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Pressure and temperature dependence of electronic energy levels in PbSe and PbTe
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Using recent highly accurate pseudopotential band structures of PbSe and PbTe, the variation of the smallest

gap at L with hydrostatic pressure and with temperature has been calculated, The experimental values of the
pressure coefficient can well be reproduced assuming reasonable slopes of the pseudopotential-form-factor
curves. Combining these values with experimental compressibility and thermal-expansion coefficients, the

anharmonic part of the temperature coefficient has been evaluated and found to contribute about 50% to the
total experimental temperature coefficient. The remaining contribution arising from electron-phonon
interactions has been analyzed using Brooks-Yu and Fan-like scattering theory. awhile the inclusion of a
Debye-%aller factor yields reasonable results for the L gap in PbTe, it fails for the X-L gap and it predicts a
temperature coefficient of the opposite sign for PbSe. A detailed analysis of the PbSe discrepancy is presented.
It is proposed that Fan-type intravalley and intervalley scattering can resolve the dilemma. First-order
estimates for Fan-type scattering contributions are presented.

I, INTRODUCTION

The semiconductors PbTe and PbSe show a small
(-0.2 eV) direct gap at the point I- of the Briliouin
zone. The dependence of this gap on pressure and

on temperature has been a puzzling question for
some time. In contrast to most semiconductors,
this gap decreases with hydrostatic pressure ' and
increases with temperature. s ' Though the effect
of pressure could well be simulated by several band

structure models, its origin has not been clarified
sufficiently so far. The calculations presented in
this paper are based on recently developed band
structure models of very high accuracy for PbSe
and PbTe ' The calculations serve both as a check
on the quality of the band-structure models and as
an explanation of the nature of the negative pressure
coefficient.

The situation with regard to the temperature vari-
ation of the gap is even less clear and has been the

object of many studies. Straightforward applica-
tion of Fan's theory fails because it always pro-
duces a negative temperature coefficient of the gap.
However, as already pointed out by Keffer et &l.„"
Fan's theory might give a different result if re-
forrnulated without neglecting the potentially impor-
tant interband terms. Brooks and Yu«3 have pro-
posed a new ttieory of the temperature variation of
electronic energy levels based on the introduction
of a Debye-Wailer-like factor in the calculation of
band structures. This procedure was applied to
PbTe by Keffer et ~) 9, «0 and by Tsang et ~~ ««a

yielded fair agreement with experiment. The band

structures used in the two cases, however, were
incorrect near the band gap, since they predicted
an inverted band ordering at I-, which on the basis
of recent calculations is inconsistent with effective-
mass anisotropies. 7 Moreover, recent Debye-

Wailer-type calculations of Guenzer et al. «4 on
";IgTe have failed to give good values for the tem-
perature variation of the band gap. This seems to
indicate that despite several successful applica, —

tions, 9 «« the Debye-%aller-type treatment at finite
temperatures may be incomplete. Using formal
theory, it can also be argued that this is not unex-
pected.

We shall show in this paper that the Brooks- Yu

theory applied to very accurate band models of
PbTe and PbSe is only partially successful and that
the additional inclusion of generalized Fan-type
terms might give satisfactory results. In Sec. II,
we shall analyze the variation of the gap in PbSe
and PbTe with hydrostatic pressure, and in Sec.
III, we shall discuss the gap variation with tempera-
ture.

II. PRESSURE COEFFICIENT

Both pressure and temperature effects appear
as second-order corrections to the band structure.
The most practical way to compute these effects is
to evaluate directly the derivatives of the energy
levels with respect to pressure or temperature.
For the case of hydrostatic pressure, we can write
for the change of a given electron level with pres-
sure at constant temperature

BE„$90 BE„
BI' ~ QBP ~ BQ ~'

where ~ is the unit cell volume and

is the compressibility of the material which is
known experimentally. «The deformation potential
QBE„/BQ can be evaluated from band-structure data
using perturbation theory:
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n an=n"~sn~"
The Hamiltonian we used to calculate the band
structures of PbTe and PbSe is based on the pseudo-
potential scheme and contains the following texmsv:

+= ~+ VJ+ VNL+ VSQe

The matrix elements of H between plane waves K
I I I=k+6 and K'=k+6' and spin s and s have the form

for the kinetic energy

T = (K2/m*) 5rr, &„,;

for the local pseudopotential

V, = S. K-K' V.

for the nonlocal d-like pseudopotential

V„L=QS (K-K') &, B„,, (~K~)

and for the local-potentiaL term,8E„„&Vl 6
e~ =, ~' en

with the charge Fourier components

p~(G) =Q &"-,*n";,.;
G

Equation (V) represents a novel very convenient
way to express derivatives of local potentials in
first-order perturbation. The intrinsic properties
of a particular energy level E„(k) can easily be
analyzed by inspecting the various Fourier com-
ponents of the charge density p,"-(G) and their com-
bination with the corresponding Fourier components
of the potential derivative. The derivative of the
local pseudopotential, with respect to volume can
be obtained from

Vz, (5) =
n e 'o' V(r) dr,

& B„',(i K
i )P, ( oc8s) 5„, for l = 2;

for the P-like spin-orbit potential

V„=QS„{K-K') f „~.B„",,(~@)

K~K
xB„,(iK i) - -I (siois) for /=1,

IKI IK I

where m is an effective-mass parameter introduced
to simulate nonlocality to first order, 7 8 (G) is the
structure factor, and V„(l Gi ) is the local form
factor of atom n. The nonlocal potential V„L is
used only for / =2, the spin-orbit potential only for
l = 1, their respective strength being described by
the two parameters &, and & . P,(cos8) is the
Legendre polynomial of order l for an angle 8 be-~l
tween the wave vectors K and K . The functions
B„,(i K i) = fo 8', (~)j, (K~) r'ide are slowly varying
functions of lKj, depending on the atomic radial
functions R„,, (&) and on spherical. Bessel functions

(jKr). The tluantity (s!ol &) represents the usual
spin matrix element. A, ssuming the eigensolution
for the energy F.„ to be given by the following
pseudo-wave-function:

Q +" (k) &i(k+0) f (5)

where the coefficients &g(k) are spinors, we can
evaluate the contributions to the matrix element in
Eq. (2) arising from the different terms of Eq. (3).
%e find, for the kinetic-energy term,

2~ Ik+6I'
gn gn 2 Ek&nP--3

0

iGi 1 8V (iGI)= —v (5)(1+ (g) ~IGI

by neglecting contributions arising from the crystal
surface. Pressure dependence as well as the tern-
perature dependence of I have been neglected.
For the nonlocal-potential term and the spin-orbit
term we find

(»)

n
&E„" PP,„„„n8V„(K, 2')

respectively, where

n" ("'- v
sn "' '~ ~ B„,(iKI) 8 iKi

iK'l 1 &a„,(iK'I))
B„,(iK'i) 8 iK'l

and similarly for Vso,
In all derivatives of the potentials, the first term

arises from the 1/n scaling factor and the second
term from the functional dependence of the potential~l
on K, K which, in turn, depend on the volume.
Due to its dependence on K- K, the derivative of
the local potential can be written in terms of
charge-density Fourier components. This is not
possible for the nonlocal d-like potential and for the
spin-orbit potential. However, their contributions
to the total deformation potential are small and
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TABLE I. Symmetric Vs and and antisymmetric V& form factors for PbSe and PbTe
and their slopes BVs/BG, BV&/BG as they are used to calculate the pressure coeffi-
cients. Potentials are given in rydbergs and G in units of 27t/a, where a is the lattice
parameter.

G2

Vs

d Vg/dG
d Vs/dG

0, 0590

—0, 050
0.35 0, 18

—0.2064 —0. 0129
—0, 010

—0. 015

12

0. 040

0, 070

0.0688

0. 030

PbTe

Vz
Vs

d Vg/dG
d Vs/

0. 0358

—0. 035

—0, 238

0. 30

—0. 0168

0.19

—0. 0112

-0.030
0, 060 0. 020

0. 0548 0, 0668

therefore can be neglected in discussing the physical
origin of the pressure coefficient Fro.m Eq. (9),
we see that the result depends on additional param-
eters, i.e. , on the slopes SVi(IGI)/Sl Gl. It turns
out, in practice, that the pressure coeff icient is rath-
er sensitive to the values of SVi(l Gl )/Sl Gl and that
the calculations can be used to determine the slopes
of the local pseudopotential very accurately, rather
than to check the quality of values V~(IGI) of the
pseudopotential itself. In Table I, we list the
values of the local pseudopotential parameters t/'s

(I Gl) and V„(IGI) as used in Ref. 7 to calculate
the band structures of Pbse and PbTe together with
the slopes &V~/& I Gl and &V„/& I Gl determined by
fitting the pressure coefficient of the I- gap to ex-
periment.

In Table II, we present the experimental and cal-
culated~ energies for the gap at I- between L(5) and

I-(6) and the energy differences between a secondary
valence maximum Z(5) (see Ref. 3) and the top of
the valence bands L(5). This second valence-band
maximum has been considered by several authors3
to explain anomalies in the experimental tempera-
ture dependence of the fundamental gap at L. The

energy difference I-(5) —Z(5) is found to be tem-
perature dependent', the values given in Table II
are extrapolated to T=O. In Table II, we also list
the pressure coefficients Of the two energy gaps ob-
tained experimentally and calculated in the manner
described above. The experimental values have
been derived from galvanomagnetic measurement,
assuming a band-structure model with two valence-
band maxima (at L and Z) of type Mo. ' From our
band-structure calculations it follows, however,
that Z(5) is an M, critical point as long as its ener-
gy is lower than I (5). This fact might render the
quoted experimental value of the pressure coeffi-
cient of Z(5) doubtful and account for the difference
between experiment and calculations. It is worth
noting that though the introduction of the slope
values BVz/s I 6l added six new free parameters to
the system, the ratio of the pressure coefficients
of the two gaps [L(6) —L(5) and I (5) —Z(5) ] remains
relatively independent of these parameters. We
shall now discuss the origin of the negative pres-
sure dependence of the fundamental gap at L. A

detailed analysis shows that the negative coefficient
arises from the anomalously strong deformation

TABLE II. Experimental (compiled in Ref. 3) and theoretical values for dif-
ferent gaps and their pressure dependence in PbSe and PbTe. E~=EfL(6)] -E[L(5)j
stands for the fundamental gap at L while Eg' =EfL(5)] —EfZ(5)] denotes the energy
difference between the topmost valence band and the M& critical point along Z. Cal-
culated pressure coefficients have been obtained by using the experimental. (Ref.
15) compressibility values of t&= (-2.1+0.2) &&10 6/bar for PbSe and t&= (-2.5+0.2)
&&10 6/bar for PbTe.

E (ev)
Expt. C alc.

E' (eV)
Expt. C alc.

dE /dP
{106 eV/bar)

Expt. C alc.

dE'/dP
{106 eV/bar)

Expt, C alc.

0, 160
PbSe

PbTe

0, 157

0.189

0.17—
0.18 0, 188

0.25—
0.35 0. 344

—8. 6
+0.2

—8. 5 +3.25

—7, 5 +7+0. 5 +3, 25
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L(5) —10.9
PbSe L (6) —9.1 —2. 2

Z(5)

0 25
14 0

0 38

0
14

0

L(5) —10.0 —1.3 59 0 3
PbTe L(6) —9.4 + 1.2 0 83 0

Z(5) —10 2 +1 0 44 0 3

0 38 0
4 0 13
0 53 0

TABLE III. Calculated deformation potentials for vol-
ume changes for the L(5), L(6), and &(5) bands in PbSe
and PbTe. Contributions arising from the kinetic- and
potential-energy terms are indicated separately. Also
indicated are the calculated characters of the correspond-
ing wave functions in terms of atomic angular functions.

Angular character (%)
~ BE/BQ (eV) cation anion

Ekin +total ~ P ~ P

73 0 2
0 72 0

59 0 3

faster with pressure than do P-like states. Applying
these arguments to PbSe and PbTe, we expect the
L(5) valence level to be more s like (and less p
like) than the L(6) conduction level. Calculations
done by angular projectionv confirm these ideas;
the fractional theoretical values of s-, P-, and d-
like character on cation and anion are indicated in
Table IG.

III. TEMPERATURE COEFFICIENT

In a similar approach to the pressure case which
gives Eg. (1), the change of an electronic level
with temperature under constant pressure can be
written

potential of the L(5) valence level.
Separating the contributions arising from the

kinetic energy term and the potential terms, we

note the dominant role of the kinetic-energy part
(see Table III). Its contributions, however, are
quite comparable for valence and conduction bands
in PbTe and to a somewhat less extent in PbSe.
Analyzing the potential contributions in the spirit
of Eqs. (7) and (9), we find that BV~/BQ is largest
for IGI2=8 and has a negative value. For smaller

I
6l' values, V~(l Gl ) is negative and cancels with

the second term arising from the positive slope;
for larger I Gl' values both, Vz(l Gl ) and the slopes
become smaller. V~( I GI) therefore changes most
with volume for lGi values where the form-factor
curve changes sign; translated into real space, this
means that volume changes are felt by the electrons
mostly through oscillations with wavelengths of the
order of interatomic distances. With this result,
we can approximate the potential contribution by

„(~Gt 2 8)
B Vi( I G I

= 8)

indicating that sign and magnitude of p"„-( I G I
= 8)

determine the effect of the potential on the pressur~
coefficient. This term adds to the negative kinetic
term, if p" (IGI = 8) is positive, and therefore in-
creases the absolute value of the pressure coeffi-
cient of the energy level, and it subtracts from the
kinetic-energy term if p-„"(I G I

~ = 8) is negative. As
mentioned above p„(1G12= 8), or more generally
pf" ((Gal ), where I GO I~ is about the zero in the form
factor curve, corresponds to charge-density fluc-
tuations with wavelengths comparable to interatomic
distances. Positive values of p"„-(I GO I ) pile up
charge &t the atomic sites and therefore correspond
to s-like states; negative values of p"„-()Go i ) pile
up charge betn~ee~ the atoms and are found in P-like
states (we choose the origin at an atomic site).
This analysis shows that for approximately equal

kinetic energy, s-like states increase in energy

Bg„180 BE„BE„
BT~ QBT~ BQ ~ BT ~' (13)

The net change of E„arises from two contributions:
an anharmonic-lattice part given by the product of
the thermal-expansion coefficient n = (1/3&) (BQ/
B&)z, and a deformation potential 3&(BE„/BO)z, ,
and from an electron-phonon interaction term (BE„/
BT)». The first term can easily be computed,
knowing the deformation potential &BE„/B& from
the pressure coefficient calculations (see Table III)
and the thermal-expansion coefficients e from ex-
periment. The thermal-expansion coefficients
are increasing functions of temperature up to abouf.
150'K where they reach the constant. value of n
=2&&10 '/'K for both PbSe and PbTe. Thus, with
the calculated deformation potentials of Table III,
we find that the gap at I- opens up due to the ther-
mal-lattice expansion, with a linear coefficient of
(BE,/BT) „=1.8&&10 ' eV/'K for PbTe and (BE,/
BT)~=2.3x10~ eV/ K for PbSe for temperatures
above 150 'K.

These values contribute about one half to the total
experimental-temperature coefficient (BE~/B T),„„
=4. 3& 10 4 eV/'K for PbTefortemperaturesbetween
150 and 450 K, and to (BE,/B&),„„=4. 4&& 10 4 eV/
'K for ' PbSe for temperatures between 150 and
700'K. Above 450 and 700'K, respectively, the
measured energy gaps become independent of tem-
perature. For this region, there is experimental
evidence' that the second valence-band maximum at
Z takes over the role of the top-most valence band
at these temperatures and that it moves parallel to
the first conduction band L(6) with further increasing
temperature. On the basis of the Debye-Wailer
theory, this model would suggest that the character
of the Z(5) states resembles the character of the
L(6) states, which is not found in our calculations
(see Table Ill). The experimental findings~ therefore
seem to suggest that the temperature dependence
of the Z —I- gap cannot satisfactorily be described
by the Debye-Wailer theory.

We shall now discuss possible approximations
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to the electron-phonon term of Eq. (13). Following
the usual method' to describe the effect of lattice
vibrations on the electronic band structure, we
write the energy of an electronic state as a function
of atomic displacements 6R, , where l labels the
unit cell, and n labels the individual atom within
this cell. If we displace each atom by 6R, „, we
can write the Hamiltonian H for the energy change
caused by the displacement as follows:

a'=PP [V(~-R, „-HR,,.)- V(~-R, „)], (14)
l 0.

l ~or expanding H in powers of 6R, , we get

ff'=gg [8R, „~V(r—R, .)

1+AIR, „'&R, V ~ VV(Y —R, „)+» ~ ~ ].
The change of energy, accurate to second order in
the displacement, is then given by

g (n, k IV, Vin, 0')(n', O'IV, Vin, 0)
Z„(k) —Z„, (k')+@~,

X 5R~ e SR' p g

for an arbitrary set of atomic dlsplacements 15R( j'.
We now assume that the temperature-dependent en-
ergy shift d, E„(k, &) is obtained by thermally aver-
aging over the products of the atomic displaeements.

The first term, which is a first-order perturba-
tion term of a two-phonon process, corresponds to
the instantaneous emission and absorption of two
phonons (i.e. , of the same phonon if thermal aver-
age is assumed). It has been shown by Brooks and
Yu" that contributions from this term ean be ob-
tained by introducing a temperature-dependent De-
bye-%aller factor e " into the band-structure cal-
culation. This procedure, however, ean lead to
serious errors if nonloca/ pseudopotentials are used
in the band-structure calculation. The energy of
an electronic level at T = 0 in the presence of a
local and a nonloca/ potential ha.s the form

E„(k, 7' = 0) =g ~o," (k) ~"-(k)
g Qt

g &.(6-6') [V:(IG-6'I)

(18)

where &g(k) are the eigenspinor components of the
state. For finite temperature, the structure factors

Ip
g8 (6 —6 ) are multiplied by the Debye-Wailer factor

exp[- h(6 —6 ) (&R3 r)], which is e(luivalent to re-
placing V~ and V„~ by

VT = V~ exp[- 2(6 —6')~(5R2 z)],

VNL= VN L exp[- k(6 —6 ) (~R„,r) ],

respectively. Since V~ depends only on the differ-
ence (6 —6 ), the energy can partially be written
in terms of charge Fourier components p"-(6),

Z„(k, T) =Z„,.+Q p,"-(6)Q S.(G) exp(--'~@'(~R', ,))V: (I Gl). 2 &-*, (k) ";(k)
G G, Ol

&&+ S„(G—6 ) exp(- -',
i 6 —Gi (5R, r) )V"„L(6,6,k). (18)

As can be seen from Eq. (18), the inclusion of a
Debye-%aller factor merely damps the higher
Fourier components of the local potential V~(IG ~),

whereas it destroys the angular character oi the
nonlocal scattering potential VN „(6,6, k) by intro-
ducing an additional angular dependence through the
factor exp(- I GI I 6 I (R~ r) cosH), where H is the
angle between G and G . In practice, this result
ean lead to serious errors; e.g. , a nonlocal d-like
potential which has been introduced into the T = 0
band-structure calculation to control the position of
higher d-like bands may at finite temperature op-
erationally affect states which have no d character

at all. In the calculation of the band st.ructures of
PbSe and PbTe at finite temperatures, we therefore
only included Debye-WaUer factors into the local
potential. With regard to the d-like nonlocal poten-
tial used in the band-structure calculation, this
procedure does not introduce significant errors
since the states at the L or Z gap contain only little
d-like character. For the nonloeal spin-orbit po-
tential, we have assumed that since it is of short
range, it should, on the basis of the Born-Oppen-
heimer approximation, give only small contributions
to temperature-dependent energy corrections aris-
ing from lattice vibrations. Thus considering only
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BE„(k) ~ BE„

» ~n B(5R )
(20)

in order to emphasize the different contributions
from different atoms n. The Debye-Wailer "de-
formation" potentials BE„/B(5R') are listed in Table
IV. Only contributions for I G I

~ ~ 16(2w/a) have
been considered. Though the quantity I GI V(l 6l)
is still important for higher I Gl values, their net
effect on the final temperature coefficient is small,
due to the drastic decrease of p"„-(6) and cancellation
effects through the atomic-structure factor. The
main contribution arises from the G=(200) and the
G =(222) sets of plane waves. The cutoff at I G I~

= 16(2w/a)~ therefore does not considerably influence
the calculated values of the temperature coef-
ficients. Combining these calculated values with the
experimental and extrapolated values' of E»= 1.1
x 10 4 A~/'K and F~, = 0. 59x 10 ' A2/'K for PbSe,
and F» = l. 17x 10 ' A2/' K and Fr, = 0. 65 x 10 4 A2/
'K for PbTe, we obtain the following temperature
coefficients for the gap at J:

BE,/BT~»= —3.6x10 eV/ K for the PbSe

BE,/BT~ »=+2, lx 10 ' eV/'K for PbTe.

Adding these results to the anharmonic lattice con-
tribution, we find that the gap in PbSe closes with
temperature with a coefficient of —1.3x10 4 eV/ K

TABLE IV. Calculated Debye-%aller deformation po-
tentials for lattice vibrations for the 1.(5), L(6), and Z(5)
bands in PbSe and PbTe. Contributions arising fromcat-
ion and anion are indicated separately. The listed val-
ues have to be multiplied by the individual mean-square
displacements to give the energy shift caused by lattice
vibrations.

PbSe

PbTe

I. (5)
L, {6)
~(5)

I.(5)
I.{6)
&(5)

BEn
B (Bft~)

Pb

2. 0
6. 8
0.4

1, 1
11.1

0

Se or Te

10.8
—4, 2
14.5

12.2
—2. 7
14.5

contributions from the local potential, we can ex-
press the change of energy with temperature due to
the Debye-Wailer term in first order,

=--', Q p";(G) I
Gl'2 S.(G) V".(I Gl) F. ,

Dm 0 Q

(19)
where we assumed the linear temperature depen-
dence of (5R„,r) = TE . Equation (19) can conve-
niently be written

and that it opens in PbTe with a coefficient of +3.9
x 10 ' eV/'K. These values have to be compared
to the experimental results of (+4. 4 +0.2)x 10 4

eV/' K for PbSe and (+ 4. 3 s 0. 2)x 10 4 eV/' K for
PbTe. While for PbTe the results agree reasonably
for PbSe, even the sign of the temperature coef-
ficient cannot be reproduced.

It is interesting to compare these calculated coef-
ficients to some erroneous values of BE,/BTI»,
which would be obtained, if nonlocal and/or spin-
orbit potentials are also scaled by Debye-Wailer
factors. The inclusion of the spin-orbit contribu-
tion would raise the coefficients by (100-200)%,
whereas the inclusion of the nonlocal contribution
would lower the coefficients by about 100/o of the
value obtained from the pure local contributions.
This example indicates the scale of errors arising
at incorrect use of Debye-Wailer factors.

The Z(5) —L(5) energy difference is found to be
only weakly temperature dependent with a coeffi-
cient of about I x 10 4 eV/'K for both salts which is
not in agreement with the previously mentioned ex-
periments. ' Before we analyze the origin of the
difference between the calculated values of BE,/BT
for PbSe and PbTe, let us inspect how the sign of
the temperature coefficients could be changed as
a function of (F,). Using the values of Table IV
for the deformation potentials, we find for PbSe
that BE~/BT &0 if

(5Rz b. r) & 2
(5RS „r)

and for P bTe that BE~/B T & 0 if

Pb. T) &1
(5R&. ,)

Even though the measured and extrapolated' and
calculated" values of (5R2 P show large fluctua-
tions and uncertainties, it seems very unlikely that
(5R~p~ g can exceed (5RS, r) by a factor of about
3. 5 to give the correct temperature coefficient.

Let us now analyze the difference between the
temperature coefficients of PbSe and PbTe for given
values of (5R~ r). To do this we examine valence
L(5) and conduction I,(6) bands separately. In both
compounds the I (5) valence bands move up with
temperature with about the same coefficients of 8. 6
x 10 4 eV/' K for PbSe and 9. 1 x 10 4 eV/' K for
PbTe. Differen"es appear in the L(6) conduction
bands; both move up with temperature but at very
different rates: 11.2x10 4 eV/'K for PbTe and only
5. 0x 10 ' eV/'K for PbSe. This difference orig-
inates (about 80%) from the lead contributions,
which renders the uncertainty in the determination
of the Se mean-square displacement relatively un-
important. From Table III, we see that I.(6) is
pure P like around the lead atoms with 72% and 83/o
for PbSe and PbTe, respectively, of P character in
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the wavefunctions. All these differences have their
origin in the band structure, or rather in the band
ordering. While in PbSe the lowest conduction
level, which has L, symmetry including spin-orbit
interaction is derived from a L2 level, in PbTe the
L6 conduction band is derived from a I-, level.
Moreover, the second L6 bands at higher energies,
which in PbSe is derived from I.3, and in PbTe from
J-~, show approximately reversed temperature coef-
ficients. We can thus conclude that the different
conduction-band ordering in PbSe and PbTe is re-
sponsible for the different signs of the Debye-Wailer
temperature coefficient of the gap. On the other
hand, the different band ordering in the two com-
pounds has been shown7 to be the only possible
ordering to account for the very different effective-
mass anisotropies found experimentally for PbSe
and PbTe.

We like to add that earlier calculations6'" of the
temperature effect on the band gap, based on band
structures with "PbSe band ordering, " also gave a
positive coefficient. We believe that this wa.s due
to the use of different local pseudopotentials and to
the inclusion of nonlocal and spin-orbit terms into
the Debye-Wailer-type calculation. Since the pres-
ent band structures can be considered to be highly
accurate, e.g. , they accurately reproduce gaps,
effective masses, photoemission data, 7 and various
optical measurements in an energy range from 0
to about 20 eV, ' we may conclude from our results
for the Z —I- gap in PbTe and for the PbTe and PbSe
comparison of the L gap, that the effect of tem-
perature on electronic levels is not sufficiently de-
scribed by the Brooks-Yu" theory.

To extend the treatment of the effect of finite tem-
perature on electronic energy levels, we go back
to Eq. (15) and focus on the second term in the per-
turbation series. This term, introduced by Fan
corresponds to the scattering of an electron in
state ~k, n) into another state Ik', n') by emitting
or absorbing a phonon of wave vector q= k' —k+ G"

followed by the reversed process. If k' —k falls
outside the first Brillouin zone, umklapp processes
with wave vector 6" have to be considered. In his
original paper, Fan only retained scattering terms
with n =n' (intraband terms) with the argument, that
the energy denominator in (15) would be large
enough to make the interband terms with n cn' neg-
ligible for the semiconductors he considered. With-
in this approximation, the Fan term always de-

creases the gap and thus would only deteriorate
the situation for PbSe. In the lead salts, however,
the band gaps are relatively small and as already
pointed out by Keffer et al. , the (positive) inter
band terms might overcompensate the (negative)
&ztxaband terms. The importance of Fan terms
in the lead salts has also been discussed by Marti-
nez.

Here

[ ( ~Q, i) (Q- )i;(IQ-G~)p„"-„'(Q-G).
(22)

M=k' —k= Q+ 6" . (23)
P'

G" is a reciprocal-lattice vector such that Q falls
inside the first Brillouin zone, &@ is the phonon
frequency of the mode with wave vector Q and po-
larization j, M is the atomic mass of atom n, N
is the number of unit cells per crystal, and
e(n IQ, j) is the polarization unit vector of atom o
for the mode Q, j. The electronic structure enters
Eq. (22) through the structure factor 8 (G), the
local pseudopotential VI, (~ Q —G ~), and through the
Fourier components of the "generalized" charge
densities

p"„-"„-,(Q- G)=+ e,"-'. (k')e"-„„5(k) . (24)

Normal (G"= 0) and umklapp (G" c 0) processes are
treated the same way by Eq. (22), with the addi-
tional requirement that Q has to be determined by
Eq. (23) for a given pair k, k'.

The thermal average of the self-energy equation
(21) can be obtained by thermally weighting each
phonon mode individually. The systematic evalua-
tion of (21) requires a knowledge of the electron
and the phonon spectrum, including eigenvectors
over the entire Brillouin zone. Approximate solu-
tions could be obtained by sampling the Brillouin
zone with a grid of k points similar to density of
states calculations. ~ Because of the very involved
nature of this kind of calculations, we present here
only some specific examples which already exhibit
trends in comparing PbSe to PbTe. We thus have
calculated matrix elements for k = k' (intxavalley)
and for scattering from one L point to another non-
equivalent I point (inte~valley), 13ecause of the
energy denominator in Eq. (21), it is sufficient to
include the three topmost valence bands which have
even parity, and the lowest three conduction bands
which have odd parity at I.. For both cases (int~a
and intervalley scattering), the contributing phonon

Expanding the atomic displacements 6R, in
phonon coordinates and considering the Bloch char-
acter of the electronic wave functions, we can
write the second term of Eq. (15) as

~Mo"',.(k, k')I'
Z Z , (-,, , (,-, )

, (21)

where we have neglected the phonon energy in the
energy denominator and also occupation effects,
and where the electron-phonon matrix elements for
scattering involving one mode are given by
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TABLE V. Integrated deformation potentials Z as de-
fined by Eq. (25) for intra- and intervalley scattering on.
optical phonons in PbSe and PbTe. For Q & 0 {interval-
ley) scattering the contributions arising from longitudinal
and transverse mode scattering are indicated separately.
Results are also separated according to mode A (only Pb
atoms move) and mode B (only Se or Te atoms move)
scattering.

Pbse

PbTe

Z (eV/A2)
k' = k {intravalley)

(interband)

Z(L5) —37
Z(r. ,) 68

Z(I.,) —28
Z(I.,)

Z (eV/A2)
k' = k —(100) (intervalley)

Lo ngitud inal
A B
—3 —200

3 200

—2 —41
3 37

Transverse
A B
—5 —38

4 51

—4 —20
5 23

modes have odd parity, if k and k' are exactly at
the high symmetry points L and I ', respectively.
Due to these selection rules, AE is always posi-
tive for k'=k (intravalley) and k'=k —(1, 0, 0)
(intervalley). If k' is slightly off the high symmetry
points, the selection rules are relaxed and hE de-
creases. Let us explore the question of which pho-
nons are involved in the Q= 0 (intravalley) and

Q= (1, 0, 0) (intervalley) scattering processes. For
Q= 0, the anions and cations move in counterphase
with amplitudes weighted by the inverse square
root of their respective masses. All three optical
modes (one longitudinal and two transverse modes)
can be treated identically in the electronic scatter-
ing matrix elements, even though their energies
differ considerably from each other for QWO.

Since Q= 0, the required pseudopotential-form fac-
tors VL((Q —6() are those used in the band-struc-
ture calculations. For the intexvalley scattering
Q= (1, 0, 0), there are six phonon modes (two lon-
gitudinal and four transverse) available. These
modes involve the motion of only one atom at the
time. We therefore can classify the modes into
A modes (only the Pb atoms move) and into Bmodes
(only the Se or Te atoms move). If k' is not exact-
ly at L' but slightly off, the required phonon to
scatter from k to k' can still be approximated by a
pure X(1, 0, 0) phonon. Since Q= (1, 0, 0) is not a
reciprocal-lattice vector, we need to interpolate
and to extrapolate the functional form of Vz((6 ().
This introduces some arbitrariness, especially for
higher arguments [the results are proportional to
Q V~(IQ'I)]. However, in comparing the results
for pbSe and for PbTe, these effects should be un-
important. In Table V, we list some typical de-
formation potentials Z obtained from intxavalley
and i~te~valley scattering. The values Z are de-
fined for given k and k' through the relation

((nk(H'(n'k') (~"() ~ E„(k)-E„,(k')

where

1
M 2[i(fpb™seor Te]'

N is the number of unit cells per crystal scaling
AE„(k) to the contribution arising from one phonon
mode, and &z is the phonon frequency. The values
of Table V are for k and k' at the exact high- sym-
metry points. If we move k' by (b, k'( =0.05x2m/a
away from L', the values for Z typically decrease
by a factor of 5-1o. These preliminary calcula-
tions show very interesting trends: (a) interband
(n an') contributions are strong and may lead to
positive temperature coeQicients for PbSe and
PbTe; (b) intervalley [k'=k —(100)] scattering on
longitudinal X phonons can be the predominant
scattering mechanism. The main contributions
arise from scattering over the gap L(5)-L'(6);
(c) B-mode scattering matrix elements (the anion
vibrates, the cation is at rest) can exceed the A-
mode scattering matrix elements by one order of
magnitude; (d) contributions from scattering on
t~ansve~se modes are appreciable, thus indicating
the importance of umklapp processes. The mag-
nitude of transverse mode scattering measures the
nonuniformity of the electronic charge density; (e)
effects are always stronger in PbSe than in PbTe;
in particular, the longitudinal B-mode scattering
in PbSe exceeds the equivalent scattering in PbTe
by a factor of 5. This might indicate the impor-
tance of Fan-type electron-phonon scattering in
PbSe as compared to PbTe; and (f) absolute values
of sE/sT for intervalley Fan-type scattering can
be estimated to be of the order of 10 4 eV/ K, based
on known phonon frequencies and on the variation
of the calculated deformation potentials as a func-
tion of k'.

IV. CONCLUSIONS

The pressure coefficient of the smallest gap at
L in PbSe and PbTe has been calculated on the
basis of recent highly accurate pseudopotential
band- structure models. ~' The experimental val-
ues for (SE,/SP)T can be reproduced, assuming
reasonable slopes of the form-factor curves t/'L

('IG I). Due to partial freedom in choosing the
slopes s V~ ( I 6 I )/ s ( 4(, the absolute value of the cal-
culated pressure coefficients cannot be taken as very
strong tests for the band-structure models; the sign
of the pressure coefficient, however. , is strictly de-
termined by the band-ordering at the gap. Combin-
ing the deformationpotentials with experimental
thermal-expansion coefficients, the anharm onic



658 SCHLUTE R, MARTINE Z, AND COHEN

part inthe temperature coefficient (BE /sT)p canbe
evaluated; it is positive and is responsible for about
50% of the total experimental temperature coefficient.
The remaining contributions, which are due to the
interaction of electrons with lattice vibrations, are
analyzed by perturbation theory up to second order
in the lattice vibrations. The inclusion of a Debye-
%aller factor alone yields reasonable results for
the I. gap in PbTe but fails for the Z —I, gap and
predicts an opposite sign in the temperature coef-
ficient for PbSe. Detailed analysis of the origin
of the different energy shifts shows that the in-
verted conduction-band structure of PbSe as com-
pared to PbTe is responsible for the sign change
in the Debye-%aller temperature coefficient. Un-
certainties in the experimental mean-square dis-
placements used are unlikely to cause the sign
change. The contributions to the I, gap from Fan-

type electron-phonon scattering terms are calcu-
lated for intxavalley (Q= 0) and for intervalley
[Q= (1, 0, 0)] scattering. In spite of their very pre-
liminary nature, these calculations seem to indi-
cate the tendency of Fan-type scattering to open the
L gaps in PbSe and PbTe. At this point, no anal-
ysis has been made for the Z -1. gap. The calcu-
lations also indicate that the effect is stronger in
PbSe than in PbTe, which would be consistent with
the need to compensate the negative Debye-Wailer
result for PbSe. Quantitative conclusions, how-

ever, can only be drawn on the basis of explicit
calculations including thermally weighted scatter-
ing into states over the whole Brillouin zone.
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