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Shallow impurity states in InSb in magnetic fields: High-field donor states and acceptor states
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The high-field donor and acceptor states associated with Landau ladders are determined using the effective-

mass approximation. Nonparabolic effects as well as band-band interaction are included in this calculation.
Based on the calculated results, the coexisting feature of the Landau series and Rydberg series is reexamined.
A quantitative comparison with the magneto-optical measurements is made in order to obtain information
about the central-cell correction and nonparabolic effects. Selection rules for optical transitions and Raman
transitions are also derived.

I. INTRODUCTION

The occurrence of small effective masses and a
high-valued dielectric function combine to make
magnetic-field effects on impurity levels in InSb
particularly interesting. Indeed, there have been
a significant number and variety of experimental
studies designed to probe the magnetic field de-
pendence of impurity levels in InSb. ' 7 However,
previous theoretical treatments '~ have been con-
fined to donor impurity states only. In those
works, the Coulombic aspects of the problem have
been emphasized without inclusion of the details
of InSb band structure that are handled in theoret-
ical treatments of magnetic-field effects on free-
carrier levels. ~~'~3 The purposes of this paper
are to include such details of the InSb band struc-
ture in the effective-mass approximation and to
extend the theory to also include acceptor level. s.
Thus, the theory incorporates the nonparabolic and

and the warping behavior of the conduction and
valence bands, as well as consideration of quan-
tum effects due to light- and heavy-hole valence-
band degeneracy. The aim is to test the isolated-
hydrogenic-impurity model treated in the effective-
mass approximation by comparing the results with

magneto-optical data quantitatively.
The organization of this paper is as follows:

In Sec. II, we present the general formalism for
high-field impurity levels. The results of the
evaluation, as well as their comparison with ex-
periment, for donor and acceptor states, are
given in Secs. III and IV, respectively. Because
of the recent upsurge of interest in electronic
Haman scattering in semiconductors, we have also
investigated the impurity-shifted Raman scatter-
ing from Landau levels. A discussion for the
latter is given in Sec. V.

II. GENERAL FORMALISM

In InSb, the conduction- and valence-band edges
311 occur at the center of the Brillonim zone; the
conduction band is doubly degenerate, whereas

the valence band, under spin-orbit interaction,
splits into a fourfold-degenerate heavy-hole-light-
hole band and a doubly degenerate spin-orbit split-
off band.

Following Pidgeon and Brown, ' who first treated
the magnetic energy levels using a modified t,ut-
tinger and Kohn effective-mass method, ~4 we clas-
sify the energy levels for free carriers in a mag-
netic field as Landau g and b ladders associated
with the conduction band, light-hole band, heavy-
hold band, etc. , where loosely speaking, a and b

correspond to "spin-up" and "spin-down" levels,
respectively. Hereafter, we use the notations
g'(N), b'(N), a'(N), b'(N), g"(N), b"(N) for these
levels; the superscripts c, l, It. refer to conduction,
light-hole, and heavy-hole band, respectively.
N represents the quantum number of the Landau
level. Actually, the Landau levels associated with
each hold band contai~ a strong mixture of light-
hole band and heavy-hole band character. We use
a'(N), b'(N) just to indicate the set of ladders
which have wider energy separations, and a"(N),
b"(N) to indicate those with na, rrower energy sep-
aration, for convenience.

Again, following Pidgeon and Brown, «~ we write
a set of coupled effective-mass equations in the
presence of a magnetic field in atomic units

Q(Dqq~ k~k8+IIqpk + —,'S(o;),,,

+ [(o && Vy) p]». /4C'+ c,, fl, ,']f,'(r )

=&f;(r),
where j' runs over the two conduction, two heavy-
hole, two light-hole, and two spin-orbit split-off
band states (j'=1-8). Here eJ. is the energy of
the jth band-edge state; D;&~, II;&. are, respec-
tively, the inverse-effective-mass matrix ele-
ment and modified-momentum matrix element be-
tween band j and j' at 0 =0;
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II/;s-=f f//0(r)[p —(4C') '(V'Vxo)]f//. o(r)dr. (3)

so in Eq. (2) represents an average energy of the
set of states j. The first term in Eq. (1) repre-
sents the effective-mass term; the second term
is the k p interaction term; the third term is the
spin magnetic energy; the fourth term is the spin-
orbit coupling.

The wave function of the free carriers in a mag-
netic field is expressed as a linear combination
of the products of envelope functions f/(x) and the
jth band-edge Bloch function U&0(r ),

(4)

This type of wave function was used in order to
take into account the nonparabolic and warping
behavior of the conduction and valence bands from
the very beginning.

Generally, the envelope functions f/(r ), which
appear in Eq. (1) and Eq. (4), may be expanded
in terms of linear combinations of a complete set
of harmonic oscillator functions 4„. However, if
in Eq. (1), one ignores a small odd part~5 which
comes from the inversion asymmetry of the zinc-
blende structure and a small anisotropic part'
which prevents the constant energy contours per-
pendicular to the magnetic field from being circu-
lar, Eq. (4) may be reduced to a simple form

q(r) =gf/(r)~;, p(r) =g&/C', &/, o, (5a)
j

where n has a fixed relation to j. Instead of having
a double summation n and j, Eq. (5a) has now

only a single summation. Thus, the dimension of
the magnetic matrix Hamiltonian is reduced from
infinity by infinity to 8~ 8. Furthermore, if one
follows I.uttinger and chooses the magnetic field
H to be in the (110) plane, a small part of the an-
isotropy which cannot be treated exactly is ex-
cluded. Then the 8&& 8 matrix can be reduced
further into two 4&4 matrices.

The C„ in Eq. (5a) are the eigenfunctions of the
Hamiltonian

He„= (a'a+-,')8'(u4„,

where

(&„+

a = (1/2~)'/'(n„- fu,),
k =p-eA/e,

y =- ,'hv, /R*—
(R* is the effective rydberg).

At first sight, 4„ look like one-dimensional har-
monic oscillator functions. Actually, if we use the
the symmetric gauge A = —,'H(-y, x, 0), we will see
that C„are in fact two-dimensional functions of

(x, y) or (p, Q) and should have the following form:

c'n=c'~~(& 4)
ceNee-&/2 P/2IAEI

LIMNI

(o) (5c)

where o = gyp~, L&~(o)are'associate Laguerre poly-
nomials, and c is a normalization constant.
C = (y/»)[N —2(M+ IMI)] I/([N —p(M —IMI )]']'.
We can easily show that

a @g s kf(N+1) CN g s
~ 1/2 (5d)

N is now the quantum number associated with the
Landau level, and M is the zth component of the
angular momentum.

As a result, the envelope functions associated
with the a, b ladders when written in a column
vector form become

A1@N N

(N M)
+3 N 1iN-1-
As@~+

w,o„,,„„)

(6a)

Aac'~, ~

f(N M)=
4 N. +lyM+1

A8@w -1.,M -1

(6b)

Here M~
¹ The energy levels belonging to 4„,„

may be labeled by N and are degenerate for differ-
ent M. Note that the vector bases for these two
solutions are different; they are U, ,» U, ,o, U~, o,

U7po and Uz, o, Ue, oy U4, o~ Us, o~ respectively.
Equations (6) holds for N ~ 1. For N= —1, we

set A, =A3=Az=A6=A8=0, while for N=O, we set
A3 =A6=As= 0

The energies and wave-function coefficients of
the a'(N), f/'(N), a'(N), 5'(N) states in InSb in
magnetic fields up to 100 kQ were obtained in pre-
vious calculations. '6 In particular, we list those
solutions for H= 50 kOe in Table l. (Since the
energies are degenerate with respect to M, the
values shown are independent of M. )

As for the bound charge carrier state in a mag-
netic field when impurity centers are present, we
follow Wallis and Bowlden's treatment and adopt
a variational envelope function. This envelope
function is related to the free-charge-carrier en-
velope function f(N, M) given above.

F(N, M, ~) =f(N M)a (Z)e-"4"' ' (7)

where a is the parameter determined variationally,
and y is the magnetic-field parameter defined by
y-=—,'Ro JR*. P„(Z) represents a set of orthogonal
polynomials of Z of order A. . For example, the
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TABLE I. Energies and wave-function parameters of the free-carrier Landau levels at B=50 ko,
which are used in the present calculation.

0 249
1 281
2 308

260
289
315

Light-hole band

Conduction band

E (me V) E„(meV)

0.983 0
0.939 0.261
0.914 0.326

Ap

0.175
0.209
0.226

Av

0.059
0. 077
0.090

0.959 0
0.925 0.144
0.904 0.181

0, 285
0.347
0.380

0
0.053
0.072

—1 —l.49
0 —ll. 9
1 —38.6
2 —62.7

—l.43
-26. 5
-52.8
-75.5

E, (meV) E, (meV)

0
—0.175
-0.331
—0. 392

0
0
0.679
0.719

Ag

1
0.984
0.655
0, 571

A2

0 0
—0.013 —0.285
-0.037 —0. 374
-0.056 -0.418

0 1
0 0.959
0.328 0. 867
0.373 0. 826

0
0

-0.031
—0.051

I'~ have the following form:

Po(Z) = (e'y/2v)' ' P, (Z) = (e y'/2m)' 4Z. (8)

The last factor in Eq. (7) is an exponential func-
tion of Z similar to a hydrogenic wave function.
Unlike La,rsen and Baldereschiet al. who chose
a trial function depending on bvo parameters in
order to improve the solution for low magnetic
fields, we use only one parameter & in our trial
function so that the required integrations can be
performed analytically. In the range of magnetic
field under consideration here, this will not intro-
duce any serious error.

The presence of an impurity center gives rise
to a Coulombic potential screened by the static
dielectric constant of the crystal. Usually, in the
presence of a magnetic field, the polarization of
free carriers also introduces additional screening,
However, this screening is negligibly small for
sufficiently low carrier concentration. Under this
condition, if the energy is expressed in units of
the effective rydberg 8*, and length in units of the
effective Bohr radius, the impurity potential in
cylindrical coordina. tes is simply —2(p + Z )

The bound-impurity-state envelope function will
then satisfy the following effective-mass equation:

Fq. (f) is not an appropriate form for high-field
impurity states associated with heavy-hole Landau
ladders. The low-field solutions will be more
suitable for the heavy-hole related states in the
ma, gnetic-field range under consideration. '

We have solved Eq. (9) and obtained the binding
energies Ee(&V, M, &) for the high-field impurity
states, as well as the varia. tional parameter & as
a function of magnetic field.

The binding energy is defined by

E (N& M& X) = E(N& M& X) —E(N, M) . (11)

After performing analytical integrations, solutions
of Eqs. (9) and (10) for the g and t& sets of states
lead to

E', (N, M, X) = fC(~)+A,'G(N, M, ~)

+A3G(N-1, M —1, X)

+(A, +A )G(N+1, M+1, X),
when

&'(&)+A,'G'(N, M, ~)+A',G'(N- 1, M —1, ~)

+(A5+Av)G'(N+1, M+1, a) =0;
E» (N& M, X) = &(X) +A2 G(N, M, X)

= E(N, M, X) F(N, M, X) .

If, f(N, M)=E(N, M)f(N, M) . (10)

Here IIO is the Hamiltonian for free carrier in an
external magnetic field, i.e. ,

+A~G(N+1& M+1, X)

+ (A6+As)G(N —1, M —1, A.),
when

&'(X)+A G'(N, M, X)+A G'(N+1, M+1, X)

+(A6+A8)G'(N 1, M —1, X) =0-.

In the above expression,

(14)

Equations (10) and (1) are equivalent.
The type of trial envelope function in Eq. (7) is

valid for y» 1. Since the effective mass for the
heavy hole is very large, the field parameter y
for the heavy-hole is much smaller than one, even
for magnetic fields up to a, few hundred kOe. Th:.:.s.

&(0)= We', &'(0) = -'re,

E(1)= —,'Sy&', JC'(1) = —,'3ye .
The integrals G(N, M, X) and G'(N, M, X) are given
in TaMe II.

Equ, lions (13) and (15) give the relationship be-
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TABLE II. Expressions for the G(V, M, A) and
G'(N, M, A) integrals G+,M, &) = (pg~P), (z)exp(-1/4yq'Z')
&& I

—2(p +z ) 2
) PN~P~(z) exp(-1/4p& z )). In the foll.ow-

ing expressions, I' —= —(p/27) ), $(&) —= [1/ (1 -& ) ]
In[1 + (1 &2)f /2]/1 —(1 —&2)i/2]

G(N, I, X) -=d/de G(N, I, & )

G(0, 0, 0) = 2ES(E) 1

G'(p, p, p) = 2 [S(E) —2] (1 —E2)

G(l, 1, 0) = 2E [(1--'E )S(E) —1](l—E ) I

G~(1, 1 ()) = [(2+ E')S(E) 6] (1—E')- r
G(0, 0, 1)=4E[- -'ES(E)+ l](1-E ) r
G'(0, 0, 1)=4[-~E S(E)+1+2E ](1-E )

G(1, 1, 1)= E[(-4E + E )S (E)+4+2E ](1—E )

G'(1, 1, 1)= [(-12E —BE )S(E)+4+26 E ](1—E )

G(1, 0, 0) = E[(2—2E + qE )S (E) -2 —E ](1-E )" r
G'(1, 0, 0)= [(2+2E +~2E )S (E) -6-5E -4E ](1—E )

G(2, 1, 0) = E[(2 —3E' + —E ——E )S (E) 3+ E'
4

E ] (1 —E')-' r
G'(2, 1, 0)= [(2+BE w- E +

8
E' )S(E) —7 GE —

4
E ](1—E2)& r

G (2, 2, 0) = E [(-E' —2E + 2)S (E') —3+ —E ] (1 —E )

G'(2, 2, 0)= [(2+2E gE )S(E) —7 —sE ](1—E ) I
G(2, 0, 0) = E' [(4 —8E +15E —7E +146 E )S (E}-6+ E -4 E —

8
E ](1-E )" r

G'(2, 0, 0) = [(4+8E +27E + llE6+~E'8)S(E) —14 —23E' —~ E16 4 8

-8E"](1—E )" r
G(3, 3, 0) = E[(2 —3E' +4 E —

~8 E )S(E) 3
+ 3 E ~E ](1 E')

G'(3, 3, 0) = [(2+ BE —„-E -'-'E )S (E) —
3 -3 C +4E ](1—E )

G(3, 2, 0)= E'[(2 4E +
4

E'
4

E' +16 E )S(E) 3+ 2E
2 2 4 13 6 ii 8 ii 7 2 6?

+-'„,
' E6] (1 —E2)-4 r

G (3 2 0) = [(2+4E +- E +- E -- E' )S(E') -- -- E' ——E
4 17 6 & 8 23 43 2 287 4

t 4 4 16 3 6 12

](1—E)

if the nonparabolicity were ignored (i. e. , if AB=A5
=A~=0). Note that, in Fig .1, these two states
now have different binding energies. The field de-
pendences of these binding energies look similar.
Another two sets of levels with only very small dif-
ferences in binding energies are the (220), (020),
and (210), (110) levels. The binding energy of the
(000)a state at H= 25 koe, being 2. 35 me V is in-
creased by a factor of 4 compared with the zero-
field binding energy 0. 586 meV. This exactly co-
incides with Yafet's prediction and suggests that
free charge carriers can become bound to ionized
donors in moderate to strong magnetic fields.

The numerical values for the binding energies
are listed in Table III, and the energy-level diagram
is given in Fig. 3 for a magnetic field of 50 kG.
As shown in Fig. 3, the impurity levels associated
with Landau a ladders and those associated with
Landau b ladders have the same orderings, and
the binding energies for (bMX)a and (NMX)b are
nearly equal. Earlier work on the transmission
and photoconductivity spectra revealed three prom-
inent impurity transitions; they are the transitions
from the ground state (000)a to the excited states
(010)a, (001)a, and (010)a. The results of our
calculation and several other calculations are com-
pared with the experimental excitation spectra in
Fig. 4. The field dependence of the three observed
prominent impurity transition energies are shown
by solid circles. The theoretically calculated re-

G(2, 2, 1)= 2E [(-3E' +
2

E —
~

E )S (E ) + 2+ z E' —4 E ] (1 —E )

G' (2, 2, 1)= [(-18E —9E4+ —E )S (E) +4+ 47E + -E ] (1 —E' )

G(0 —1, 1)= G(l, 1, 1), G'(0, —1, 1) = G'(1, 1., 1)

G(P, —1, P) = G(1, 1, 0), G'(0, —1, 0) = G'(1, 1, P)

(1,—1, 0) = G(2, 1, 0), G'(1, -1,0) = G'(2, 1, 0)

G (p, —2, p) = G(2, 2, 0), G'(0, —2, 0) = G'(2, 2, 0)

Io
I

20 30 40 60 IOO B(kG)
I I I I I I II

(ooo)

tween the variational parameter E and the field
parameter y for the a-set and b-set impurity states

III. HIGH-FIELD DONOR STATES

The magnetic field dependences of the binding
energy and variational parameter for the donor
states associated with the conduction a Landau lad-
der are shown in Figs. 1 and 2. The shape of the
curves for N=0 in Fig. 1 agrees quite well with
those obtained in Ref. 8. As we can see, the
binding energies for X= 0 states increase to infinity
as (lnH) when y-~, while those for X=1 states
(odd in Z) tend to finite binding energies. This is,
presumably, due to the fact that the wave functions
are even or odd in g. On the other hand, the vari-
ational parameters e for all the states have similar
magnetic field dependences.

From Eq. (12), the (110) and (010) states would
have the same binding energy Ee =R'(0)+A~~@(110)

C9

ILj

LLJ

, %&2

Cl

CD

IIO)

IOO)

IO)

020)

I

Io

(ool)
(III)

I I I I I I I I I

20 30 40 60 !00 y
FIG. 1. Binding energy as a function of p for the

high-field impurity states (NM A)a associated with the
conduction g Landau ladder in InSb. Full curves are for
X= 0; dashed curves are for N= l.
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20
B(kG)

60
I

80

0.6—

E' 0.4

0.2—

O. I
IO 20

I

30

(OOO)

(Ioo)
(0I0)
(I TO)
(020)

~—. . . (00I)
'——,(III)

40 50 60

FIG. 2. Variational
parameter ~ as a function
of p for the high field im-
purity states (NM P)a asso-
ciated with the conduction
a I,andau ladder in InSb.
Full curves are for N=O;
dash-dot curves are for
N= l.

suits are displayed by the curves. The central-
cell corrections which were omitted in all the cal-
culations should lower the ground-state energy
considerably. It, in turn, should move all the
theoretical curves up in Fig. 4. The nonparaboli-
city effects, on the other hand, result in higher
ionization energies for the higher lying states than
would be expected from calculations for a simple
parabolic band. This effect is most marked for
the (110)a state, as compared to the (001)a or the

(010)a state, and is enhanced with increasing field.
The evidence for this may be realized from the
rapid deviation of the top dashed curve (Wallis-
Bowlden parabolic calculation) away from the ob-
served transition energies. The present nonpara-
bolic calculation gives a transition energy (000)a
- (110)a quite close to the observed value; the
small deviation is mainly due to the central-cell
effect on the (000)a state. Since the nonparabolic
effect for N= 0 impurity states is not significant
(based on the deviation of the theoretical values of
the transition energy (000)a- (010)a from the ob-
served value), one can determine the size of cen-
tral-cell correction needed in each theoretical cal-
culation. We have carried out such a comparison
and obtain an II dependence of the ground-state en-

ergy correction similar to Larsen's result.
The da.shed arrow in Fig. 3 indicates the ob-

served combined resonance transition between the
localized electronic states. In Fig. 5, we display
by dots the experimental magnetic field dependence
of this transition. The splitting of the resonance
absorption peak in the magnetic field range 0 = 30—
40kOe isdue tothe strong electron-phononcoupling
occurring in that field, region. For comparison,
the theoretical result is given by the curve in the

same figure. Just as the deviation of the theoret-
ical curve (000)a - (010)a from experiment in Fig.
4 gives the central-cell correction needed for the
ground state (000)a, so the deviation of (000)a

(110)a curve from the dots in Fig. 4 will add in-
formation about the amount of nonparabolicity cor-
rection left out in this calculation. This follows
since we have ignored the odd part, as well as a
small anisotropic part of the effective-mass Ham-
iltonian. Furthermore, the deviation of (000)a- (110)b curve from the dots in Fig. 5 will yield
information of the amount of spin. -orbit interaction
left out. As we see, the latter error is rather
small.

We want to point out that when we use the type
of trial function of Eq. (7), we have assumed that
the transverse motion of the electron in a magnetic
field is not affected by the impurity potential.
Therefore, we have slightly underestimated the
binding energy at low fields.

In general, Eq. (9) has not only a set of discrete
solutions for which E(N, M, X) &E(N, M), X=0, 1, 2,
---, but also a continuum solution for which

E(N, M, v) &E(N, M). Thus the discrete states for
N &0 will always be degenerate with the continuum
state of smaller N value. This means that (O, M,
X), M~ 0 are discrete states but, in general, the
other states are metastable with rather short life-
times. However, not all the discrete states for
N & 0 are mixed with the continuum states by the
Coulomb term in Eq. (9). The states (N, N, X) with
N &0 are degenerate with continuum states (N', M',
v) with M' &N, N' &N, but the Coulomb matrix ele-
ments between them vanish. Thus, these (iV, N, &)

states are also discrete and stable.
From the coexisting features of the Rydberg
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meV

BI5—

BI3—

508—

B= 50 kG

(l' = 32.25)

a'(2)

b'(2)
Mrrrrrrr

(220)b
(2IO)b

506—

289—

287—

280—

278—

259—

257—
p J~r

250—

248—

246—

ac(I)
rrrrrrr

(III)a
(IIO) a

b'(I)

(III)

( Ilo
(IIO
(IOO

ac(0)rrr rrrr
(OOI) a

j I
(020)a
(OIO) a
(000) a

(220) a
(210)a

(0)

(OOI) b

(020) b
(OIO) b

(000) b

FIG. 3. Energy-level
diagram for donor states
in InSb at B=50 kG. Ar-
rows show some allowed
Raman transitions; dashed
arrow indicates the ob-
served combined reso-
nance transition.

N- —.'(M+ fM f)=~-&-1
x=z- fm

f

(16a)

(16b)

(16c)

The first relation (16a) insures angular-momen-
tum conservation, since the Z component of angu-
lar momentum is a good quantum number for all
field strengths. The second relation (16b) ex-
presses the fact that the number of nodal cylinders
of the wave function of (NMX) at K- ~ is equal to
the number of nodal spheres of (nml) at H 0.
The last relation (16c) insures that the number of

series and the Landau levels, the bound electron
states at high fields should pass continuously into
the Rydberg series in the low-field limit. Previous
suggestions concerning the connection between these
two series are based on (i) the nodal-surface-con-
servation argument, and (ii) the noncrossing
rule. The former argument gave the following
relations for a state (NM&) at high field connecting
to a state (nrnl) of Rydberg series at low field.

nodal planes perpendicular to the Z axis for the
state (nml) at H -0 is equal to the number of nodal
cones with the Z axis for the state (NMA).

On the other hand, the noncrossing rule simply
requires that levels having the same parity and
angular momentum cannot be degenerate at any
field strength.

The above two suggestions yield quite different
level connections, Several level connections based
on the first suggestion violate the noncrossing rule.
In view of the existing discrepancy, we wish to re-
examine carefully these suggestions based on our
present calculated level orderings.

Because we have ignored a small inversion-asym-
metric odd part in Eq. (1), the effective Hamiltoni-
an in Eq. (9) is invariant under the inversion and
rotation operations about the Z axis for all field
strengths. The parity and the angular momentum
M should then be good quantum numbers, and the
noncrossing rule is exact. Accordingly, we make
the following connections between the Rydberg
series and the truly discrete Landau series.
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1 s (000), 2 s (002),

2p g (010), 2po (001),

3s (004),

2p, q (110),

Sp ~ (012), 3po» (003), Sp, ~ (112),

Sd s —(020), Sd i (011), 3 do (006),

3di (111), 3ds (220) .

IMPURITY COMBINED RESONANCE

(000)a = {1IO)b

Sll ill
[

It is most interesting to note that, in recent mag-
neto-optic studies of donor excitation spectra in
CdTe, s~ the donor levels Sp(m = 0, —1) also cross
the 2p(m = 1) at lower field. The correspondence
between low-field and high-field 2P and 3P levels
agrees exactly with the one given above.

The above connections obey the relations in Eqs.
(16), except for the cases in which either n —I —1

&0 or l —(m ( &1. The reasons for this may be
seen from the following discussion:

(i) As we mentioned, only {OM X) M ~ 0 and [NNX)
N» 0 states are truly discrete states. The wave
functions of these truly discrete states can not have
a nodal cylindrical surface as H-~ because N- —,

'

(M+ [M [)= 0 for the truly discrete states. Con-
sequently, as we know that the Rydberg series
should always be connected to truly discrete Landau
series of bound electrons, Eq. (16b) can never be
true for n —l —1 &0.
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FIG. G. Observed impurity combined resonance
(000)a —(110)b (dots) and present theoretical result
(curve).
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(i.i) It is observed that I —[m [ &1 occurs only
for 1~2. In fact, we find that Eq. (16c) does not
only apply for the cases in which n —/ —1= 0 and

l —(m ( &1, but also for the case in which n —l —1
&0.
(iii) In addition, we find that instead of Eq. (16b)
and (16c), there exist new relations for the change
of number of nodal surfaces of the wave function
as (nml) varies into (NM X), namely, the number of
nodal spheres which is n —l —1 will change into the
number of nodal cylinders, N —,'(M+ [M- [)=0; the
number of nodal cones which is l —(m ( will change
into the number of nodal planes X.= I —[m [+ 2(n —I
—1). The above relation holds for I —[m [ ~ 1, It
seems that whenever some nodal spheres disappe'ar,
additional nodal planes emerge perpendicular to the
Z axis. The nodal- surface-conservation argument
leading to Eq. (16b) and Eq. (16c) is therefore not
valid.

IV. HIGH FIELD ACCEPTOR STATES
IO 20 50 40 50 60

B (kG)
70 80 90 100

FIG. 4. Field dependence of the three prominent
donor-impurity transitions, Observed energies (Ref. 4)
are indicated by the black circles. Curves show the

following theoretical results: solid curves, present
calculation; dashed curves, %'allis and Bowlden (Ref. 8);
dotted curve, Larsen (Ref. 9 nonparabolic calculation).

Unlike free holes in Ingb which occupy initial
states with multiplicity, bound holes posses unique

states. Therefore, it makes the experiments,
which involve an acceptor ground state as initial
state simpler to study. Because of the degeneracy
of the valence-band structure, the acceptor states
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FIG. 8. Energy-level
diagram for light-ho]. e
acceptor states In InSb at
8= 50 kG. Arrows show
some allowed Raman tran-
sitions between bound-
hole states.
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Ge (Ref. 3) show many transmission minima rep-
resenting transitions from the s-like (heavy-mass)
acceptor ground state into p-like impurity excited
states associated with the light-hole I andau ladder.
The binding energies of the P-like excited states
are observed to increase monotonically with in-
creasing H and to decrease with increasing N for
N & 7. Unfortunately, observation of this kind of
result was not achieved for the InSb spectra because
of poorer resolution relative to that of the Qe spec-
tra. Thus a quantitative comparison with experi-
ment cannot be made for the time being. However,
the binding energies of the P-like excited states
(120), (000), (100), (220) do show an increase with

increasing field and a decrease with increasing N
(except for the N = —1 state).

It is extremely difficult to connect the light-hole
Landau series (NM X)' with the bound-hole states

as H- 0. Because the valence-band edge is degen-
erate at, zero field, there is strong mixing of the
light-hole and heavy-hole character in each com-
ponent of the l 8, F6, I'z bound-hole states. In
addition, because the valence-band edge is p like
in character, the bound-hole states I'8 etc. have
mixed atomic characters, s with d, or p with f.
Similarly, at high field, by comparing the coeffi-
cients A3 withers in Table I, we can see that the
states in the Landau series (VM &)' also contain a
large portion of heavy-hole wave function in the
expansion of Eq. (5) for the K~ 1 light-hole sub-
bands. It is then a formidable task to connect the
two sets of levels at H 0 and H-~. However,
for the same reason as we gave in Sec. III, we
know that the only truly discrete states for the
(NM &)' series are (1M') and (VXX), in which
E&- 1 and only these states are connected to the
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(gus)'

{oo o)a
(O1O)a
(0 &0)a
(0 0 1)a

3.0071
2.1041
l.7368
O. 4763

0.4353
0.3357
0.2918
0.1672

(1 10)a
(1 2 0)a
(1 3 0)a
(1 T l)a

3.1356
2.1558
1.7219
0.5197

0.4622
0.3514
0.2333
0.1823

TABLE HI. Binding energies and variational param-
eters for the impurity levels at B=50 ko (energy is in
meV; the first three columns are for donors, the rest
are for acceptors).

plane polarized radiation or represents —,'(X+ iF)
and —,(X- iF) for left and right circularly polarized
radiation (if the magnetic field is in the Z direction)

By evaluating the quantity P~, we will be able to
determine the selection rule for an optical absorp-
tion transition between two discrete states. The
selection rule for the transition between acceptor
states is the same as that between donor states,

For plane-polarized radiation with eII H,

(ooo)b
(o 1 0)b
(020)b
(ool)b

2.9606
2.1084
l.7396
0.4754

0.4306
0.3366
0.2924
0.1668

(1Xo)b
(120)b

(130)b
(X 1 1)b

3.1356
2.1558
l.7219
0.5197

0.4622
0.3514
0.2333
0.1823

hN= 0, hM = 0, 4X odd.

For circularly polarized radiation with SII H,

AN=0 or +1, hX even, dM =+1
(1OO)a
(110)a
(1to)a
(111)a
(1 o o)b
(11O)b
(110}b
(111)b

(21 0)a
(2 2 0)a

2.1400
2, 1373
1,8830
0.4502

2, 1139
2.0730
2, 0519
0, 4478

l.7993
1.7605

0.3500
0.3399
0.3102
0.1572

0.3472
0.3322
Q. 3226
0.1563

0.3063
O. 2947

1,7514
l.7153

0.3001
0.2893

low-field acceptor states.

(O10)a
(o oo)a
(o20)a
(0 01)a

(OOO) b

(o To)b
(0 20)b
(o o l)b

(1 1 0)a
(110)a
(1 00)a
(1 1 l)a

(110)b
(11O)b
(1 QO)b

(111)b

(210)a
{220)a

(21O)b
(220)b

2. 2235
2.1799
1.8132
0.4874

2.2296
2.2249
l.8153
0.4905

2.8580
2.3963
2.0169
0.4519

3.7273
l.9546
l.9075
0.4729

1.7568
1.7119

l.5457
1.5147

0.3719
0.3546
0.3169
0.1701

0.3606
0.3711
0.3165
0.1709

0.3837
0.3837
0.3396
0.1715

0.4366
0.3289
0.3290
0.1645

0.3355
0.3203

0.3034
0.2927

(hM positive for left circularly polarized radiation,
6M negative for right cl rc ularly polarized rad Ra-

tion).
The above selection rule holds for y» l. For

arbitrary large magnetic field, the effective-mass
wave function will not be in the form of Eq. (7) but
rather a linear combination of functions j'(fi, M, X)

with different ~ values. However M and X remain
good quantum numbers, and therefore, the optical
transition mill be possible betmeen the states with
proper M and X values, regardless of the iV value.

While optical transitions link states with opposite
parities, the Haman transition, being a second-
order effect, links states with the same parity.

Throughout this paper, me have ignored a smaH.
inversion-asymmetric term in the effective-mass
Hamiltonian for the zinc-blende crystals. Thus,
the selection rules so derived give strong allowed
transitions. Inversion- asymmetry- induced transi-
tions should give a weak structure in the observed
spectra. The cross section for the strong Raman
scattering in the dipole approximation is propor-
tional to the following quantity:

V. ~ TICAL AND RAMAN TRANSITIONS BETWEEN

IMPURITY STATES IN A MAGNETIC FIELD

The optical absorption coefficient associated mith
transitions from Rn initial state i to a final state
j, in the absence of any broadening can be written

~(~)= 8v'(nl&fe)&; p (&&-«) I&. I'

&& 5(Eg —Eg+ I(o),

4PW'=~ A y]
~Z

I

1 ~ (e„~ m)~„(Zz ~ 0)„;
cog sz ~~ E]+ S1 —Ey

(er %)~„(Z„*~ v)„,
E] —S~~- E (19)

where n, K are the refractive index and dielectric
constant of the material, N& is the concentration
of impurity atoms in the initial state, e is the fre-
quency of the radiation, E;, E& are, respectively,
the energies of initial and final state. P„has the
following expression

P~=e P~ r jlgg r dr ) (18)

where I'&, I'& are the effective-mass functions of
the initial and final state, p. is the coordinate vec-
tor in the direction of the electric vector of the

Here v=p+(e/e) A; i, y, f label, respectively,
the initial, intermediate, and final states; cr, Zz,

+z are the polarizations Rnd frequencies of the
incident Rnd emitted radiation; m is the free-elec-
tron mass.

By computing Eq. (19), we have found the selec-
tion rule for Haman transitions, which is shown in
Table IV. In Figs. 3 and 8, the solid arrows show
some allowed Raman transitions between the bound-
electron states and the bound-hole states, respec-
tively. The (100)a state in Fig. 3 and (1TO)a,
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TABLE IV. Selection rules for Raman transitions
between the impurity levels in InSb in a magnetic field.

even

odd

0
0+1, +2

p, +1

0

0, +2

E'g

sill H
H

q~H
&g llH

6p

X~ll H
&pz H

eall H

&y &H

(010)a states in Fig. 8 are metastable states; the
transitions to these states are broadened by inter-
action with the continuum states having smaller N

values.
Recently Hasegawa and Howard found that when

the Coulomb perturbation of the continuum states
near the Landau-level edges is taken into account
properly, the magnitude of optical absorption per
unit energy at a Landau edge will tend to zero at
H- ~. In this limit, the optical transition to bound

states beneath the Landau edges become intense.
Magneto-optical absorption experiments also sup-
port this interpretation. Therefore, one would ex-
pect that at extremely high fields, the intense prom-
inent peaks in the optical spectrum should corre-
spond to transitions to bound states well separated
from Landau edges.

The experimental observation of impurity- shifted

Raman lines in high magnetic field is most favor-
able for donors in Insb. However, ordinarily, the
donor concentrations are as low as 10 /cm . At
such low concentration, the intensity may not be
sufficiently high. Thus, high magnetic fields are
most desirable in detecting the difference in fre-
quency for the Raman lines, respectively associ-
ated with bound-carrier and free-carrier transi-
tions.

In conclusion, we have made a survey of the high-
field impurity states in InSb by considering non-
parabolic band effects and band-band interaction.
The warping, as well as the complexity of the va-
lence band, are included in the determination of the
donor and acceptor states in high field. By quan-
titatively comparing our calculated results with the
experimentally determined values, we have found
the magnitude of the central-cell correction and a
small amount of nonparabolic effects left out in this
effective- mass- approximation calculation. For
typical circumstances, in In3b, the energy gap E~
is much greater than the Landau-level spacing,
and the carrier concentration is low enough so that
the effective Bohr radius is small compared with
the average distance between the impurity centers.
Under these conditions, the isolated-hydrogenic-
impurity model treated in the effective-mass ap-
proximation yields results which can explain the
available experimental data very well.
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