
PHYSICAL REVIEW B VOLUME 12, NUMBER 2 15 JULY 1975

Conduction in the relaxation regime

G. H. Dohler~
IBM Thomas J. Watson Research Center, Yorktown Heights, ¹wYork 10598

H. Heyszenau
Institut fiir Theoretische Physik, Universitat Hamburg, D-2 Hamburg 36, Germany

(Received 15 July 1974)

fore introduced the distinction between "lifetime
semiconductors, " characterized by a minority
carrier lifetime exceeding the dielectric relaxa-
tion time, i. e. ,

I. INTRODUCTION

Though there has been extensive experimental
and theoretical work on the transport properties
of semiconductors during the past decades, most
of the efforts have been concentrated on the highly
conducting materials which are of the highest tech-
nical importance. Only recently, semiinsulating
materials have drawn wider attention, especially
due to the increased interest in amorphous and

organic semiconductors and in connection with
switching phenomena.

Whether the bulk conductivity of a semiconductor
is low or high depends only on the concentration
and on the mobility of the mobile electrons and
holes. However, additional information about the
free-carrier recombination lifetime is needed for
solving conduction problems whenever there are
local deviations from the bulk equilibrium carrier
concentration. The finite lifetime of the free car-
riers is of crucial importance for the conduction
behavior of semiconductors, since it opens up a
second channel for the change of the local free-
carrier concentration. The decay of a small local
disturbance, say an excess electron concentration
An, is characterized by two time constants (see
Fig. 1): (a) Due to their mobility, the excess car-
riers move away into regions of lower concentra-
tion. The time constant for this process is the
dielectric relaxation time 7D, defined by the ratio
of the dielectric constant x and the conductivity a,

rn =g/4no (l. 1)

(1.2)TQ TD

and "relaxation semiconductors, " where recom-
bination-g neration processes are dominant due
to a carrier lifetime, short compared with the
dielectric relaxation time, i. e. ,

Tp& TD .

In conventional semiconductors, the relation
Tp ~& TD is fulfilled and is usually assumed in theo-
retical treatments. This means that a carrier
lives very long as compared to the time needed to
level off a disturbance. It is evident that the re-
quirements for vp» 7D to hold is that the minority
carriers have little chance of recombination and
that the carrier mobility must be large. In amor-
phous and in semiinsulating crystalline semicon-
ductors with short free-carrier lifetimes, these
conditions will usually not be fulfilled. The re-
lation may even be reversed so that case (1.3) may
be satisfied.

In Sec. II, we suggest that the defining condition

"Relaxation Case" "Lifetime Case"
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(provided that diffusion may be neglected). (b)
The other process is recombination with carriers
of the other type, characterized by the recombina-
tion lifetime 7'p This process tends to establish
local thermal equilibrium.

The conduction behavior is expected to be quite
different depending on which one of both decay
processes is dominant. van Roosbroeck' there-
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FIG. 1. Reaction of a "relaxation" and a "lifetime"
semiconductor to a local disturbance.
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The conduction behavior of ideal relaxation semiconductors is studied in the general case with trapping

included. The investigation of the range of validity of the relaxation concept leads to a more restricted

defining condition for the relaxation regime. With increasing deviations from the ideal relaxation regime, the

conduction approaches gradually the well-known behavior of conventional (lifetime) semiconductors. In

particular, it is shown that the trapping conditions required for "recombinative space-charge injection*' are

incompatible with thermodynamic steady-state requirements.
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(1.3) for "relaxation semiconductors" be replaced
by a new one defining the "relaxation regime. "
This definition stands in closer connection to the
characteristic appearance of the particular conduc-
tion behavior. In Secs. III-VI, we treat the con-
duction problem in the ideal relaxation regime
Tp 0 and p, —0 for an arbitrary trap distribution.
The solutions differ in essential points from those
given by van Roosbroeck gt al. In Sec. VII, the
limitations of the relaxation regime are worked
out. Finally, in Sec. VIII, it is shown that any
solution for finite lifetime and mobility lies in be-
tween those for the idealized relaxation regime
and those for the idealized lifetime case 7p ~ and

LLI
~ OQ

II. RELAXATION REGIME

The relaxation case was originally defined by
van Roosbroeck' by the relation (l. 3). In sub-
sequent work, various authors ' interpreted and
used this relation in rather different ways which
led to the fact that there are now several distinct
definitions of the relaxation case. The reason for
this is that (1.3) alone does not define a particular
regime of conduction behavior independently of
temperature and applied external field. In order
to make this point more specific, it seems, there-
fore, worthwhile to give here a more exact defini-
tion ~

If there is a gradient in the equilibrium carrier
concentration (e. g. , due to carriers injected by
the electrodes or due to a doping gradient in a p-e
junction), then there will always be a splitting of
the Fermi level (t) into (IuasiFermi levels (t)„and
(t)~ for electrons and holes, respectively, whenever
an external field is applied. The magnitude of this
splitting depends on the ratio rn/v, and on the elec-
tric field. If TD/70 is very small as in a normal
semiconductor, this splitting will be rather large
even for small fields. If, however, vn/ro is
large —which is the case in our context —then the
low-carrier mobility and their short lifetime both
cooperate in maintaining local equilibrium, and
the splitting is much smaller for the same field.
We now define the "relaxation regime" by the con-
dition that the splitting be much smaller than the
thermal energy throughout the specimen, i. e. ,

throughout the specimen as the basic relation in
discussing the ideal relaxation regime.

III. DEFINITIONS AND BASIC RELATIONS

and

gare(X) -lc)(X) j (3.1)

P(~)= J &(&)(& -f(& ((x)) f&
E

g g"a I:(t) (x) -$(x) ] (3.2)

respectively, where (j)(x) is the actua. l local-Fermi
level, f (e —(j)) is the Fermi distribution function

y( y) (e))(6 (b) + I )-1 (3.3)

and P= I/kT. The intrinsic free-carrier concen-

Ec Ec
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As the relaxation regime pertains to amorphous
as well as to crystalline semiconductors, we will
try to keep the model as general as possible.

We assume the existence of a mobility gap, i.e. ,
the mobility is taken to be ILt,„above the energy E„
IL(~ below E„, and zero between the mobility edges
E, and E„, according to Fig. 2(b). The density-of-
state curve N(e), in principle, may have any arbi-
trary shape, as shown in Fig. 2(a). The Fermi
level in the unmodulated bulk is &f&0 E„. E„, and

(t)p depend on the coordinate x along the specimen
if contacts are applied.

The concentration of mobile electrons and holes
at temperature T is given by

n(x) = f iv(t)y(c —( (x)) da
C

~(j)„(x)—(j),(x)
~

«pT for all x. (2. 1)

This means that the deviations from local thermal
equilibrium are negligible in the relaxation regime.
As a consequence, one has (a) (b)

n(x) p(x) =n', for all x.

We will use the approximation

y„(x) = y, (x) = y (x)

(2 2)

(2. 3)

FIG. ~. Generalized model for a relaxation semicon-
ductor. Density-of-states curve N(c) may have any
arbitrary shape. $0 is the Fermi level in the unmodu-
lated bulk. Mobilities for electrons above E, and for
holes below E„are assumed to be constant.
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tration n,. and the intrinsic Fermi level P(x) are
defined by

(N N ))/2 -8(Eq Eq)-I 2
i c v (3.4) Ec Ec

and

q(x) =-,' [Z, (x)+E,(x)] ——,
' P' ln(N, /N„), (3. 5)

with

X, = X ~ e"'-~"d~,
E

and

(3.5)

Y p

Ey

N =
V

V

N(a) e~(s~ "de . (3.7)
(a) (b)

IV. CURRENT AND SPACE CHARGES

j„=e p,„nE+eD„grade,

jp = e pp pE —eDp gladp.
(4. 1)

Using (3.1), and (3.2), and the Einstein relation
D„= p„/Pe, and D(, = p~/Pe for the diffusion coef-
ficients, one obtains for the total current j =j„+j&

j(x) (+ e()( )- )) ()~ e-8(5&)) ek
i n P ax

1 Bp= —(T(x) —.
~X

(4. 2)

If thermal equilibrium is assumed at every point,
then both the conductivity o'(x) and the space charge
p(x) are uniquely determined by the local value of

Q (x) —(t (x).
The current consists of a drift and a diffusion

term

appears. Equation (4. 5) shows that p(x) is a mono-
tonic function of &f&(x) —P(x). The space-charge
density is negative if (t) (x) —)t)(x) & ((t) —(t))0, and
positive if p(x) —r/i(x) & (P —P)o.

From Poissons equation

8'y/sx' = 4)re p(x)/x, (4. 5)

it follows that the bands are curved downwards for
(t) (x) —g(x) & (())) —P), and upwards for (t) (x) —(t)(x)
& (e c)'-

The space-charge density p(x) depends on the
shape of N(e), on P(x), (t)0(x), and on temperature.
For materials with a high density of states in the
region between P, and (t), the Expression (4. 5) re-
duces to

FIG. 3. Density of states for special models. (a) Con-
stant density of states in the mobility gap, (b) linear band
tails.

j(x) =j = const, (4. 3)

it follows that this slope is inversely proportional
to the local conductivity for a given external cur-
rent j, that is,

Qrh j [ + (~ cB(()-0) + p e-()(I-0))]-(
~X P (4. 4)

If (t) (x) —g(x) differs from the unperturbed value

(P —g)o, then the local space-charge density

p(x) =-e deN(c)
~g OO

It is clear from Eq. (4. 2) that the driving force is
(1/e) (S(t)/Bx), the slope of the Fermi level instead
of the electric field E = —(1/e) (BP/Sx) if diffusion
is included.

From the continuity condition for the steady
state

e (~)

p(x) = —e N(&) de,
. ,(x)

(4. 7)

for low temperatures. In this case, p is practi-
cally determined by the change in the number of
carriers in deep localized states and it is nearly
temperature independent up to relatively high tem-
peratures. For a model with constant density of
states No in the mobility gap, as shown in Fig. 3(a),
one gets

y (x) = eN, [(t (x) —-y, (x)] . (4. 3)

If, however, N(E) is nonzero only in the band tails
and outside the mobility gap, then p depends on the
number of thermally excited carriers and therefore
shows a strong temperature dependence for a given
value of (t) —(t)0. For a model with linea, r band tails,
as shown in Fig. 3(b), the space-charge density
becomes

x [f(e —(t) (x)) -f (e —(t) 0 (x))] (4. 5)

p(x) = —e n, (sinh[ P(y —(t))] —sinh[ P(())) —y)0] ],
(4. 9)
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for q, & (y, go) & &„ where (p —P)o and n, are tem-
perature dependent. Therefore, the width of the
space-charge region near an electrode also can
be strongly temperature dependent in this case,
while it is nearly temperature independent in the
above mentioned case.

V, CURRENT-VOLTAGE CHARACTERISTICS

Equations (4.4) and (4. 6) form two coupled dif-
ferential equations

and

B(f& j
sx o((f y)— (5.1)

8 g
~X2

= 4vex p(Q —P), (5. 2)

determining &f&(x) and g(x), if proper boundary con-
ditions are imposed. The natural boundary con-
ditions are determined by the position of the Fermi
level in the electrode material relative to the band
edges of the bulk, and by the externally applied
voltage. Equations (5. 1) and (5. 2) then form an
eigenvalue equation for the current j. For numer-
ical calculation, however, it is more convenient
to define j and the position of the Fermi level at the
contacts and to calculate the appropriate external
voltage by a step-integration method. Any arbi-
trary density of states distribution N(&) and differ-
ent electron and hole mobilities may be treated in
numerical calculations without problems. How-

ever, from (4. 2) we see that o(p —g) is always
cosh shaped with its minimum at Q

—P = (—', kT)
x in(p~/p. „), and from (4. 5) it follows that p(Q —P)
must be a monotonic functionof (P —g) with its zero
at Q —g = (Q —g)„ independent of the shape of N(e).
Therefore, the qualitative behavior of the solutions
does not depend very much on either the ratio of
the mobilities or on the actual shape of N(e). For
this reason, we will restrict our discussion to the
case

0' ~ = 2e JILn ~ (5.4)

En most of the rest of the specimen, the conduc-
tivity is exponentially larger and close to the bulk
conductivity

ob„» = om, „cosh[P(&f& —g)o] .
The main contribution to the total resistance

(5. 5)

L
S o (x)dx

0
(5. 6)

(8 being the cross section of the sample), therefore
comes from the region around the conversion point
x„as long a.s cosh [P(P —g)o]» 1 (which always
holds at sufficiently low temperatures), and if the
length of the sample is not too large compared to
the width of this nearly intrinsic region.

For external voltage of less than kT/e, the con-
ductivity o(x) in (5.6) does not deviate appreciably
from the zero-bias case &f&(x) = const. For the con-
tribution of the high-resistivity region around x„
we obtain

o~1 kT $min
x

(5. 7)

and to the two limiting cases of either a high and
constant density of states over the whole mobility
gap, as in our example in Fig. 3(a), or a negligible
density of states over a wide range of the mobility
gap, as in our example from Fig. 3(b).

For discussing the properties of the solutions
of Eqs. (5. 1) and (5. 2), we have to consider the

'appropriate boundary conditions for the different
contact-bulk combinations separately: (i) The most
interesting case is the one where one contact in-
jects majority —and the other one minority car-
riers. For this combination, there always exists
exactly one conversion point x, (see Figs. 4 and

5), where P(x, ) =P(x,). At this point the conductiv-
ity changes from p type to n type and attains its
minimum value

Pn= Pp= P ~ (5.3) with

(4 c'N /x)"'
l (4 - 4)o l

2(2v e'n,
l
sinh[p(cg& —@)o] l

/tc)' ~ '
l (p —g) o l

' '
case (4. 8)

case (4.9).

[5.8(a)]

[5.8(b)]

R cr (T)~ eo' c (5. 9)

The fact that the main contribution to the resis-
tance comes from the nearly intrinsic region has
several important consequences: (a) The apparent
resistance reflects the "intrinsic" temperature
dependence of o,„

in accordance with experimental results found in
amorphous systems. o (b) The work function of the
contacts has little influence on the total resistance
as this is largely determined by the mere presence
of the conversion point. This is also in accordance
with experimental results on amorphous sytsems.
(c) As shown in part C of Fig. 4, the width of the
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FIG. 4. Potential pro-
files and carrier distribu-
tion in an ideal p-type re-
laxation semiconductor
with an electron- and a
hole-injecting contact for
different values of reverse
and forward bias. A rel-
atively small ratio
o.b,&z/om&, = 50 and a length
of only a few times the
space-charge region has
been chosen in order to
get a more detailed pic-
ture of the behavior near
the conversion point x,
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low-conductivity zone increases if a reverse bias
is applied, thus leading to a sublinear current-
voltage characteristic. For very high external
bias, when the low-conductivity zone goes over
the entire length, this again turns into a linear
relation with cr = 0;„, as shown in Fig. '6. This
behavior is in good agreement with experiments
of Queisser et al. For forward bias, the low-
conductivity zone contracts according to part D
of Fig. 4, and one obtains a superlinear behavior.
van Roosbroeck et al. ' also, for this case, obtain
a sublinear behavior by introducing the concept of
a "recombinative space-charge injection. " It has,
however, been shown2'4'5 that this theory leads to
qualitatively incorrect results by neglecting dif-
fusion in the vicinity of x,. Experiments on semi-
insulating GaAs (Refs. 7, 8) also, in this case,
show a clear sublinear behavior. This feature
cannot be explained by the ideal relaxation be-
havior as defined in Sec. II. Below, we will see
that the deviation from the ideal relaxation regime
even tends to make the superlinear behavior more

4
IO

3
b 10

2
b IO

10

I

0 50 100 150 200

FIG. 5. Local conductivity o(x) at zero bias for the
same sample as in Fig. 4.

pronounced. Therefore, other possibilities must
be considered to account for the observed sublin-
earity such as velocity saturation, contact effects,
etc.
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(6. 1)

takes into account the lowering of the classical
ionization energy of Coulomb-tra, pped carriers,
due to a. field eE = B|j/Bx.

(6. 2)

the narrowing of the mobility gap, change of the
free-carrier lifetime for hot carriers, velocity
saturation, etc. If the main contribution to the
total resistance of the sample at low currents
comes from the region near x, as discussed before,
then it is essential to know how the field at the con-
version point eE(x,) = (Bg/Bx)x, influences the mini-
mum conductivity O~j

We only want to discuss briefly the Poole-Frenkel
effect, 9 which might be the most important en-
hancement factor. The Poole- Frenkel factor

l l0 l0

VOLTAGE IN UNITS OF kT/e

I IG. 6. Current voltage characteristic for the same
sample as in I'ig. 4. A, B, C, and D. correspond to
the external voltages shown in Fig. 4.

Additional consequences of the theory which
should be checked experimentally a,re (d) the resis-
tance (not the resistivity!) is independent of the
length of the sample as long as it is dominated by
the zone near x, where o(x) = o; . (e) By applying
an ac field whose frequency is larger than the re-
ciprocal time constant of establishing the steady
state, one measures the bulk conductivity instead
of 0,„.

(ii) If both contacts are minority carrier inject-
ing, then two conversion points exist if the speci-
men is longer than the length A of the two space-
charge regions at the contacts. A depends on tem-
perature, as discussed after Eq. (4. 9), and there-
fore, the two conversion points may disappear as
the temperature decreases. As long as the two

points exist, the I-V characteristic is almost linea, r
for low fields, then becomes sublinear and finally,
superlinear. In the linear and sublinear regions,
the arguments for length and temperature depen-
dence may be applied as in case (i).

(iii) All combinations which do not produce a
conversion point, also do not show a quasiintrinsic
behavior nor the other characteristic features men-
tioned above.

VI. FIELD DEPENDENCE

So far, we have not taken into account the field
dependence of the conductivity. There are various
high-field phenomena which strongly influence the
conductivity, such as the Poole-Frenkel effect,

For Bg/Bx =10 eV/cm and x = 10, the exponent in
(6.1) is of the order of 1 for room temperature. In
a, material with constant N(e) in the mobility gap,
(Bg/Bx)„ is given by I5. 8(a)]. (Bg/Bx)„=10 eV cm
cm ' is obtained for N, =10' cm ' eV ' and Q, —Q

=0.25 eV.
For the given example, o,.„(E) would be increased

by a factor of e as compared to its low-field value,
but o,„(E)/o„„,„still would be 2e '. Therefore, the

region around x, would still dominate the resis-
tance of the sample, and the statements made in
Sec. V remain valid.

From Eqs. (6. 2) and I5.8(a)], we see that & ~NO~

Therefore, o,.„ is always appreciably smaller than

o„„», except possibly in cases with very high den-
sity of states in the gap. In this case, however,
one would expect hopping between localized states
to be the domina, nt conduction mechanism.

VII, RANGE OF VALIDITY FOR THE RELAXATION
APPROXIMATION

So far, we have treated the idealized relaxation
case assuming loca, l thermal equilibrium at any
point of the sample. This not only implies the ap-
proximation that the concentration of free electrons
and holes (8. 1) and (8. 2) can be described in a.

satisfactory way by a common local-Fermi level
&f&„(x) = p~(x) = Q (x), but we also have assumed that
the local-Fermi level Q (x) describes the occupation
probability of any localized state within the mobility
gap [see Eq. (4. 5)]. The validity of this assumption
is of high importance since, in relaxation semi-
conductors with a high concentration of localized
states in the mobility gap, the local charge density
p(x) and, hence, the band bending strongly depend
on the occupation of these localized states.

Our first aim in this section is to show that the
occupation probability of all localized states in the
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mobility gap is described by Fermi levels P, (x)
which have to lie between the quasi Fermi levels
for mobile electrons and holes Q„(x) and Q~(x), re-
spectively. With this statement proved, it follows
directly that a common Fermi level may be used
for all states as long as our defining condition for
the relaxation regime holds. Subsequently, the
limiting conditions for the applicability of the re-
laxation concept will be investigated.

We start from the general case of nonequilibrium.
The continuity equation for the steady state requires
that the difference between carrier generation and
recombination of particles is equal to the diver-
gence of the particle current. This applies for any
energy a,

and

P, =&f&~ for e&E„,

(7. 9)

tremum within the mobility gap, say for e = &0, the
condition (7. 7) could not be satisfied for this ener-
gy. That is, the integrand in (7. V) changes sign
only, if (II),.—Q, does, and it is positive or negative60

definite if P, represents an absolute extremum of
0

Therefore, the absolute extrema of Q, for the
steady state have to lie outside of the mobility gap
where we have j(e) a0 and divj(e) a0, which allows
for a finite value of the left-hand side of Eq. (7 1).
Assuming common values for all mobile electrons
and for all mobile holes, i.e. ,

for e&E,

n«„(a) —n„,(e) = div
(T(e)

(V. 1) respectively, we have

The generation and recombination rates are given
by

n,.„(e)=N(~)[1 -f(~ —y, )]

.x dg g —,X 6. K,
a 00

(7. 2)

and

n...(&) = N(e)f (a —P,)

x dc 1 — & —
q N E Kq„q~~

m 00

(V. 3)

respectively. We have introduced the generalized
Fermi level Q, (x) formally to express the occupa-
tion probability of states of energy & in terms of
Fermi functions

f(e-y, ) =(e"' "'+I) '. (7.4)

0(~-e )
ZU~~ ~i —8 (7. 5)

For energies within the mobility gap, we have by
definition j(e) —= 0; thus the steady-state condition
reduces to

The transition probability n.„..for a phonon assistec
transition from a state of energy E to a state of
energy & is related to the inverse process by the
detailed balance condition

ming&„, Q~}&P, &max//„, Q~} for E„&e&E, ,

(7. 9)
which proves our above statement that p, has to lie
between the quasi-Fermi levels of the mobile elec-
trons and holes. This is an important result, since
relation (7.9) forces the local space charge within
the traps at any point x to lie between the values
obtained from Eq. (4. 5), if P„and P~ a.re inserted
for p(x). In particular, it is impossible that ma-
jority carriers are trapped in excess in a region
where the density of free majority carriers is
smaller and that of minority carriers is larger
than in the unmodulated bulk, Therefore, the re-
gion of "compensating majority-carrier space
charge" at the end of the "majority-carrier deple-
tion zone", as predicted by van Roosebroeck et
al. ,

' does not occur. It should be noted that the
existence of such a space-charge region is of cru-
cial importance in van Roosbroeck's theory of the
forward biased minority-carrier injecting contact
and in his theory of switching. '

We have shown that the error introduced into the
calculation of the local space-charge density by
assuming a common Fermi level for all states is
negligible, if the splitting of the quasi-Fermi levels
for electrons and holes is also. Substituting (II) and
BP/Bx by P„and SP„/Sx, &f&~ and Bg~/sx, corre-
spondingly, in the expression for the current (4. 2),
we see that a splitting of less than kT, i. e. ,

n«, (e) —n„„(a)= 0 for E„&e& E, . (7.5)

x (e@'e 06' —1) =0~- (7. 7)

If now the function Q, would have an absolute ex-

Using the explicit expressions (7.2) and (V. 3) for
the generation and recombination rate and the de-
tailed balance condition (V. 5), we obtain

J dE N(f )RV~ «[1 -f(C —Q~ )]
~ 00

(7. 10)

has no significant influence on the expression for
the current (4. 2). If, however, the splitting in-
fluences neither of the coupled differential equa-
tions for the determination of p(x) and g(x), the
solutions will not be affected if P, (x), P„(x), and
p&(x) are repla. ced by a common value P(x). Wheth-
er the condition (7. 10) (which is identical with our
defining condition (2. 1) for the relaxation regime)



648 G. H. DOHLER AND H. HEYSZENAU

is fulfilled can be decided by looking at the con-
tinuity equation (7. 1). Inserting (7. 2) and (7. 3)
and integrating over the energy from E, to ~ gives
for the electron current, e. g. ,

dsv " =n; d&N & 1—

(v. ii)

Using an appropriate mean value of (P, )„=p, one
can define a free-electron lifetime T by writing
(7. 11) as

-p )/Bx] & kT

div(j / e) (~ /q- )(eo&e && e-a(e„-0)) (v. 12)

Comparing (7. 12) with (7. 11), we observe that r„
depends on P. For mobile holes we obtain, cor-
respondingly,

div(j /e) = (n /r )(e~'" ~' —e~'~ ~&') (7. 13)

Using div j = div j„+div j~ =0, one can eliminate (I().

For sufficiently low splitting I&]&„—P~ I, one gets

PIG. 7. Illustration of limiting condition for the re-
laxation regime (see text).

div(j„/- e) = (n/r„"')(I —e""-'~'), (v. 14)

where

tl/r „=B /(BT& +pT„) = p/T& (7. 15)

is also a function of the local Fermi potential.
T'„" and 7.~"' have the meaning of the lifetime for
free electron-free hole recombination, while the
definition of 7.„and 7~ also includes trapping-de-
trapping processes. With our defining condition
for the relaxation regime (2. 1), we now get a, con-
dition in terms of the divergence of the electron
current from (7. 14),

(7 15)
~x n+P

For the conversion point, where the splitting has
its maximum value, we obtain

&rec 0 « 2kT
C C

(v. iv)

with

r' "'= &.(4 =4)+r.(4 =4) ~ (v. is)

Adr + rec Bc'
i ~X x

(v. 19)

Our condition thus requires that P(x) and g(x)
should diverge from each other by less than kT
over the distance A~ (see Fig. 7).

This result can be interpreted in the following way.
During one lifetime, a carrier near the conversion
point drifts over a distance A~, given by

We are now able to justify why we chose a def-
inition for the relaxation regime differing from
the one given by van Roosbroek'

(i) If (7. 17) is fulfilled, we say that the arrange-
ment consisting of a, semiconductor with electrodes
is working in the relaxation regime. We are not
talking merely about a typical bulk property of the
semiconducting material as in van Roosbroek's
definition (1.2), but rather we are ta, lking about a.

certain working point which also depends on the
electrodes, the temperature, and in particular,
on the external voltage. The typical relaxation
behavior as described above will be observed as
long as the external voltage does not exceed some
characteristic upper limit, which follows from
(v. iv).

(ii) Our requirements on a material for remain-
ing in the relaxation regime up to high-external
fields are low mobility and short free-carrier re-
combination lifetime, as one can see from (7. 17).
van Roosbroeck's defining condition for relaxation
case semiconductors (l. 3) also requires low mo-
bilities and short carrier lifetimes, but it also
includes the bulk-charge carrier concentration,
which does not enter into our more genuine condi-
tions.

VIII. DEUIATIONS FROM THE IDEAL RELAXATION
REGIME

For a qualitative discussion of the deviations
which are to be expected if the relaxation condition
is not fulfilled, it is instructive to consider a p -n
junction or a minority-carrier injecting contact.
It will turn out that any current-voltage curve for
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FIG. 8. Current-voltage curves for minority-carrier
injecting contact, schematically. Solid and dashed lines
refer to the limiting cases of the "ideal relaxation re-
gime" (pv '-0) and of the ideal rectifier, "i.e. , the
"ideal lifetime regime" (p7~'-~), respectively. Real
current-voltage curves (p7 ') finite will lie somewhere
in the shaded fields r and f for forward and reverse bias
depending on the value of ps~'.

finite mobility and lifetime has to lie between those
for the ideal rectifier (v"'- ~, p, -~; i. e. , ideal
lifetime case in van Roosbroeck's terms) and those
for the ideal relaxation case (r"'-0, p, -0) (see
Fig. 8).

In the reverse biased ideal rectifier, there is a
region where the splitting of the Fermi levels at-
tains the highest possible negative value &f&„(x)

—Q~(x) = —leUI, resulting in a strong carrier de-
pletion given by n(x) p(x) =n;'e ~'~ «n~. In the
case of finite lifetime and mobility, however, the
carrier generation reduces the value of P~ —P„ in
the depletion region. Due to the additional car-
riers, the current is higher and does not saturate
any more for high-reverse bias. The ideal relaxa-
tion case appears as the limiting case. In this
case, namely, the generation in the depletion zone
is so high as compared to the carriers moving away
that there is practically no carrier depletion any
more. This means p„—/~=0, and hence, n(x)
&& p(x) = n, From (7.14) we see that any deviation
from the ideal reverse-relaxation regime can only
result in Q„—/~ &0, and therefore, reduced local
conductivity, since the divergence of the particle
current is positive. Thus the highest possible re-
verse current is flowing in junctions with ideal
relaxation semiconductors. Any real current-volt-
age curve for reverse bias will lie in the shaded
region r of Fig. 8, whatever the actual lifetimes
and mobilities are.

In a similar way, one can show that any real cur-
rent-voltage curve for forward bias is characterized
by P„—g~ &0, and therefore, has to lie in the
shaded region f between the ideal-rectifier char-
acteristic (no carrier recombination in the space-
charge region, and hence, P„—P, = leUI) and the
ideal relaxation ca,se (perfect recombination, such
that P„—P~ =0). In particular, it is clear that
deviations from the ideal relaxation regime cannot
be the reason for a sublinear current voltage for
forward bias. "8
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