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A new empirical energy-band parametrization scheme based on the Green's-function method has been

developed and was applied to Cu and Ag. The scheme utilizes the logarithmic derivatives associated
with an ab initio muffin-tin potential V~ &(r). The scheme can be understood in terms of the addition to
V of E- and l-dependent square-well potentials the depths of which v, (E) are adjusted to yield the
correct (empirical) energy bands. The v I(E) are found to be smooth functions of E which can be
accurately approximated by low-order polynomials. An accurate fit for d-band metals over a roughly
1-Ry range requires only seven adjustable parameters —a number smaller than required by other
schemes. Extensive tests of the approach using results of first-principles calculations were carried out in

precisely the same manner as proposed for the empirical application, and the results indicate that this

scheme is more accurate than other approaches using more parameters. The seven pieces of data used

in the empirical parametrization for Cu and Ag were the s, p, and d phase shifts required to fit the
Fermi-surface geometry and four firmly identified vertical energy gaps: EF X5 X4 X5 X5 X3,
and L

&

—L,'. The empirical E„(k) were obtained for a large range of EF values (relative to the
constant part of the potential). Except for the rather high energy levels (e.g., the upper X, W, and K
states) the relative band structures prove to be rather insensitive to the EF value. The presently
available and firmly established data do not narrow the permissible range of EF. Comparisons with

several recent Cu and Ag calculations show that the present bands are in better accord with

experiments. The empirical E„(k), which are required to fit the input data, are also found to agree
within experimental uncertainties with all additional data related to level positions. Cu, for which more

data are available, is particularly well checked. To obtain some information about the effective

interactions V&(E,r) and the associated wave functions, a set of coupled integro-differential equations is

derived which relates these quantities to the v, (E)~ However, it appears that the solutions to these

equations are not unique unless some constraints are imposed on the correction V, (E,r) —V '(r). A
suggestion is made for obtaining approximate useful wave functions prior to the resolution of the
nonuniqueness problem. From our experiences and a consideration of the merits of the new scheme, it

is evident that it should be very useful in the study of the electronic structure of various solids.

I. INTRODUCTION

For over a decade there has been considerable
interest in the development of parametrization
schemes' ' for electronic band structures. Since
these schemes can be used with different goals in
mind and in different ways it is useful to state our
orientation at the outset. Often these schemes
have been used to provide a more economical
means for computing the Z„(k) than the standard
band methods. Though this is a valid purpose, it
is not the one we are primarily concerned with.
Our goal is to obtain an accurate description of
the electronic structures and in the process some
information about the effective potential using
empirical data. We adopt this point of view be-
cause we believe that, at the present time, it is
not possible to consistently construct a P&io~&

potentials which yield quantitatively accurate ex-
citation spectra. For one thing, we do not have
an accurate way of incorporating many-electron
contributions. Thus, we take a frankly empirical
approach in which we effectively allow the data to
determine the spectra over the range of interest.

We note that there is a different approach than
our s which is in effect a parametrization approach,
although it is generally not referred to as such.
This involves the calculation of the E„(k) for a
variety of potentials including variable exchange-
correlation contributions (e.g. , the Xa recipe)
and the subsequent determination of the potential
which leads to the best agreement with experiment.
However, we feel that a more fully empirical ap-
proach of the type we have in mind is generally
less restrictive in regard to the possible inter-
actions and should allow for a more detailed fit-
ting of the data.

The particular solids that we have investigated
are Cu and Ag. These metals are ideal subjects
for such a study since their energy-band struc-
tures and the bodies of data relating to them are
relatively rich.

The parametrization scheme that we use is
based on the Green's function method (GFM), '
which is also known as the Korringa-Kohn-Rostoker
(KKR) method. ' The use of the GFM as the basis
of such an approach was first suggested by Segall
and Ham. ' In the GFM the E„(k) are obtained
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from the determinantal equations

det[Bg~, .~ (E, k)+5, )i 5~~.E coty, (E)]=0.

In Eq. (I) the effect of potential is completely con-
tained in the coty, (E) term —or, equivalently, in
the logarithmic derivative Z,,(E) Sin. ce in prac-
tice only l ~2 components are required to obtain
highly accurate E„(k) for crystals for which the
muffin-tin approximation is useful, it is only nec-
essary to parametrize the q, (E), or the Z, (E), for
the lowest three / values. It is useful to remark
that the class of potential operators leading to
Eq. (I) includes l —and E-dependent muffin-tin
potentials as well as simple l.oeal functions. Thus
the interactions encompassed by the parametriza-
tion scheme include these more general poten-
tials.

The use of the GFM in the parametrization of
Fermi-surface data has been successfully imple-
mented by Shaw et al.' in their work on the noble
metals. The first GFM parametrization of the
energy bands over a broad energy range, roughly
1 Ry centered approximately at the Fermi energy
E~, was carried out for the noble metals by
Cooper, Kreiger, and Segall' (CKS). In this work
the potential-dependent terms that were parame-
trized were the tang, (E). More recently, Chen
e& a&.' (to be referred to as I} considered two
schemes which were based primarily on the
Q(E). One of these proved to be a distinct im-
pl ovement ovel' other parametrization schemes.
For a d-band metal, this approach required nine
adjustable parameters and yielded extremely ac-
curate eigenvalues. In fact, the errors in the
E„(k) ( 0.001 Ry) were much smaller than the un-
certainties in many of the experimental data.
(The uncertainties in the optical gape are gen-
erally 0.1 eV or larger )This .suggested that the
number of para. meters could be reduced. This
would be a desirable accomplishment, since the
amount of useful independent data for our pur-
poses over the energy range of interest are not
great, even for such thoroughly studied metals
as Cu and Ag. As will be clear later, nine is
still too large a number of parameters for what
will loosely be called a "fully empirical"' parame-
trization.

At this point it is useful to note that though the
potential dependent quantities [e.g. , the g, (E)] ob-
tained in a first-principles calculation are not as
quantitatively accurate as desired —if they were,
there would be no need for empirical schemes—
they do not differ appreciably from the correct,
or empirical, functions. We certainly expect the
calculated energy dependences to be essentially

correct. In the previous work we used the first-
pl'lnclples 1 esults to suggest funct1onRl forms and
for testing purposes. However, me feel that the
considerable information contained in the calcu-
lated results has not been effectively exploited.
In this paper we develop a nem scheme which is
based on the ab initio results but which has the
necessary flexibility for adjustments required
in an empirical parametrization. In effect, the
new scheme consists of using the calculated val-
ues of Z, (E) but with a shifted and distorted en-
ergy scale. This is effected by replacing the in-
dependent variable E by E+ u, (E) for each l value.
This is equivalent to adding an /- and S-depen-
dent square-well potential to the potential used
in the first-principles calculation. The v, (E) are
the quantities to be parametrized. For a mon-
atomic d-band metal, it turns out that only seven
adjustable parameters are required for an accur-
ate fit of the energy bands over a 1-Hy range.
This, we believe, is substantially better than
other schemes that have been proposed. Also,
this relatively small number permits us to under-
take the type of empirical application to Cu and
Ag that me have in mind. '

As emphasized earlier, ~ 6 the basic quantities
employed in a scheme based on the GFM (the 2,
or tang, ), in contrast to those used in many other
approaches, are directly related to the solutions
of the effective one-electron Schrodinger equation.
They are thereby related in a clear-cut way to the
effective interaction operator V. In this paper we
pursue this matter further. A set of equations is
derived which relate the v, (E) (or the corrections
to the ab initio logarithmic derivatives) to the po-
tential correction 5V = V —Poland the associated ra-
dial functions for V, where V~'~ is the reference
ab initio potential. The matter of the nonunique-
ness of the solutions to these equations is con-
sidered as is the question of obtaining approxi-
mate wave functions.

In Sec. II we discuss the new parametrization
scheme. Using several different fir st-principles
calculations for Cu and Ag, we demonstrate the
practicality of the new approach. In Sec. III we
discuss the empirical data to be used in the ap-
plication to Cu and Ag. The detailed procedures
by which the g, (E), and thus the v, ( )Eare deter-
mined from the data are given in See. 17. It is,
of course, of considerable importance to have a
reliable measure of the accura, cy of schemes of
the general type we are considering. We note
that the aeeuraey of a scheme is dependent on the
manner in mhich the parameters are determined,
in particular on the energies at mhieh they are de-
termined. In an empirical application of the type
we -are concerned with, one has limited freedom
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to choose these ener gie s. We have thus made tests
of our approach using the results from several a
priori calculations. These tests are carried out
in Sec. V in precisely the same manner as pro-
posed for the fully empirical application. The
empirical parametrization for Cu and Ag is car-
ried out in Sec. VI. In Sec. VII the band struc-
tures for Cu and Ag associated with the empiri-
cally determined 2, (E) are discussed and compari-
sons are made with several previous calculations
and with available data. In Sec. VIII we consider
the relations connecting the 5V, the radial wave
functions, and the v, (E). Section IX contains a
summary and conclusions.

II. NEW PARAMETRIZATION SCHEME

As we noted above, the accuracy of the more
accurate scheme in I was much higher than re-
quired by many of the present data. Thissug-
gested that with perhaps some relaxation in the
accuracy we might be able to reduce the number
of adjustable parameters. The desirability of that
goal was emphasized in See. I. Also, it was evi-
dent that the approach in I did not utilize to any
great extent the valuable information contained
in the logarithmic derivatives of a reasonably
good first-principles calculation. Qn the basis
of the fair success of band calculations in recent
years, it is clear that the calculated logarithmic
derivatives which we will denote gI'l(E), are, at
least, semiquantitatively accurate. Certainly,
the essential features of the energy dependences
are given correctly by these functions. The only
problem is that these functions are not as quan-
titatively precise as we presently desire. " One
can easily envision that with some small shifts
and distortions these Z~ol(E) curves could be
made to match the correct Z, (E).

As already noted in I, for a d-band metal the
most critical and most difficult potential-depen-
dent term is that for l = 2 in the d-band region.
The most sensitive aspect of the C, (E) is the loca-
tion of the singularity (which is close to the so-
called d resonance, or pole, of tauri, ) and the
shape of the function in its vicinity. These fea-
tures are the essential determinants for the E(k)
in the d-band region. From our experience, it
seems evident that the envisioned shift and small
distortion of g2I'l(E) should be sufficient to cor-
rect this relatively difficult quantity.

It turns out that it is rather simple to imple-
ment this goal. %'e propose that the desired log-
arithmic derivatives be represented by

while an energy dependence leads to the distor-
tion. For the approach to be practical, the v, (E)
must be relatively smoothly varying functions of
E. This will be demonstrated below.

Another way of viewing the transformation in
Eq. (2) is to note that it corresponds to the ad-
dition of an l,- and 8-dependent square-well
potential -v, (E) to the ab initio V~&"(r) If.the
radial wave function for V~'~(r) is R['~(E, r) for
energy E, then the solution for the l- and E-de-
pendent potential V, (E,r) = V~'~(r) —v, (E) is
R,' (E + v, (E)). [The original potential V~0'(r)
need not be independent of I and E.] The logarith-
mic derivative for the modified potential is that
given by Eq. (2). Conversely, any set of 2, (E)
related to the Z~'~(E) by Eq. (2) can be produced
by the potential V, (E, r), although this will not be
a unique solution of the "inverse" problem [i.e.,
the determination of the potentials that lead to
the given 2, (E), or the tang, (E)].

It is useful to point out that Eq. (2) establishes
a unique v, (E). To do this we utilize the fact,
familiar from experience (see, for example, Fig.
I of I), that the logarithmic derivative decreases
monotonically from a positive-infinite to a neg-
ative-infinite value. The energy derivative of 2,
can be derived by obtaining in the standard way
the Wronskian for two radial functions R, (E, r)
=r 'P, (E, r) for energies E and E+5E. The in-
tegral of the Wronskian then leads to

(3)

where V, (E, r) is the effective potential and r; is
the radius of the inscribed sphere. For a poten-
tial which is independent of E, Eq. (3) reduces to
a well=known result" and the monotonicity is veri-
fied. Most potentials used in band calculations
a.re of this type, so that the 2I'l(E) is monotone. "
This fact ensures that v, (E) is determined unique-
ly by Eq. (2). To ascertain the behavior of the
derivative of the empirical 2, (E) it is necessary
to know something about 8 V/&E Further dis.cus-
sion of this will be deferred until Sec. VII.

To investigate the behavior of the v, (E), we have
made comparisons between the J, for quite differ-
ent potentials for the same metal using the results
from first-principles calculations for Cu and Ag.
Explicitly, we took two sets of 2, denoted by 2,"(E)
and g, (E) corresponding to two different poten-
tials V„and V& and related them by

Z, (E) = Z,&i'i(E+ v, (E)), 2", (E) =2, (E+ v, (E)) . (2')

where the functions v, (E) depend on I . A constant
v, just provides a rigid shift of the original ZI'~(E),

The functions v, (E) were then determined. These
are plotted in Fig. 1 for two pairs of Cu potentials.
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FIG. 1. v)(E) for / ~2 corresponding to two pairs of
ab initio lagarithmic derivatives for Cu. The v& and E
are in crystal units. For the solid and dashed curves
the &, (E) in Eq. (2') are, respectively, the logarithmic
derivatives for the so-called l-dependent and Cu(-, ) po-
tentials, while the 2, (E) in both cases are for the Cho-
dorow potential. (See text for the notations for the po-
tentials. )

FIG. 2. v, (E) for l 2 corresponding to two pairs
of ab initio'logarithms derivatives for Ag. The v& and
E are in crystal units. For the solid and dashed curves
the ZP)(E) in Eq. (2') are, respectively, the logarithmic
derivatives for the so-called Ag(~) and Ag(H) potentials,
while the Z~(E) in both cases are for the Ag(HF) poten-
tial. (See text for the notations for the potentials. )

vc(E) =Sc+SiE,

vi(E) =Pc+P,E,
v, (E) =D, +D,E+D,E'.

(4a)

(4b)

(4c)

The seven coefficients appearing in E(ls. (4) are

The solid curves are the v, (E) for I =0, 1, and 2
13,14with V„and V& being the so-called Chodorow

and l -dependent potentials, "respectively. The
dashed curves are the v, (E) corresponding to V„
being the Chodorow potential and V~ being what
we will call the Cu(-', ) potential. The latter poten-
tial is constructed by the usual procedure of super-
posing atomic potentials and charge densities"
and using the local exchange contribution with the
exchange coefficient n =-,"'. We note that v, and v,
are quite accurately linear functions of E. The
v, are very smooth functions which we found could
be accurately approximated by a quadratic function
of E. In Fig. 2 the corresponding v, are plotted
for two pairs of Ag potentials. For the dashed
curves the Z", and 2, correspond to what have
been called the Ag(HF) (Hartree-Fock) and Ag(H)
(Hartree) potentials, respectively. ~" For the
solid curves the 2", are for the Ag(HF) potential, ,

while the g correspond to the Ag( —,') potential,1

which is obtained in the same way as the Cu( —,)
potential. Again the v, and v, are accurately re-
presented by straight lines, while the v, are even
smoother functions than those in Fig. 1 for Cu.

These results strongly support our expectations
about the efficacy of the scheme, namely, that
the Z, (E) can be conveniently parametrized via
the v, (E). It is clear that for the energy range
considered the three v, (E) can be accurately re-
presented by the three simple polynomials

the adjustable parameters of our scheme. They
must be determined by seven pieces of empirical
data.

III. INPUT DATA

Since a major goal of this work is the empirical
parametrization of Cu and A g, the choices of the
nature and amount of the data as well as the speci-
fic values are of paramount importance. Several
criteria were imposed on the selection of data.
These were as follows: (i) The interpretation of
the data (e.g. , the identification of an optical gap)
should be unambiguous; (ii) the data should be
known with reasonable precision; (iii) the data
are suitably distributed over the energy range of
interest; (iv) the data are sufficiently independent
in regard to their relationship to the Z, (E); (v) the
data are reasonably convenient to use to deter-
mine the v, (E). Requirements (i), (ii), and (v)
need no explanation. The requirements for the
distribution of the data, (iii), are different for
the different /. As emphasized earlier, it is
important that the Z, (E) be determined accurate-
ly in the d-band region. This necessitates at
least two pieces of data in that region which, we
might picture, suffices to locate the d resonance
and to fix its width. Another datum outside (above)
the d-band region is needed to determine the non-
resonance contribution to 22(E). On the other
hand, the energy range of most importance for
the s and P terms are at and above E~. In re-17

gard to (iv) we give an example of data which
would not be sufficiently independent: the Fermi-
surface data leading to the Z, (E~) and the location
of the I,. state relative to E~ which determines
2, at E(I., ). For Ag, E~ -E(L, ) =0.3 eV, so that
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TABI,E I. Empirical data used in the band-structure
parametrization of Cu and Ag. The phase shifts are ob-
tained from Ref. 8 (see also the comment in Ref. 19).
The justification for the values of the energy gaps are
given in Sec. III of the text,

CU 0.9
0.8
0.690 398
0.45
0.3

0.9
0.8
0.75
0.5
0.35

-0.275 21
-0.146 37

0.006 70
0.422 59
0.764 57

-0.195 26
—0.067 21

0.000 276
0.410 08
0.725 74

-0.052 55
-0.023 88

0.100 73
0.22547
0.234 13

-0.082 71
-0.000 72

0.029 13
0.176 70
0.21324

—0.229 44
-0.182 71
-0.135 76
—0.054 97
-0.021 89

-0.222 79
-0.176 16
-0.154 35
—0.065 09
—0.029 01

Energy
gap

—1.96
-3.81

X4i —X5

3.86
5,65

Lg-L2
5.04
4.23

3.00
3.50

In crystal units (c.u.), i.e., E (Ry) =e (c,u. ) x 4m /a,
where a is the lattice constant in a.u. The values of a
used are 6.8090 and 7.6897 a.u. for Cu and Ag, respec-
tively.

bIn eV.

these two pieces of information about Z, (E) are
almost redundant. "

After surveying the available data, we concluded
that there are seven pieces of data that generally
satisfy the above criteria. Of these seven, three
relate to the Fermi surface. These data are very
useful because of their accuracy and because they
fall in the middle of the energy range of interest.
Since the Fermi-surface data for the noble metals
have already been fitted very precisely using the
GFM by Shaw et al. ,

' we can directly use their re-
sults [i.e., the three q, (E~)] as "data" for our
work. W'e recall that they were able to fit the
data over a wide range of E~ values relative to
the constant part of the muffin-tin potential, V, .
The values of q, (E~) are given in Table I for five
values of E~ for both metals. " The accuracies'
of the q, (E)'s are such that the deviations be-
tween the calculated and measured cross-section-
al areas are of the order of one part in 10'.

The other four pieces of data that we use for
each metal are the energy gaps L",-L...X4 -X„
EJ, d(top), -and X, -X, . The values for the last
gap, which essentially gives the widths of the d

bands, have been obtained from the photoemis-
sion data of Eastman and Cashion. " The quoted
uncertainty in these values are 0.3 eV, which is
larger than those for the other gaps and makes
this gap (and ultimately the locations of X,) the

most imprecisely known data we use. The other
three gaps mentioned above have been identified
in the past from the structure in e,(~). While

e, (&u) is certainly useful in identifying transitions,
it ha, s some shortcomings. These are (a,) e, (&u)

involves contributions from the complete Brillouin
zone and all appropriately occupied bands, which
makes the identification of some transitions less
than unambiguous, and (b) the structure is not
especially sharp or well defined (in part because
of overlapping contributions), making the deter-
mination of the gaps less accurate than desired.
W'e note that much more definitive identifications
of transitions and accurate determinations are
possible if single-crystal piezo-optical data are
available, as is the case for" Cu and" Ag.

An analysis of the piezo-optical response func-
tions of these metals" (to appear elsewhere) has
yielded what we believe to be unambiguous identi-
fications of the d(top)-E~ and L..- L", transitions
in both Cu and Ag and the X, -X~i transitions in

Cu, and also the most accurate determination of
the transition energies. The corresponding gaps
are given in Table I. The tabulated quantities con-
nected with the d(top)-E~ transitions are the Ez
-X, gaps. For Cu this is obtained from the 2.10-
eV threshold corresponding to 4,- A, (E„) and the
small X,—&,(kz) correction taken from an a Priori
calculation. For Ag the tabulated value is obtained
from the 4.1-eV Q, -Q (E~) peak obtained from
the isotropic response function and the X,-Q, (kz)
correction from a calculation. The possible error
in using the calculated correction values is very
small (&0.05 eV).

The X4 -X, separation for Ag was the only gap,
aside from the d-band width, that could not be ob-
tained from the piezo-optical spectra since it was
outside the range of the data. For this gap we
used the structure in e, (v) at 5.65 eV. '4 However,
we believe that there are a few cogent arguments
which firmly support this identification. " We
estimate that the uncertainties in the optical gaps
are about 0.1 eV, with the exception of the Ag
X4 -X, gap, for which it is 0.15 eV.

It is evident that the data mentioned above satis-
fy conditions (i)-(iv). That (v) is satisfied will
be demonstrated in Sec. IV. We note that the loca-
tions of the X, and X, levels supply the required
d-band information. If it were possible, it would

be desirable to have the third l =2 datum at an
energy above E~. The only candidate for this is
the position of the L,," level, but this is used to
determine v, (E). If this level were used for the
d component, there would be no adequate means
of determining the v, (E) over any range and, in

particular, for E» E~."
There are other data which do not satisfy our
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criteria and which we do not use as input data.
These will be used as checks on the electronic
structure that results from the empirical parame-
tr ization.

IV. PROCEDURE FOR DETERMINING v, FROM DATA

The manner in which the parameters in Eq. (4)
are determined is generally similar to the pro-
cedure employed in CKS. The details, however,
are different because different sets of input data
are used in the two investigations. In this sec-
tion we enumerate in detail the steps that we em-
ploy in the empirical application to Cu and Ag.
The steps below are carried out for a given value
of E~.

(a) As we noted in Sec. III, the phase shifts at
E =E~ have already been determined. It is mere-
ly necessary to obtain the Z, (Ez) from

j,'(vr;) n, (sr;) t-any, (E)
j,(~r;) n, (Kr;)-tang, (E)

where the j, and n, are the Bessel and Neumann
functions, respectively, and a2=E. The values
of the v, (Ez) are then determined using Eq. (2}.

In the remaining steps we use the location of a
given state, E„(k), to determine the 2, (E) and
thus the v, (E) This pr.ocedure is simplified by
the fact that our data pertain to states of high
symmetry at which the left-hand side of Eq. (1)
reduces to the determinant of a 1&&1 or a 2&2
matrix for the truncation l, .- =2. Such equations
can easily be inverted to obtain the tang, at known
ener gies.

(b) The E~ X, gap l-ocates the position of the

X, state. From'the equation for X„
B»»+E cot@2 —0,Z/2 (6}

the q2 and the e2 are determined at this energy.
(c) The X~ -X, optical gap locates the position

of the X4 state. %'ith the equation for this state,

B„,p+E' ' coty, = 0, (7)

we determine the 7}, and then the v, at E(X~ )
This information along with the v, at Er [step (a))
determines the two parameters Pp and P, and thus
completes the l =1 parametrization.

(d) The data on the d-band width, i.e. , X, -X„
provide us with E(X,). The q, and the v, at E(X,)
are then determined from the equation

B»»+E' 'cotq2=0. (8}

Since v, is also known at E~ [step (a)] and at E(X,)

[step (b)], there is sufficient information to solve
Eq. (4c) for D„D„and Di. This then completes
the parametrization of v, (E).

(e) The parametrized v, (E) [and thus the Z, (E)]
obtained in step (c) can be used in the equation

det
B00,00+E' ' cotgp

20 ipp

B00,20

B„„+E cotq2Z/2
=0

(10)

Since the l =2 parametrization has been completed
in the previous step the q, is known at E(L,"). The
only unknown in Eq. (10}is q, at E(L,"), and the
equation is readily solved for this quantity. This
value along with n, at E„[step (a)] determines
the S, and S, in Eq. (4a) and completes the para, me-
tr ization procedure.

V. REALISTIC TESTS OF SCHEME

In the above procedure, the v, (E) are determined
at a few energies in a restricted region dictated
by the data employed. For example, the energies
used to determine the u2 are at and below E~,
while those used for the vp determination are at
and above E~. It would, of course, be desirable
to fit the v2 both above and below E~, but, as
pointed out in Sec. III, the data set does not per-
mit this. In other studies, tests of the proposed
schemes were made by setting conditions on the
parametrized quantities at a generally optimally
distributed set of energies. The resulting E„(k)
were then compared with the results of a p~iori
calculations. It is important to note that the
errors recorded in such tests would generally be
lower than the errors that would occur in an em-
pirical (or semiempirical) application, where the
energies for the input data are not open to choice.
For this reason it is very important to assess the
accuracy of the scheme in precisely the same
manner planned for the empirical application. Of
course, the tests must be carried out using re-
sults from ab initio calculations.

A test following the procedure of Sec. IV is
easily carried out in the following way: The in-
put data, namely, the three q, at E~ and the four
energy gaps discussed in Sec. III, are taken from
a band calculation for a given potential, which we
denote as V~. The three logarithmic derivatives
2,, (E), from a calculation for a quite different
potential, V~, are then taken as the reference
logarithmic derivatives, ZI'l(E). The g, (E) for A
are then parametrized using Eqs. (2) and (4) and
the seven pieces of data following steps (a)-(e) of
Sec. 1V.

In the remainder of this section we will discuss

for the 12 level,

Bjp yp+E cot// 0Z/2

to find the E(L,t). The optical gap L," —L, locates
the I," state. The energy of this state satisfies
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the rather extensive tests that have been carried
out using the procedure just outlined. The tests
have been applied to the same four pairs of po-
tentials for which the v, (E) are plotted in Figs.
1 and 2. More specifically, for Cu we have taken
the Z, , the reference logarithmic derivatives,
to correspond to the so-called t-dependent poten-
tial in one example and the Cu(-', ) potential in the
other. In both cases, the Z", that we are attempt-
ing to parmetrize are those for the Chodorow po-
tential. For Ag, the Z, are for the so-called
Ag(H) potential in one case and Ag( —', ) potential in
the other. In both Ag tests, the bands being para-
metrized are those for the Ag(HF} potential. It
is to be emphasized that in all four cases the

E„(k) corresponding to the reference logarithmic
derivatives differ markedly from those being para-
metrized. This fact can be inferred from the v, (E)
in Figs. 1 and 2. However, it is more clearly
brought out in Fig. 3, in which the energy bands
for the Ag(-,') and Ag(HF) potentials are plotted
side by side for k along the (100) direction.

After, parametrizing the g", for a given pair ac-
cording to the prescribed method, we calculated
the corresponding E (k)„for about 150 states along
all of the symmetry axes and at the symmetry
points. The resulting eigenvalues were then com-
pared with those obtained directly using the known

(original) logarithmic derivatives. All energies
involved in the comparisons were computed in the
same way witb a maximum / of 2.

Some of the results of these comparisons appear
in Table II, where the differences between the
known band structures and the parametrized bands
are given for the symmetry states at I', X, L,
and W, from the lowest-energy levels, I', or X,',
up to relatively high energy for X,". Note that all
errors are given 'in units of 10-4 By. The errors
for the X„X„andX4 states, which are zero,
are omitted since the energies are fitted there.
Also tabulated for each test are the maximum de-
viation over the energy range from the'lowest
level up to the X," level, which is 15 eV or larger,
and the rms deviations for the approximately 150
states calculated for each band structure. The
rms errors are gratifyingly small, being about
0.001 Hy. The larger errors, which in fact are
not too large, occur at the extreme ends of the range,
namely, at I', and X",. For I', the errors result
from the extrapolation of vo over the large range
from E~ down to E(I',)(-8 eV) and for X," from the

extrapolation of v2 from Ez to E(X~) (- I eV). The

largest discrepancies are recorded for the case
in which V„and Vs correspond to Cu (Chodorow)

and Cu( —', } potentials, respectively. This, we feel,
is due to the relatively strong energy dependence

of v, (E) and larger value of its slope at E(L",)

(o,o,o) (i,o,o)

I.O-

O' X,

Ag (mrs) Ag {H F)
Xi

0.6

c9 p4
LLI

LLI 0.2

-0.2
X

It is also noteworthy that the smallest errors
occur in the case in which 2", and Z, are for the

Ag(HF) and Ag(-', ) potentials, respectively, for
which the magnitudes of the v, a,re in fact the larg-
est. Clearly, the accuracy of the scheme depends
on the nature of the energy dependences of the v,
rather than on their magnitudes. It is rather
striking that the scheme could so closely recon-
cile two such disparate band structures as those
shown in Fig. 3.

The results of these rather demanding tests
are very encouraging. To put them in perspec-
tive we compare them with those obtained by a
recent version of the combined tight-binding and
nearly-free-electron scheme used by Smith and
Mattheiss. ' In that work, the 14 parameters em-
ployed were determined at energies which pre-
sumably were optimally distributed over essen-
tially the whole energy range of interest (roughly
the same as ours). Nevertheless, the accuracy"
that they achieved compares unfavorably with that
achieved by the present approach using half the
number of the parameters in our demanding "real-
istic" tests.

Since comparisons of the previous GFM para-
metrization scheme with others were made in I,
it is only necessary for us to compare the present
results with those in I. The accuracy reported in
I is definitely better in that the maximum error
found over the same energy range was only 0.002
Ry. However, in the tests of I the coefficients
were determined at a reasonably optimal set of
energies. From our considerations of the sources
of the large errors in the "realistic" tests above
(the large extrapolations for v, and v, ), it is clear
that the accuracy of the present scheme would ap-

k (2m/a)

I"IG. 3. &„(k) in the $00) direction for one of the four

pairs of ab initio band structures used in the "realistic"
test of Sec. V.
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TABLE II. Energy deviations (10 Ry) in the "realistic" tests for Cu and Ag. The logar-
ithmic derivatives g & (E) and g

&
(E) associated with the indicated ab initio potentials are

related by Eq. (2 ). The manner in which they are used in the tests is described in Sec. V of
the text.

Cu Chodorow
Cu l dependent

Cu Chodorow
cu (3)

Ag(HF)
Ag (H)

Ag(HF)
Ag (-)

120 85

—12

L 14

-10

10

82 156

-10

w(

rms DE„(k)

Maximum 6E„(k) 82

16

85 -18

proach that of I if a similarly optimal set of en-
ergies were used. Aside from the important fact
that the present scheme requires fewer parame-
ters, it has several other advantages, which will
be mentioned in Sec. IX.

In an actual empirical application one would em-
ploy a reasonably good potential for which the as-
sociated band structure is fairly close to that re-
quired to fit experiments. " The resulting v, (E)
should be smaller and smoother than those that
we considered in the above examples. Thus we

expect that a parametrization of a solid for which
there are ample data would be at least as success-
ful as those above.

VI. EMPIRICAL PARAMETRIZATION FOR CU AND AG

To proceed with the empirical parametrization,
we must choose a set of reference Z~&'~(E) corre-
sponding to a reference potential V . In Sec. V
we demonstrated that the scheme accurately re-
produced a first-principles band structure even
when the logarithmic derivatives for a quite dif-
ferent band structure were used as the reference
SI"(E). Since the accuracy should be somewhat
better if the reference V ' and 2i'~(E)~differ only
slightly from the corresponding "empirical" func-

tions, we tried to select a reference potential
whose band structure is in reasonable accord with
experiment. For Cu we chose the Chodorow po-
tential since its band structure has been shown to
be in generally good accord with optical spectra
and dimensions of the Fermi surface. For Ag,
the reference potential was constructed from a
superposition of atomic potentials and a local ex-
change correction with an adjustable coefficient a.
From a preliminary investigation, we found by in-
terpolation that a coefficient a =0.778 was a good
choice." The effective charge 2Z(r) = rV(x) for-
the associated muffin-tin potential is tabulated in
Table III.

We have already noted that Shaw et al. ' mere
able to fit the Fermi-surface data for the noble
metals for a wide range of E~. We attempt to
fit our larger set of data, which extend over an
appreciable range of band energies, for this same
range of E~. Our purpose is to find out how sensi-
tive the band structure is to changes in E~.

The coefficients of v, (E) in Eq. (4) for Cu and
Ag corresponding to the input data (Table I) are
listed in Table IV for several E~. The magnitudes
of the v, for a given E~ and the general E~ depen-
dence of each coefficient are qualitatively similar
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TABLE III. Effective charge, 2Z {r)= -wV {r), for the
Ag (e = 0.778) muffin-tin potential used as the reference
potential, in the empirical parametrization of Ag. '/he
constant part of the potential is Vt.- = —1.16305 Ry and
the inscribed sphere radius is r&

——2.7187 a.u.
l

2Z (r) 2Z (1') 2Z (x)

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.34
0.38
0.42

89.501
85.338
81.591
78.186
75.073
72.206
69.542
67.051
64.714
62.515
58.484
54.867
51.599
48.635
45.939
43.476
41.214
39.133
37.215
35.447
32.309
29.620
27.284

0.46
0.50
0 ~ 54
0.58
0.62
0.66
0.70
0.74
0.78
0.82
0.86
0.90
0.94
0.98
1.02
1.06
1.10
1.14
1.18
1.22
1.26
1.30
1.34

25.224
23.386
21.737
20.253
18.914
17.697
16.583
15.554
14.600
13.712
12.887
12.121
11.409
10.750
10.140
9.576
9.055
8.575
8.131
7.722
7.344
6,995
6.673

1.38 6.375
1.42 6.100
1.46 5.S46
1.50 5.611
1.58 5.191
1.66 4.831
1.74 4.522
1.82 4.2 57
1.90 4.030
1.98 3.837
2.06 3.674
2.14 3.539
2.22 3.429
2.30 3.342
2,38 3.277
2.46 3.234
2.54 3.210
2, 62 3.207
2.70 3.224
2.78 3.260
2, 86 3.316
2.94 3.393
3.02 3.489

for both metals. As the behavior is more satis-
factorily exhibited graphically, we have plotted
in Fig. 4 the v, (E) for Cu corresponding to two

extreme values and the middle value of E~. It can
be seen that the v, for Cu are not only larger for
the extreme E~ but they (especially v, ) are more
energy dependent.

To help study the relative band positions as a
function of E~, we have tabulated the energies of
the symmetry states relative to E~ in Table V.
It can be seen that for both metals the d bands
move almost rigidly with changing E„. The maxi-
mum change in relative position is lesS than 0.1
eV for the various E~ in the approximately 7-eV

range. On the other hand, the other states which
are not fixed by the data, e.g. , the upper X, K,
and W states, exhibit much larger variations with
a change of E~. The largest differences, about
2 eV, occur between the upper W, states for the
two extreme E~ values. While some part of this
variation could be attributable to errors in the
scheme, we believe on the basis of the realistic
tests that the major part of the changes truly
reflects the dependence of the relative positions on
E~,"within the fr'amework of the present scheme.
It is thus possible that suitable experiments at
sufficiently high energy and analysis of those ex-
periments will lead to a considerable reduction
in the range of possible E„values. However, it
appears that we cannot do so on the basis of the
present data relating to band gaps.

Despite the above conclusion, there are certain
considerations that are useful in limiting the possi-
ble E~ range. The values of E~ relative to V,
found in a large number of a Priori calculations
fall in the range 0.6+ 0.1 Ry for Cu and 0.5+0.1
Ry for Ag (both are roughly 0.7 in crystal units),
values close to E~ for the free electron. This can
be understood from the fact that d bands are at
least 2 eV below E~ in the noble metals and that
the positions of the s-P band levels relative to V,
(in contrast to those of the d bands) are not espe-
cially sensitive to changes in the potential for

Clearly, the level Structure for the ex-
treme values of E~ corresponds to potentials
which differ markedly from the usual ab initio
potentials. The magnitudes of the differences in
the potentials are roughly indicated by the magni-
tudes of the v„which are seen from Fig. 4 to be
quite large for the extreme values of E~. Thus,
despite our inability to limit the E~ range empiri-
cally, we believe that the extreme E~ values
which differ from the a p~iwi values by 0.2 Ry or
more are not physically acceptable. In Sec. VII,
where comparisons with other calculations and
experiments are made, we consider E~ values
that lie in the physically plausible range.

TABLE Ig. Coefficients entering Kq. (4) for the v&(E) for the empirical parametrization of Cu and Ag at severa1.
values of EJ;. The v& (E), E&, and energies in Eq. (4) are in crystal units.

Cu

g~
SD

s,
0

P(
D()

D)
D2

0.9
-0.3675

0.1698
-0.4064

0.0863
-0.4423

0.6231
-0.4923

0.8
-0.1898

0.0861
-0.1949

0.0223
—0.2356

0.3488
-0.3369

0.690 398
-0.0152
-0.0038

0.0025
—0.0265
-0.0553

0.1085
-0.1513

0.45
0 ~ 2738

-0.1175
0,3920

—0.1312
0.2174

-0.1213
0.2251

0.3
0.4227

-0.1738
0.6034

-0.1901
0.3533

-0.0793
0.4934

0.9
-0.1884

0.3402
-0.3280

0.2025
-0.0868

0.1795
-0.4042

0.8
0.0047
0.2517
0.0988
0.1383
0.0329
0, 0565

-0.3308

0.75
0.0896
0.2139
0.0986
0.1069
0.0868
0.0054

-0.2917

0.5
0.4518
0.0723
0.4783

-0.0171
0.3190

-0.1334
-0.1094

0.35
0.6267
0.0103
0.7269

-0.0927
0.4498

-0.1175
-0.0198
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0.9
Cu
0.6904 0.3 0.9

Ag
0.75 0.35

I'i

I"i2

Xi
X3
X2
X5
X4i
X,
Li
L3
L3
L2i
Li
Ki
Xi
X3
K4
K2
K3
Ki
W2i

W3

Wi

Wii
W3

Wi

-9.00
-3.64
-2.80
-5.52
-4.96
-2.17
—1.96

1,90
8.13

-5.42
—3.70
—2.14
-0.92

4.12
-4.94
—4.44

3 ~ 2 1
-2.65
-2.18

5.20
6.22

-4.81
-4.03
-2.84
—1.96

7.47
8.00

-9.31
-3.59

2.77
-5.46
-4.96
-2.17
-1.96

1.90
7.81

—5.45
-3.65
-2.13
-0.90

4.14
-4.90
-4, 57
—3.21
—2.61

2.17
4.89
6,34

—4.73
—4.01
-2.78
-1.96

6.96
9.30

-9.26
-3.50
-2.70
-5.33
-4.96
-2.15
-1.96

1.90
7.34

-5.47
-3.54
-2.11
-0.86

4.18
-4.82
-4.34
-3.17
-2.53
-2.14

4.64
6.13

-4.57
-3 ~ 97
-2.67
-1.96

6.51
10.38

-7.20
-5.96
-4.96
-7.49

7 0 31
-4.14
-3.81

1.84
7.19

-7.15
-6.15
-4.08
-0.36

3.87
-7.08
-6.60
-5.06
-4,71
—4.13

5.27
5.02

-6.80
-6.07
-4.92
-3.81

7.30
6.03

-7.30
-5.94
-4.95
-7.43
-7,31
-4.13
-3.81

1.84
7.29

-7.17
-5,99
-4.07
-0.35

3.88
-7.04
-6.59
-5.06
-4.67
-4.12

4.94
5.45

-6,76
-6.07
-4.87
-3.81

6,89
6.65

-7.21
-5.87
—4.87
-7.34

7 0 31
-4.10
-3.81

1,84
7.33

-7.16
-5.90
-4.04
-0.33

3.90
-6.96
-6.54
-5.04
-4.61
—4.08

4.57
5,99

—6, 65
-6,04
-4.78
-3.81

6.46
8.14

Fermi level than are those for the Chodorow
bands. Our I", level is lower relative to d bands

by about 0.02 Ry. It is to be noted that the posi-
tion of the 1, level cannot be determined by avail-
able data, but many of the other levels considered
can be and are thus more critical. The Chodorow

L, and X4 levels are higher relative to the d

bands by about 0.02 and 0.01 Ry, respectively.

TABLE V. Energies (in eV) of symmetry states of Cu
and Ag relative to the Fermi level obtained from the em-
pirical parametrization scheme for several values of
Ez (in crystal units).

Qn the other hand, the upper L, and X, level are
relatively lower for the Chodorow bands than for
the present bands by 0.015 and 0.04 Ry, respec-
tively. The significance of these differences will
be evident when we compare the present results
to experiment.

In connection with the above comparisons we
note that Williams et g/. ' in their calculations of
e, (&u) have used the Chodorow phase shifts, except
that they modified the q, around E(L,") so as to
raise the L", level by 0.3 eV. The L", level is
higher in the present bands than in the Chodorow
bands by 0.2 eV; the L", -L, gap has been widened
further by a 0.3-eV lowering of L, . From these
observations it appears that the E„(k) obtained by
Williams et al. lie between the Chodorow and the
present E„(k).

Next we compare with some of the results of
Sanak et al. ,

"who carried out self-consistent
calculations using several local exchange -corre-
lation potentials. The energy separations listed
in Table VI are those for the local exchange-cor-
relation potential with the n coefficient (n =0.77)
which gave the closest agreement with Fermi-sur-
face data. The discrepancies between these gaps
and those for the present band structure are re-
latively small, the largest being 0.019 Ry for the
L ] L2 i separation with oug gaps being larger in
all cases. Further, if one considers the energy
levels relative to E~ one finds that the differences
between the two calculations tend to grow roughly
linearly with E-E~. This relationship seems to
correlate with the results of the Sham-Kohn'~ the-
ory of elementary excitations of an electron gas.
In that theory it is found that for low excitation
energies [E(k)-E~«E~] the effective one-elec-
tron interaction is given by

V(E, r) = V(r)+(E -E„)[l-m+(n(r))]

+ 0 ((E —E~)')

TABLE VI. Comparison of energy gaps (in Hy) for the present energy bands with those from other calculations.

X)'- I'i E& L 3 E&L2i L i -L2r L3 L3 W'i Qi~

Cu
Chodorow
potential (H,efs. 13, 14)

Janak
et al. (Ref. 32)

Present work

Ag
CKS (Ref. 4)

Christensen (Ref. 40)
Present work

0.517

0.525

0.541

0.305

0.266
0.256

0.249

0.242

0.257

0.290

0.239
0.268

0.302

0.270

0.284

0.398

0.434
0.415

0.695

0.719

0.769

0.759
0.818

0.154

0.157

0.292

0.300
0.299

0.045

0.061

0.066

0,022

0.011
0,026

0.341

0.351

0.370

0.314-

0.256
0.311

0.104

0.111

0.142

0.289
0.141

0.820

0.828

0.898

0,801
0,771
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and, correspondingly, the excitation energies are

)
6(k) -Ep
(m +(n))

T
(12)

where the V(r) is the energy-independent poten-
tial appropriate to the ground state in the local
approximation, the e(k) are the eigenvalues for
this potential, and mgn(r)) is the density-of-
states effective mass for electron density n(r).
The relationship between our excitation ener gies
and the relative energies of Janak et al. parallels
'tllRt of Eq. (12), witll tllell' ellel'gies Rppl'opl'1Rte-
ly playing the role of the e(k) -E„. A similar
correlation has been pointed out for P-brass and
for Cu by Moruzzi e~ al.35 Their results indicate
a value of 1.08 for the (m*) ' factor, which is
close to but slightly larger than our estimate of
1.05. It should be noted that, while Eq. (11) is
the result of a low-excitation expansion, several
of the levels considered above correspond to mod-
erately large excitations. Also worth noting is the
fact that the effective interaction in Eq. (11) is a
local L-independent operator, whereas the empiri-
cal interactions are found to be l dependent.

Since the question raised in Sec. II about the
possibility of Z„(E) being monotonic is related to
the E dependence of the effective potential [see
Eq. (3)], it is useful to consider that question
bere. From Eq. (11) it is seen that SV/BE =1 -m*,
which is a small fraction of unity. Thus for low
excitation energies dZ, /dE &0, just as in the case
of an E -independent potential. Furthermore, the
comparison of the empirical bands with those of
Janak et a/. indicates that this result should apply
for the larger range of E that we have been con-
sidering. The monotonicity of Z, in addition to
ZI'~ in turn implies that E+v, (E) is a monotoni-
cally increasing function of F. .

We now consider how the empirical Cu band
structur e agrees with data that were not used in
the parametrization. Much of the information that
will be employed in the comparison has come
from a detailed (II) analysis of Gerhardt's" piezo-
optical response functions for Cu. Similarly, the
results of an analysis of Nilsson and Sandell's"
response functions for Ag will be used in the fol-
lowing subsection.

First we note that one of the energy gaps which
is most accurately determined from the piezo-
optical data is the threshold for the interconduc-
'tloll band 'tl'Rllsl'tlolls RI'Guild 2, l.e., Q (Ey)

Q, (I,"). This value is 4.23+0.05 eV. For our
empirical bands the value is 4.21 eV, which is in
very good accord with experiment. The value for
the Chodorow bands is 3.9 eV."

In regard to the details of the d(top) El, transi-

tions, we recall (Sec. III) that we have taken the
2.10-eV threshold energy to correspond to the
6, - b,,(Ez) transition. The calculated value for
the threshold in the vicinity of I., Q+(I,")-Q (Ez),
ls 2.14 eV. Probably the best experimental value
for this threshold is derived from the 2.20-eV
peak in the isotropic piezo-optical response func-
tion, "8 „+25 „.When the appropriate shift
due to broadening (I'/&3) is subtracted out (I'
=0.10 eV), the threshold value of 2.14+ 0.05 eV
is obtained, which coincides with the calculated
value.

The Q (I",) band also contributes to the optical
properties with a threshold Q (I",)-Q (Ez) which
the calculation predicts to be 2.71 eV. This con-
tribution, which is masked by other contributions
in e, (up), produces a discernible structure in both
the trigonal (W«) and tetragonal (W»-W») re-
sponse functions at 2.6-2.8 eV.

Other unambiguous structures in the Cu piezo-
optical data are the large shoulder at approxi-
mately Su =4.7 eV in 5»+ 2 8» and the positive
peak in 5'» -W» at 4.1 eV. The former we attri-
bute to transitions starting with the lowest Z,
band to the Z, (E~), for which the calculations pre-
dicts a 4.71-eV threshold. The latter we assign
to the Z, (third band)-Z, (E„)and Z, -Z, (E~)
transitions, which the calculations show are near-
ly degenerate and start at 3.97 and 3.99 eV, re-
spectively.

Analysis of the photoemission associated with
the interconduction band transitions have been
made which yield the value of E~-I,i. Lindau
and Wallden, "using a two-band model have obtained
the value E~ —I,~ = 0.75 eV from their data. How-

ever, we have also analyzed their photemission data
using a two-band model in which the effects of broad-
ening are fully incorporated and were able to obtain
good agreement with our 0.90-eV value. Smith, "
using a two-OP% model and a I ", —L,, gap of 4.2 eV,
concluded that the E~ —L,. difference is 0.7 eV.
With the correct gap of 5.04 eV his model would
yield a E~ —I, » separation slightly greater than
1 eV. But we believe that a more quantitative
treatment, including broadening, would lead to a
value very close to our 0.90 eV. At this point it
should be noted that to a large extent the position
of L, relative to E~ is fixed by the interconduc-
tion band threshold [Q, (kl, ) -El,] and gap (I,"
—I2 ), both of which are known accurately. It is
also fixed by the area of the Fermi-surface neck.
In a related fashion, the E~ —L~ gap for the Cho-
dorow bands"'4 is small (0.6 eV) and the neck
area is too low by about 30%."

The other optical gap that we can. compare with is
the 5.32-eV Q+(I., )- Q (E~) transition identified
by Pells and Shiga. '9 The value for the present
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bands is 5.29 eV. Unless the identification is in-
correct, this agreement indicates that even the
lower d levels, for which the input data are least
precise, are given accurately.

Since we have not as yet calculated e,(~), a di-
rect comparison with this function is not presently
possible. However, in view of the very good agree-
ment of the empirical bands with the large amount
of information about energy separa. tions, we ex-
pect the present bands to yield a dielectric con-
stant in good agreement with experiment. In this
connection, we recall the apparent near-agree-
ment of our results with the bands of Williams
et al. ,

33 which in turn yielded an &,(~) in good ac-
cord with experiment. As these authors noted,
the interband transitions around L are quite im-
portant in these calculations. The threshold for
the present bands, 4.2 eV, is the same as their
value, while our 5.04-eV L", —L, gap is slightly
larger than their 4.9-eV va, lue. In regard to de-
tail, it appears that the small shift of the peak to
higher energies would in fact improve the agree-
ment with experiment.

B. Silver

For this metal we compare our results with the
semiempirical bands obtained by CKS and the
most recent calculation by Christensen. ' The com-
parison is made in the last three lines of Table
VI. The results of CKS are considered first. We
note that the agreement between these bands and

the present ones is quite close from the d-band re-
gion up to E(L",). This, of course, follows from
the fact that almost the same set of empirical
data was used in both calculations. The structure
of the d band is almost identical in both cases. The
only difference is that the deepest d-band states
are somewhat lower in CKS, due to the fact that
the L", -X, gap was set equal to 3.5 eV (the mea-
sured d-band width) in CKS, while X, -X, is given
that value here. One other difference for energies
below Ej, is that the CKS f', value (which was tak-
en from a previous calculation) is relatively lower
than that in the present results by 0.05 Ry. It can
also be seen that at energies at and above E(X", )
there are significant discrepancies and that these
increase with E. Although these high energies were
outside the range of primary interest in CKS, it
is worthwhile to consider them and thus the differ-
ent manners in which the two schemes extrapolate.
It was noted in CKS that the functional forms used
to fit the tang, did lead at high E to significant dif-
ferences from the quantities obtained in the ab
initio calculations. In contrast, it was shown by
the realistic tests of Sec. V that the present ap-
proach does not'lead to large errors in this range.
The reason for this is that in the present scheme

we are extrapolating only the correction term, the

v, (E) in do'(E + v, (E)), but not the primary quan-
tity, the Z, (E) or tang, (E).

In the recent work that we are concerned with
here, Christensen ' calculated the relativistic
energy bands of Ag. Since our results were ob-
tained from the nonrelativistic form of the GFM,
the validity of a comparison with Christensen's
results might be questioned. We believe that since
empirical data, have been used to determine the
oC/ (E) all relativistic effects except the spin-orbit
splittings are largely included in our results.
Thus, to carry out the comparison we have, where
necessary, appropriately averaged" Christensen's
energies for the components of the spin-orbit
split levels. The comparison shows that for ener-
gies below E~ the differences between Christen-
sen's and the present results are not too large,
although they are generally larger than between
the CKS and present bands. The largest discrep-
ancy here concerns the d-band width with Christen-
sen's being narrower than ours by approximately
0.4 eV. Also, his P-like levels appear to be slight-
ly higher than ours, leading to E~-L, and&4
separations which are roughly 0.2 eV lower and
higher, respectively, than those for the present
bands, v hich closely agree withexperiment. As is
evident from Table VI, however, the most serious
discrepancies occur for the higher-energy levels,
e.g. , the L", and%'", . Christensen's L", -L, and
p", —p, gaps are roughly 0.75 and 0.8 eV smaller
than the corresponding present gaps. In terms of
confronting experiment, the gap at L is the rele-
vant one. Christensen has argued, with some re-
servation, that his 3.5-eV value and not the 4.2 eV
value that we employ here correctly represents
the optical transition energy for L, - L", . We be-
lieve that the direct optical and photoemission
studies firmly support the more commonly accept-
ed identification which is used in this work. How-

ever, we believe that the mostunambiguous evi-
dence for this conclusion is contained in the piezo-
optical response functions. It will be shown in II
that the detailed shapes and magnitudes of the re-
levant parts of the W, , (u&) tensor for tf~= 3.9-4.4
eV are in accord with the I,.- L", identification.
Consequently, we feel that the present bands much
more accurately represent the band structure for
the energies involved.

There are considerably fewer extra experimen-
tal data available for checking the empirical Ag
bands than there were for Cu. As in the ease of

Cu, the prominent structure in the trigonal res-
ponse function corresponding to the interconduc-
tion band transitions allows for an accurate deter-
mination of the threshold energy as well as the

gap at the critical point L. From the analysis of
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II, the threshold for Q (E~)-Q+(I-", ) is 3.87+0.05
eV. The calculated value is 3.90 eV.

Photoemission studies and analysis by Smith"
have yielded a value of 0.3 eV for the E~ —I-,.gap,
while Wallden and Gustafson ' obtained the value
0.31 eV. The E~ -L, difference for the empirical
bands is 0.35 eV, which is quite consistent with
the above values. As pointed out in the discussion
for Cu, this energy difference is largely fixed by
the values for the interconduction band threshold
and critical-point gap at L. The consistency of
these two independent measurements thus further
confirms our interpretation as opposed to that of
Chr is tens en.

Christensen's value for the separation of L,
from E~ is roughly half our value. It follows that
the cross-sectional area of the necks of the Fermi
surface for his bands will only be about half the
measured value. Also, as Christensen noted, his
values for the Fermi-surface belly radii differ
from the experimental values by a few percent.
The errors for present bands are about 0.1 of I/g'.

The only other datum for Ag is the weak struc-
ture appearing at about 9.3-9.7 eV in the e,(e),
reported by Ehrenreich and Philipp, ' which they
assigned to the X, -X4 transition. The calculated
energy for this transition is 9.25 eV. However, we
note that the transitions with the threshold at b,(X~.)
-b, ,(X", ) also start at approximately 9.3 eV. It
turns out that the square of the matrix elements '
for the X4 -X", transition is larger by a factor of
nearly 20 than that for X,' -X4 . Thus even with a
smaller density-of-states factor, this implies that
the ~,- &, transitions would probably dominate and
be responsible for the structure. We note, how-
ever, that some caution should be exercised in the
use and interpretation of data at such high energy;ies.

In concluding this discussion, we remark that,
although the present Ag band structure agrees with
available data, it has not been checked as exten-
sively as the band structure of Cu because of the
more limited data. We expect that additional data
relating to the interband transitions above 5 eV or
so would be very helpful in providing the desired
additional checks. We feel that piezo-optical mea-
surements in single crystals would be particularly
useful in this energy range. For example, a struc-
ture associated with theX, -X, transition (with the
X, split by spin-orbit coupling) should appear in the
tetragonal response functions and be amenable to
detailed analys is.

VIII. RELATION OF v, TO EFFECTIVE POTENTIAL

In addition to developing a means for accurately
obtaining electronic structure, an empirical scheme
could in principle provide some information about
the effective one-body interaction which includes

and the equation for radial function P, (E, r) for
V, (Z, r),

c +v, (z, ))z, (z, ) zp, iz, X=d' I(l + 1)
dr2 r2

(14)

By multiplying Eq. (14) by P,o' (Eo, r) and Eq. (13)
by P, (E, r), subtracting, and then integrating from
r = 0 to r =r, , one obtains the following relation for
the logarithmic derivatives:

[& (E) -&'"(E.)]P (E, &;)P'"(E„r;)
7 $

= (E —E,) P, (E, r)P,'~~ (E„x)dr
0

r t

6 V, (E, r)P, (E, r)PI"(E„r)dr,

(15)

where

6 V, (E, r) —= V, (E, r) —V (&). (16)

This relationship itself is useful, and it simplifies
for E = Ep But it can be made even more useful
for our particular parametrization scheme by util-
izing our Ansats [i.e., Eq. (3)] for Z, (E) and tak-
ing EO=E+v, (E). This results in the relatively
simple relationship

f" P, (E, x)5V, (E, r)PP~(E+v, (E), r)dr
v, (E)=-

f"'P, (E, r) P,o~(E, +v, (E), r) dr

Since the v, (E) are determined over a certain
energy range by the parametrization, Eq. (17) pro-
vides information about V, (E, r) over that range.
However, Eqs. (14) and (17) constitute a quite com-
plex set of coupled nonlinear equations. For the
case of small &V, these equations are approxi-

via the self-energy correction many-body contri-
butions. The electronic structure deduced from
empirical data has these contributions built into
it. As noted earlier, an important virtue of QFM
scheme over other approaches is that the quantities
that are determined in an empirical application,
namely, the Z„,(E), have a clear physical interpre-
tation. They are directly related to the effective
potential, V, (E,r), through the one-body Schro-
dinger equation. In this section we discuss this
relationship.

To proceed we consider the equation for the rad-
ial function P,"(E,, ~) = rR~io'(E, r) associated with
the reference potential V' (&),
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ma, tely linear.
One solution to Eqs. (14) and (I'I) i»nown,

namely, 5 V, (E, r) = —v, (E) and P, (E, r) = P, (E
yv, (E),r), as can be easily demonstrated. That
this should be a solution is not surprising, since
the square-well correction potentials were the ones
that motivated the present parametrization scheme.
However, it is important to note that this is not a.

unique solution. It is clea, r physically that there
should be r-dependent solutions. In fact, for a
given E Eq. (IV) merely fixes a quantity similar
to an expectation value of 5 V, (E, r) It a.ppears
that only when considerable restrictions are im-
posed on the form of 6 V, will the equations yield a
unique solution. It may be of interest to note that
the problem of determining 6V, is closely related
to the "inverse"-scattering problem.

Despite the nonuniqueness problem, the above
equations should be useful in that they provide a
direct connection between the desired functions,
b V, and P„and the parametrized v, (E). It is rea-
sonable to expect that the 5 V, (E, r) will be fairly
smooth functions of 8 and r, and further that
many-body theory will provide some guidance for
their functional forms. An example of this is
given by Eq. (11), which is a result of the Sham-
Kohn' theory. When suitably parametrized func-
tional forms for the 5V, (E, x) are obtained, the
equations will provide the means for determining
the parameters.

As a very simple example of the above proce-
dure we have taken the potential correction to
have the form

5 V, (E, , r) = a, ( )rE+b, (E)x'

and have required in one case that they have van-
ishing slope at r =r,. and in another that they van-
ish at r=r, . Equations (14) and (1V) were then
solved self-consistently for the one independent
function, the a, (E), say, and for the radial func-
tions using the empirical v, (E) for Cu and E~
= 0.6904. The calculations converged in two or
three iterations starting with P, =P,"(E+v,(E), r).
We find that the energy dependences of the a, (E)
[and thus the b, (E)] roughly parallel those of
-v, (E). This is not surprising since the 5V, do
not change sign.

Gne important practical reason for seeking an
empirically corrected potential is to enable one to
obtain "corrected" wave functions which are need-
ed for the calcula, tion of matrix elements. Even
before we can resolve the nonuniqueness problem,
approximate wave functions can be obtained from
the present scheme. The crudest approximation
would be to use the radial functions R~o'(E, r) for
the reference potential. A better approximation is
E~"(E+ u, (E), r), which we believe incorporates

the effects of 6 V, in a reasonable wa, y, even when
the 6 V, does not have the square-well form. We
speculate that for U, (E) that are not large these
functions and the matrix elements that result from
them would differ only slightly from those corres-
ponding to other forms of OV„providing that the
5 V, satisfy some smoothness criterion. We plan
to check this speculation shortly. We note that a
criticism which has been raised against the use of
empirical band approaches like the present one is
that they fail to provide a. means for obtaining wave
functions. From the above discussion it is seen
that the present scheme does not suffer from that
shortcoming.

IX. SUMMARY AND DISCUSSION

The present work has accomplished what we be-
lieve to be the most satisfactory empirical para-
metrization of the electronic structure of a 4-band
metal over a broad energy range. Further, the
results for the specific metals studied, namely,
Cu and Ag, appear to be in good agreement with
all available information. The success of this work
is mainly attributable to the development of a, new
parametrization scheme. In this new approach the
logarithmic derivative, S,(E), for a given I is rep-
resented by the corresponding quantity obtained
in an ab initio calculation, but with the energy
shifted by a quantity v, (E), which could be viewed
as the depth of an /- and E-dependent square-well
potential. These v, (E) for /=0, 1, and 2 were
shown to be very smooth functions of E which
could be accurately parametrized over the energy
range of interest (roughly 1 Ry) with only seven
adjustable parameters for a, d-band metal-a num-
ber which is quite reasonable for a, fully empirical
application in view of the data presently available.

Many of the advantages of the present scheme
over the previous GFM and the other parametri-
zation approaches can be understood in terms of
the nature of the v, (E) and 2~"(E). The smoothness
of the v, (E), which is reflected in the ease with

which they can be parametrized with low-order
polynomials, has several consequences: (i) It en-
ables us to circumvent the difficulty previously
encountered in fitting the singular 22(E) or tang2(E);
(ii) the number of adjustable parameters required
for accurate results is very small (smaller than

that needed in any previous scheme); (iii) the ac-
curacy is less sensitive to the energies at which

the parameters are determined.
In connection with points (ii) and (iii) above, we

note that realistic tests of the accuracy of the pre-
sent scheme were conducted in precisely the same
manner as proposed for the fully empirical para-
metrization (Sec. V). The E„(it) for some ab ini-
tio calculations were parametrized using as the



12 PARAME TRIZA TION OF E LE C TRONIC BAND STRU CTU RE S. . . 615

reference logarithmic derivatives, ZIO'(E), those
corresponding to a quite different band structure
(e.g. , see Fig. 3). The accuracy achieved in our
test for four different pairs of band structures
(typical rms and maximum errors were 0.001
and 0.01 Ry, respectively) is higher than that
achieved in the other schemes in less demanding
tests using more parameters.

From the role played by the reference ZIO~(E),

it is evident that this approach can be used natur-
ally and conveniently to blend empirical data into
a first-principles calculation. Related to this
point is the flexibility of the scheme regarding the
number of adjustable parameters to be used. The
number can readily be varied depending on the
data available and the accuracy required. If, for
example, only a few pieces of data are available,
one could use only the constant terms in Eq. (4) for
the v, (E), which corresponds to a rigid shifting
of the Zto~(E) curves. This should provide a sub-
stantial correction to the bands over a reasonable
range of E. There is also flexibility in the maxi-
mum value of l to be used. For reasonably high
energies [e.g. , Ez E(L",)] the inclusion of the l
=3 component produces noticeable energy shifts.
However, since the tan@, are still relatively small,
the use of the unmodified Z~o'(E) should suffice,
with the consequence that no new parameters need
be introduced. Still another advantage is that the
present approach extrapolates to relatively high
energy better than schemes in which the Z, (E)
[or tang, (E)] are themselves represented by some
functional form.

In the present work we have concentrated on the
electronic structure of d-band metals, but clearly
the general approach can be applied to other types
of solids. The result of a test carried out on Al
indicates that the approach would be useful for
simple metals. For Al four or at most five para-
meters should suffice for accurate results over a
large energy range. From experience we are con-
fident that the approach will be useful for any
solid for which the muffin-tin potential is a useful
approximation.

It has been emphasized that the GFM parametri-
zation scheme, in contrast to many other approach-
es, could provide an effective means for obtaining
useful information about the effective potential
V, (E, r) and the associated wave functions. Pro-
gress in this connection has been realized by the
derivation of coupled equations connecting these
quantities with the parametrized v, (E). One solu-
tion to these equations for energy E consists of
the potential V, (E, r) = V 0~ (r) —v, (E) and the radial
function Ato~(E+ v, (E),r). However, it .is clear
that Eqs. (14) and (17) do not admit unique solu-
tions unless sufficient constraints are imposed

on potential corrections V, (E, x) —V~o~ (r). Never-
theless, we suggest that EI'~( E+ v, (E), r) provides
a reasonable good approximation for practical ap-
plications. To the extent that this is true, we
have eliminated the objection raised against em-
pirical band schemes that they fail to provide
wave functions.

Because of the important role of experimental
data in the present work, careful consideration
was given to their selection. The seven pieces of
data for each metal consisted of the three phase
shifts at E~ accurately determined by the Fermi-
surface dimensions and the energies of four
optical gaps for transitions whose identifications
we believe are firmly established. The gaps lo-
cate four levels (X» X4i, X„and L", ) relative to EI,
at energies ranging from the bottom of the d band
(-5 and 7.5 eV below E„ for Cu and Ag) to E(L", )
(-4 eV above EI, for both). The empirical bands
are thus required to be "correct" at key energies
over this appreciable and important (empirical)
range. Thus on the basis of the realistic tests we
have strong expectations that the empirical bands
will also be correct for other energies within the
empirical range, and also for energies somewhat
outside the range. The fact that these empirical
band structures agree with all additional informa-
tion available about level positions tends to con-
firm our belief. Since there is a significant amount
of additional data for Cu, we believe that the em-
pirical Cu bands have been checked in considerable
detail. The situation is somewhat different for Ag,
where the additional data are quite limited due to
the fact that much of the relevant interband struc-
ture occurs for S~ ~ 5.5 eV, where the data are
rather sparse. Additional optical data, especially
piezo-optical measurements on single crystals,
would be very useful in further checking the Ag
empirical band structure.

As is well known, the Fermi-surface data"' can
be parametrized over a wide range of E~. We
have parametrized the band structures over the
same EJ; range. Our results indicate that the re-
lative positions of levels lying in the energy range
covered by the input data are rather fixed, while
the higher-energy states are relatively sensitive
to E~. As a consequence, it does not appear pos-
sible to limit the possible E~ range using the pre-
sent data, but it should be possible if some high-
energy transitions (in the 10-eV range) can be
firmly identified. Further, we argue that plaus-
ible physical considerations can be used to nar-
row the E~ range.

There are a few aspects of our work on the
noble-metal energy bands that remain to be done.
One is the extension to the relativistic problem.
The present approach should still be useful, al-
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though a larger number of parameters will pro-
bably be needed. The relativistic formulation is
a necessity for treating Au; it would also be de-
sirable for Ag. Also, we have not as yet carried
out calculations of the imaginary part of the di-
electric function. The e, (a) calculation and the
extension to relativistic bands will be the subject
of future work.

In conclusion, we remark that the success of the
present scheme is due to its exploitation of the in-
formation contained in ab initio logarithmic deri-
vatives. Although initially it sounds contradictory,

it is this exploitation of the first-principles re-
sults which enables us to undertake what we loosely
term our "fully empirical" parametrization of
Cu and Ag.
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2~The quoted errors in Ref. 3 are: In the nonlinear fit,
the rms errors are 0.0042 and 0.0045 Ry and the max-
imum errors are 0.0125 and 0.0133 Ry for Cu and Ag,
respectively; in an alternative fit, the rms errors are
0.0041 and 0.0045 and the maximum errors are 0.0164
and 0.0172 Ry, respectively, for Cu and Ag. Dr, N. V.
Smith informed us that the energy range they considered
exceeded ours by only about 0.1 Ry,

2 On the basis of the considerable experience gained in
the last decade it is not difficult to con, truct a reason-
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able potential. For example, one can construct the
potential by the usual recipe of superposing atomic
charge densities and potentials and including the local
exchange-correlation correction with variable n.
From the E„(k) corresponding to potentials for several
a. 's, one can obtain a suitable value of ~ by interpola-
tion.
In the construction of this potential, we have used
atomic charge densities corresponding to & = 3.

~ The strong energy dependence of v, (E) for some of the
extreme Ez values (see Table IV) indicates that re-
latively large errors may occur for the higher-energy
states (see Sec. V). We note, however, that the v, (E)
for the Ag Ez= 0.35 case are only weakly energy depen-
dent. Nevertheless, appreciable differences from the
level positions for Ez—- 0.75 are found. Some of these
differences are about four times larger than the ex--.
pected errors.

3~The main reason for these choices of E+ values is that
they are the values within the plausible ranges at which
Shaw etal. (Bef. 8) fitted the g&'s.
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