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Resonant scattering or absorption followed by emission*
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Several papers have appeared recently indicating theoretical and experimental differences between

resonant scattering and absorption followed by emission. We show that they are the same phenomenon

and demonstrate that a widely used analytical treatment of radiative processes does not describe this

phenomenon accurately.

I. INTRODUCTION

Recently, Klein' proposed that "hot lumines-
cence" (HL), which he defined a.s the absorption of a.

photon followed by emission (AE), and resonant Ra-
man scattering (RRS) were equivalent phenomena.
This point of view was disputed by Shen who used
density-matrix formalism in order to argue that
RRS and HL are not equivalent but are two distinct
physical processes that are always simultaneously
present, can interfere with each other, and differ
in line shape and transient response. In particular,
Ref. 2 indicated that his results can be used to ac-
count for transient phenomena, such as free induc-
tion decay (designated as coherent Raman beats by
Ref. 2), which. occur in the collisionless ca,se, that
is, the case where interactions of the radiation
field and the scattering system with other systems
(such as a thermal bath) can be neglected. In addi-
tion, there has been recent experimental work'
which also contradicts Klein's contention. %e,
however, maintain that Klein was not in error and
that RRS and AE (or HL') are unequivocally the
same phenomenon. .

Reference 2 derived an expression for the scat-
tering cross section for light near a resonance and
identified one term as RRS and the other as HL.
RRS was described as a direct and essentially in-
stantaneous two-photon process and HL as a phys-
ically different and much slower two-step process.
References 3 and 4 took a similar view and claimed
to distinguish between the two processes experi-
mentally. AE was described as a "true" absorp-
tion followed by emission while RRS was described
as a nearly instantaneous, "virtual" absorption
followed by emission and, therefore, when observed
in a gas would not exhibit collision broadening, de-
polarization, or quenching.

In the past, there has been considerable lack of
]

clarity regarding the rela, tion of RRS to AE. Some6
have made distinctions based on classical argu-
ments, while others have regarded RRS and AE as
the same phenomenon and derived expressions for
the RRS cross section by the intuitive use of Ein-
stein A. and B coefficients and absorption and emis-
sion line shapes.

In Sec. II, we develop an intuitive theory of RRS
for the collisionless case which is shown to give
the same RRS cross section as modern quantum
theory and which clearly demonstrates the equiva-
lence of RRS and AE. In Sec. III, we consider
some of the special problems encountered in the
quantum-mechanical theory of RRS.

II. INTUITIVE THEORY OF RRS

ironside r the system whose pe rtinent energy levels
are illustrated in Fig. 1. Initially it is in level i; it
then absorbs a photon from an incident monochro-
matic beam of frequency v and is raised to level k,
from which it drops to level / emitting a photon of
frequency v . To be consistent with the use of A.

and I3 coefficients, it is assumed that the g-fold de-
generacy of each level is rotational, and that ini-
tially all the g; states of level i are equally popu-
lated. It is also assumed that all broadening of the
levels is natural broadening, and that the separa-
tion of each of the three levels from all other levels
of the system is sufficient for interference effects
to be ignored.

In this treatment each level is considered to have
a width and is described by a normalized natural
line-shape factor; in addition, energy is rigidly con-
served. If RRS is considered to be the same as
AE, then the cross section o(v, v ) for a. photon of
frequency v to be scattered as a photon of frequency
v and the system to shift from level i to level l, is
given intuitively by

l &
" l I",/m I'„/z I', /n' 1

) f )/h ~ l [~ @ )/P]R P2 (1) A[@ E)/h ]2 r2 Al lh[(E E)/g ']2 P2 ~

(l)

Here I(v) is the intensity of the incident photon
beam, E, is the line center energy of level a, and

I', = 1/4m~„where 7, is the lifetime of level a and
a =i, k, l; A. and I3 are the Einstein coefficients which
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FIG. 1.. System interacting with an exciting field of
frequency v and a scattered field of frequency v'.

satisfy the relationships

B„=[c'/8vti(v„)']A„, = (g;/g, )&„,
where v„,. = (E» —E, )/h andg, andg„are the degen-
eracy factors for levels i and k. The first large
parentheses in Eq. (1) is the inverse of the incident
photon flux. This factor, multiplied by the rate at
which photons of frequency v are produced per unit

frequency, gives, by definition, the scattering cross

section o(v, v ); the integral in Eq. (1) gives this
rate. The first large square brackets in the inte-
gral, multiplied by dE, is the normalized probabil-
ity that the system initially had an energy E in the
interval dE, E —E& from level center. It applies
when level i is populated by a broadband process
where collisional broadening can be neglected
(flashlamp pumping, for example). The second
large square brackets in the integral is the rate at
which photons of frequency v are absorbed, thus
exciting the system with the given initial energy E
from level i to level k and to a consequent energy
E~- E- @p from the center of level k. The third
large square brackets is the probability per unit
frequency that a photon of frequency v is emitted,
relaxing the system, now with an initial energy E
+ hp, from level k to level l and to a corresponding
energy which is E, -E -h.v+hI from the center of
level /. Note that A»v~ is the probability of a tran-
sition to level / given that the atom was initially in
level k.

By replacing the lower limit of the integral by
E = —~, the integral can be evaluated by the method
of residues, '

I
o(v v ) =»ffidai~a~(v v )=»aAAal~a~(v v )

where

4r, r,r, (r, + r, + r„)
[rig+ (v —vai) ] Irai+ (vai v ) ][r&i+ (vii+ v

l 1

s [r~i+(v —v„i) ][rii+(vii+v —v) ] iT [rq&+(var —v ) ][ri +(vii+v —v) ]

r, r, 1
[r„', ( „—v')'] [r,'„+ ( — „,)']

and r,~
= r, + r~, where ab = ik, kl, li.

In quantum mechanics, the cross section for the scattering of monochromatic light near a resonance is
derived from the same formalism which describes ordinary Raman or Rayleigh scattering; indeed, the11, ~

cross section is merely the resonant term in the expression for ordinary Raman scattering. For weak
fields, the differential scattering cross section is given by'

I 4 3 2

g&iz, m, lp x~uz„m, )&rz„m, lp x ~u, m, ) z(v, v'),
dA ]q ~ )g)~, bric

where J' is the total angular momentum quantum number of the appropriate level, m is the z-component
quantum number characterizing each state of the level, P is the dipole moment operator, X is the polariza-
tion of the incident beam, X is the polarization of the scattered beam, and Il (v, v ) is the same as in Eq. (3).

By definition

1 g do(vv )
o (v, v

Let us choose the polarization of the incident beam such that it is along the z axis P. =u, ). Then, summing
over m„ in Eq. (4), only the term with m„=m, is nonzero. By definition

c'h
dill&us, m„lp ~ ~fz,m, )~'=, (6)p3)t, m
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) (iJgmg) P ~ u, )uJgmg))'= g )(imam;) P u, /kJgmg )['= ' Bp
m smk

Thus Eq. (5) reduces to

a(v, v ) =hvar, B,+~&7+(v, v ) (8)

Equation (8) is derived in a purely ma. thematical
way. Formally, all one knows is that it describes
the scattering of light near a resonance. The ques-
tion as to whether it describes RRS, or AE, is
answered by the fact that Eq. (8) is identical to the
intuitive AE result of Eq. (2). Clearly, the physi-
cal process involved is absorption followed by
emission. Since Eq. (4) is the resonant term in
the quantum-mechanical expression for Raman
scattering, RRS is AE, there is only one physical
phenomenon involved, and there is no distinction
between RRS, AE, and HL, or between "real, "
"virtual, " direct, and two-step transitions. In ad-
dition these conclusions are supported by the his-
torical definition of AE. '

III. SPECIAL CONSIDERATIONS IN THE
QUANTUM-MECHANICAL THEORY OF RRS

A. Damping approximations

We have shown that Ref. 1 was not incorrect in
his conception of RRS and HL (or AE). Apart from
conceptual considerations, however, we note that
the cross section derived by Bef. 2 is different
from Eq. (4) and predicts an incorrect phenomeno-
logical picture of resonant scattering. The analy-
sis of Ref. 2 is based on the damping approximation
form of the Schrodinger equation. Thi. s approxima-
tion also has been used in a number of other pa-
pers ' to solve for the resonant scattering cross
section. In those papers as well, the solutions do
not resemble Eq. (4) and lead to the same contro-
versial interpretation of resonant scatt'ering as that
given by Ref. 2. The question arises, then, as to
the accuracy of the damping approximation. As we

point out below, this question can be simply re-
solved.

Writing the state vector ljj) of an atom-field sys-
tem as 1$) =g, s Is; n), where Is) j.s an eigenstate
of energy h~, of the free atom and I o.) is an eigen-
state of energy e of the free field, the Schrodinger
equation be comes

s = —i(&u, +e /h)s —— (s; o.'~H~s; & )s, ~ . (9)
S

Here, H is the interaction Hamiltonian between the
atom and the field.

If the atom is initially in the nondegenerate level
a and interacts with a monochromatic field of fre-

b„& = —i[~, + (n —1)~]b„,— H,", a„—
@
—PH;, c„q,q„

cpc (l 0b)
c„,„=-if~,+(n 1)~-~,] „c,-„

Z fyg Z gj~pc Aff-i
@ & +cc ' 'cn-l, ljy, 18 '

c',8
(10c)

Here a„ is the amplitude of the state la; n„, ), b„&
is the amplitude of state I b; (n —1)»), and c„, ~, is
the amplitude of the state Ic; (n —1)», 1» ~ ); the
three states are the initial, intermediate, and final
states, respectively, in a resonant scattering pro-
cess.

ln the damping approximation ' ' "Eqs. (10) are
written

a„=—i(~, + ~n) „a-
@ ,H", „b, ——,'1;a„, (ll a)

b„, = —if u~+ (n —1)w]b„,— H,",*a„——,
' I'~ b„—, , (lib)

c„...=- i[(u, + (n-1)(u —(u,]c„...
gg

~ Aft ~
—2 X ~ Cff (11c)

where I'& is chosen to be the inverse of the natural
lifetime of level i.

Equations (11) are the same as those used by
Befs. 17 and 18 and can be readily converted i.n the
collisionless case, the case considered here, to the
equations for the matrix elements of the density op-
erator p used in Bef. 2. However, the formula for
calculating P„ the probability that a photon of fre-
quency &, is produced in the resonant scattering
process g- b- c, used by Bef. 2 is not the same as
that used by Befs. 17 and 18. It can be shown, how-

ever, that the two formulas yield identical results.
The probability that a photon of frequency &, ,

wave vector k, , and polarizatj, on X, is created in

the scattering process is, according to one view, '

quency ~, wave vector k, and polarization X (cor-
responding to the state I a; n„,) at f = 0), and there
exists one other nondegenerate level b such that
& =-+, —&, , then, ignoring, as do Befs. 2, 17, and

18, the nonresonant interactions of the applied field
(the rotating-wave approximation) and the two-pho-
ton transition component of H, Eq. (9) becomes

a„=—i(~, +nu)a„——H,"~b„q —
@ g H;, c„q~ ~ (10a)

C
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equal to the increase in energy of the corresponding
field mode divided by h&„ the energy of one photon
in that mode. The i.ncrease in energy is equated to
the time integral of minus the expectation value of
the rate at which the vacuum field corresponding to
that mode does work on the material system. The
rate of work 8 is given by E, Z;q~p;/m; where E,
is the field operator of the o mode and q;, p;, and

m; are, respectively, the charge, momentum op-

erator, and mass of the ith constituent particle of
the system. Since»' [r;, Ho] =imp, /m, where r; is
the position of the jth particle and Ho is the Hamil-
tonian of the free atom, the rate can be written as
E, [D, Ho]/ih where the dipole D=(, q;r, Using
Eqs. (11) and making the rotating-wave approxima-
tion and the dipole approximation, 8 =- D ~ E = —D
~ Z„E, where E is the operator of the electric field
and p, denotes the different modes of the field,

00

h+~ ~0

4 WC@

df(H)= a df(klE ~ [D, HO]lq')= '
J dt(H», b„*pc„g ~, —H»,*f)„gc„*gg, }

QP~ ~o A K~

2 (&» (()(;) ((sdflm(H;, f)„~c„q,),),
(de "0

8 OO

P =
@

di lm[[c„.g, g +(i[(() + (n —1)(() (() ]+»~ )c„-i,1()linc))-1,1()jSco~ ~0

Equation (12a,) is essentially the expression for P, used by Ref. 2, and Eq. (12b) is the expression proffered
by Refs. 17 and 18. Equation (12b) is easily recognized as the intuitive expression for the integrated rate
at which the system leaves the state Ic; (n-1)»„1»» ). This obviously is also the probability the system
was ever in that state and thus equals P,.

Equations (ll) and (12b) can be ea.sily solved for a„, 0„,, c„., „, and P, with the result that f)„,, for ex-
ample, is given by' '

4&l 1 ffb I syt s2t'i f(nu+td )4

sy-s2

I', + 1"q 1 I;—Fq—i((d —(()», ) +
4 2

+ i((() —(()»,) —lH, & l
/A

and P„ for the case of a weak applied field, by

1
(» 1'.- » 1"»)'+4 —~,.)' 1'» (~.—(c„)'+[2 (1'»+ 1;)]' f'. (~.—~ —~„)'+[» (1'.+ 1',)]'

1 1 1
—, (r. ~ r, ) ((&o —~,.)

—,(r, r .) —((io.—w, .)
—, F.~ r .) (4o. —w —~..))I ' (14)

where +;„=~&—~„. Moreover, to lowest order in

2 IH,", I /h
sg = —p&»+ i((() —(()», ) —g. . .. , , (15a)

a(I —I y)+A& —q j

2 IH, » I /h»
sp ——,1,+, (~ ~ )

.
( )

. (15b}

Equation (14) is the same as the solutions of
Refs. 17 and 1S and corresponds to the solution of
Ref. 2, which is a low-order perturbation theory
solution of Eqs. (11). The most important feature
of Eq. (14) and the solution of Ref. 2 is the way they
appear to divide into terms describing two distinct
phenomena. The first term in Eq (14) and th.e cor-
responding second term in Eq. (6) of Ref. 2 is said
to describe a two-step or stepwise' absorption
followed by emission, and the second term in Eq.

(14) and the first term in Eq. (6) of Ref. 2 an in-
stantaneous and direct, or two-quantum transi-
tion. The third term in Eq. (14) is said to describe
interference between the two phenomena. "

Pursuant to this matter, we remark that Eq. (14)
can be arranged into a form identical to that of Eq.
(4). Specifically, if Eq. (14) is divided by the inci-
dent photon flux and multiplied by I", in order to
convert the probability into a cross section, and
then multiplied by the number of states in a unit in-
terval of frequency and solid angle, it then can be
converted algebraically into Eq. (4) replacing i, k,
l by a„b, c, xespectively. This step unambiguous-
ly resolves the question of interpretation, for it is
clearly seen that the damping approximation does
not lead to solutions which describe resonant scat-
tering as the combination of two separate phenome-
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na. Equation (14) is merely one of many possible
algebraic forms; the two terms in Eq. (14) simply
indicate the existence of maxima in the probability
of AE.

It should be pointed out, however, that there is
one case for which, even in weak fields, resonant
scattering should not be treated as a simple ab-
sorption followed by emission, namely, scattering
to and from the atomic ground state. In this case
radiative corrections are very important, in so far
as obtaining an accurate solution, and it can be
seen ' that it is not possible to obtain an accurate
expression for I', unless the process is treated as
successive cori elated absorptlons and emlsslons
of many photons. In fac't Eqs. (11) require

modific.

-
ationn to take account of this special case.

Algebraic manipulation eliminates the question-
ablea subtracting linewidths in Eq. (14) but they
still appear in Eqs. (13b) and (15) which describe
the theoretical splitting or shift in frequency and

change in line shape of emission from levels g and

5 in an. applied fieM. However, there is no im-
mediate reason to believe that the subtracting line-
widths are incorrect and, in fact, for the case for
which I', and I"„tend to zero, Eqs. (15) give correct
descriptions (insofar as nonresonant processes can
be ignoredm) of the ac Stark shift of levels a and

b. '6 Moreover, for the case where I",=0, we have

compared the solution of Eqs. (11) and (12b), with

radiative correction terms retained, to a solution
based on Heitler-Ma formalism and found that the

two solutions are identical, including the appear-
ance of subtracting linewidths in the radiative cor-
rection terms.

Scattering ti~e

The claims that RRS, as opposed to HL (or AE),
is essentially instantaneous ' and that this is the
fundamental distinction between RRS and HL or that
RRS can be deduced from the uncertainty principle
to have a scattering time t, given approximately by
1/i v —v@ I are incorrect. The correct expression
for t, is determined by considering the scattering
of a photon wave packet near a resonance. The
expression is similar to the expression derived
for the resonant scattering of a nonrelativistic wave
packet. For v = p», t, is the natural lifetime of the
transition, but as v moves off resonance, t, tends
to zero. This decrease in t, can be demonstrated
experimentally but a direct measurement of t,(v)
off resonance is not possible because it would re-
quire so short a light pulse that the resulting spread
in its bandwidth would overlap line center, in which
case a composite lifetime on the order of the nat-
ural lifetime would be observed.
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