A. Suris, Sov. Phys. -Semicond.
6, 120 (1972).

3L. Esaki, L. L. Chang, W. E. Howard, and T. L. Hide-
out, in Pmceedings of the Eleventh International Con-
ference on the Physics of Semiconductors (Polish
Scientific, Warsaw, 1972), p. 431; L. Esaki and L. L.
Chang, Phys. Bev. Lett. 33, 495 (1974).

G. Wannier. Elements of Soli d State Theory (Cambridge
U. P., London, 1959), p. 66.
H. Fukuyama, R. A. Bari, and H. C. Fogedby, Phys.

Rev. 8 8, 5579 (1973).
60. Dohler, R. Tsu, and L. Esaki, Solid State Commun.

{to be published). This paper describes a mechanism
for negative differential conductivity between states of
the lowest miniband in adjacent wells via acoustical
phonons, as well as via Coulomb scattering from
impur ities.

VR. Tsu and L. Esaki, Appl. Phys. I ett. 22, 562 (1973);
L. L. Chang, L. Esakl, and R. Tsu, Appl. Phys. Lett.
24, 593 (1974).

8E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959).
9J. Callaway, Phys. Rev. 130, 549 (1963),
~DC. Kittel, Quantum Theory of Solids (Wiley, New York,

London, 1963), Chap. 7.


