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Pressure-dependent properties of absorption- and emission-band shapes of impurities in solids
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Pressure dependences are determined for a number of properties of absorption- and emission-band

shapes of vibrationally assisted electronic transitions within impurities in solids. The vibrational

coupling of the impurity to the lattice includes both linear and quadratic interaction terms, as well as

different pressure couplings in the ground and excited electronic states. The pressure-dependent

properties that are examined include the zero-phonon-line energy, the first three moments, the centroid
shift from the zero-phonon line, and the Stokes shift, In general, all these properties have pressure

dependences that involve the quadratic interaction parameter and the difference in the pressure
coupling to the ground and excited electronic states, These pressure-dependent effects are shown to
arise through a pressure-dependent Huang-Rhys factor and a pressure-dependent energy separation
between the minima of the electronic ground and excited states,

I. INTRODUCTION

There have been numerous studies reporting the
effects of pressure on absorption- and emission-
band shapes of solutes, gases, and impurities in
solids. These have included both experimental
and theoretical work, and have dealt with elec-
tronic effects Pe~ se, and also effects introduced
through vibrational interactions with the electronic
states. The experimental studies have primarily
dealt with the readily measurable pressure-in-
duced frequency shifts of the peaks of the band
shapes. These shifts have been related to the pres-
sure dependence of the crystal-field parameters
for ion complexes and also for extrinsic impurities
in solids. ' ' The main concern of this paper is
with the effects of hydrostatic pressure on those
absorption- and emission-band shapes that are
caused by vibrationally assisted electronic transi-
tions within a, single impurity ion (either intrinsic
or extrinsic) in a solid.

Pressure-induced frequency shifts of band
shapes have been extensively reported for impuri-
ties in alkali halides, ' ' in II-VI compounds, "'
and in other host lattices. " There have been con-
siderably fewer experimental studies of the pres-
sure dependence of the half-width, peak intensity,
and oscillator strength of such bands. """ There
is some indication that with increasing pressure
the near-infrared band of Cr' in ZnS shifts to
higher frequency, narrows, increases in peak in-
tensity, and decreases in overall strength. ' Sur-
prisingly, there does not appear to be any re-
ported experimental work concerning the pres-
sure dependence of the moments of these band

shapes. A good review of the experimental studies
through 1965 is provided by Drickamer. "

As with the experimental work, most theoretical

work has centered on the pressure-induced fre-
quency shifts of the peaks of these bands, ""'"'"
although there has been some work reported con-
cerning the pressure dependence of the half-
width and peak intensity. ' ' ' 6 The early con-
figuration-coordinate study by Johnson and
Williams' likened the effects of pressure to those
induced by a piston performing the work necessary
to transfer the impurity and its surrounding from
one configuration equilibrium position to another.
With this interpretation, they were able to suc-
cessfully fit the pressure-induced frequency
shift of the absorption band in KCl:Tl. Henry,
Schnatterly, and Slichter" investigated the effects
on similar band shapes of both uniaxial stress and

hydrostatic pressure. For an impurity ion whose
electronic ground- and excited-state vibrational
frequencies are equal, they find that the first
three moments of an absorption-band shape are
altered under the effect of hydrostatic pressure in
such a way that the band is displaced in frequency.
The over-all band shape, however, is unchanged.
Koda e]- g). ' constructed configuration-coordinate
diagrams for a variety of impurities in ZnS from
observed pressure-induced frequency shifts of the
band maxima. Jacobs' concluded that for the I'
center in several alkali halides, the main pres-
sure-induced frequency shift in the peak position
is due to variation of the interatomic distances with
pressure, while only a small fraction is due to
optical lattice vibrations. He also predicted that
unequal vibrational frequencies in the ground and
excited electronic states could result in pressure-
dependent half-widths, as well as frequency shifts
of peak positions. This has been reiterated by
othe rs

The theoretical work of Drickamer, Frank, and
Slichter" deals with a configuration-coordinate
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approach to understanding the effects of pressure
on impurity band shapes. For equal pressure cou-
pling in the ground and excited electronic states,
they show that the peak position is pressure de-
pendent, while the half-width is pressure depen-
dent only if the ground and excited electronic states
have different vibrational frequencies. Their ap-
proach was extended by others, ""and served as
a basis for a more complete study by Lin, "who
generalized the approaches of both Johnson and
%'illiams, 4 and Drickamer, Frank, and Slichter"
in an attempt to obtain a theoretical foundation of
their models. In his approach, Lin considers sit-
uations where the ground and excited electronic
states have different vibrational frequencies and,
simultaneously, where the pressure coupling to
the ground and excited electronic states can be
different. The theoretical model he develops is
applicable to frequency shifts of electronic spec-
tra, electronic relaxation, and transformation of
electronic structures.

The intent of the present work is to build on the
theoretical framework developed by Lin, and to
investigate specifically how hydrostatic pressure
affects various properties of vibrationally as-
sisted electronic absorption- and emission-band
shapes of impurities in solids. Prime concern
here is with zero-phonon energies, peak positions,
half-widths, the first three moments of the bands
(indeed, all higher-order moments also), and the
Stokes shift between absorption and emission.
Since a band shape is completely specified once
all its moments are determined, it is of impor-
tance to determine the dependence of these mo-
ments on pressure. The pressure dependences of
these moments are, in turn, sufficient to describe
completely the pressure dependence of the band
shape.

plus higher-order terms having factors like
s"H, /ss», . ss»" ". The occurrence of such terms is
not essential to the present development, but they
do contribute to higher-order effects. The P =0
nuclear dlsplacements are 8jo, and/ designates
the jth of the N possible nuclear displacements.
The nuclear displacements are linearly related to
the pressure and also to the nuclear coordinates
R,j+AAj and, thereby, to the normal coordinates
qj through Pj, the modulus of compressibility
when the pressure is nonzero

pp, (((„+a((,) ((.(, (
. (+(=Q a,,q,)

. (2)

The DRj are displacements that are caused by
nuclear vibration. Here, Pj is taken as pressure
independent; in some instances, however, it is
pressure dependent. This is considered further
in Sec. III. The expressions &"H,/Ss," for all n, .

including n =0, in Eq. (I}are evaluated at P =0,
and are therefore pressure independent. They
are, accordingly, not evaluated at. the equilibrium
positions that occur for nonzero pressure, so we
perform a Taylor expansion of the (&"H,/Ss", ), , in
the AR, about the pressure-induced equilibrium.
Since the Taylor expansion is performed on a
quantity that is evaluated at P =0, the change
Bs, in the nuclear displacement is equal to the
change BATE, in the nuclear coordinate. Then

II. THEORETICAL DEVELOPMENT

Consider an impurity ion located within a solid
that is subjected to an external hydrostatic pres-
sure P. The total ground-state Hamiltonian H, ,
including the electronic, vibrational, and pres-
sure contributions is written as the sum of the
Hamiltonian H, (0) in the absence of pressure and
the perturbation H, (P) -H, (0) that is induced by
the pressure. The pressure produces a change in
the nuclear displacements sj, which in turn per-
turb H, (0). Accordingly, we expand H, (P) in a
Taylor expansion in the s,. about H, (0),

where use has been made of the second half of Eq.
(2). For n = I, the first term on the right-hand
side of Eq, (3) vanishes because BH,/&s, is now
evaluated at equilibrium. Equations (2) and (3)
are now substituted into Eq. (I}and it is noted
that Q» &„»(I» is negligible in comparison with the
larger term B~, The leading terms of the result-
ing expression are

H, (P)=H, (0)+P Q P,.R,.
g =l

H, (P) =H, (0)+ P ' (s,.)
j 1- j sjo

+ g (, '„) (s,l", (()
jo

x ' a)q~

The electronic potential of the ground state is
then given by E,(P) =((t,~H, (P)~(t(,), where the P,
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are the purely electronic wave functions; we de-
fllle E (0) sllllilRI'ly. Tile pl'esslll'8-llldepellde11't
coefficient C,„ is introduced

Eb(» = g Eood —[(sa ItkII&1)"'

+P I'1C.a[»"ftaCd1l 'P

2S~S '/2
+ ~+If~i A+

Then the expression for the electronic ground-
state potential becomes

E,(P)=E,(0)+P g C, q, . (8)

It has been shown elsewhere"" that

Ea(0) = Q Eood+ ocoafa ~

where E~„represents the equilibrium energy of
the k'th vibrational mode of the electronic ground
state and fd~ is the vibrational frequency of the
A'th vibrational mode. Combining Eqs. (8) and ('I)
and reaI"ranging, we get

( ) I [ 1 Pc., )'

+2oI1~QI +PC cola ) (8)

The derivation of the vibrational potential for the
electronic excited state proceeds analogously to
that of the electronic ground state (see Ref. 18
for the derivation for P =0). In the derivation we

introduce the ratio B~ of the electronic excited-
state vibrational frequency of the kth vibrational
mode to that of the electronic ground state of the
same vibrational mode. We shall consider the
general case where B„41. R~ is usually not signi-
ficantly different from unity, although it can vary
for impurities in alkali halides. " All the results
simplify to those of the linear interaction by mere-
ly setting &„equal to unity. The quadratic inter-
action parameter 8„ is so named because it is a
Dleasure of the degIee to whic11 E„.™E,is quad-
ratic in q~, R~ is taken as pressure independent,
in accordance with available data. " The Huang-
Rhys fRc'tor, S1=ft1co1go1/2h, oil tile 0'tllel' 11Rlld

(see below) is a measure of the degree to which

Eo —Eo is lilleRI' 111 cfog (R't P = 0). Hel'8, goy ls the
equilibrium normal coordinate of the @h vibra-
tional mode of the electronic excited state. Be-
cause the pressure coupling to the electronic ex-
cited state could be different from that of the elec-
tronic ground state —due to the atomic orbitals
being rearranged with respect to one another —the
coefficient V„=C»/C, „ is introduced to allow for
asymmetry in the electronic ground-state and
electr onic excited-state pressul e coupllngs

+ . 0 aA 9

We now considqr just the 4th vibrational mode,
and dIop the 0 subscript. Additionally, we shift
both the ground-state and excited-state potential
energies by the same amount, P'C,'/2co' E„.-
This shift produces no effect in either the optical
absorption spectra or the optical emission spectra
that result from these potentials because these
spectra depend on the difference in the ground-
state and excited-state potentials. %'e also dI op
the + and b subscripts, and denote these pres-
sure-shifted potentials as U, (P) and U, (P). For
many impurity centers, a single configuration

oordinate does not provide aIl accuI'ate descrip
tion of the system, and any realistic model should
include a variety of interacting modes. " Keil""
finds that the presence of terms in q;q, can be es-
sentially deleted by appropriate choice of con-
figuration coordinates. The potentials then be-
come

U.(P) =-,'co'(q+PCco ')', (10a)

2g@ t/2 ~yC-, 2

+ —,'R'co' cf + +» . (10b)

We introduce the pressure-shifted coordinate
Q and the pressure-shifted Huang-Rhys factor 8',

Eels. (10) become

U (P) &~oq2

1/2- 2

Uo(P ) = Uo —S'ER++ —,'R coo Q+ R~

(13R)

(18b)

The ground-state equilibrium is located at q,
= -I'Cv ', and the ground-state vibrational motion
is simple harmonic motion about the equilibrium.
The excited-state vibrational motion is likewise

S -=[S' '+PC(V-Z')(211'a~')-' 'j' (11b)

the value of 8' is pressure independent if V =B'.
Usillg Eels. (11) Rllcl tile clefillltloll

2SVI ~' P'C'(R' —1)
0 0
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M.=f.~&~(x~l(E. -E.)"Ix& & (15)

for absorption, and similarly for emission except
for replacing i by f and f„byf„. The x; are the
electronic ground-state vibrational wave functions
and f,~ is a coefficient that is not important for the
present discussion [see Lax2' for a derivation of
Eq. (15) and a discussion of its limitations]. The
notation &, means a thermal average over all i,
and when performed, involves 8=A&v/k, and, of
course, the temperature T. The wave functions
and the potentials are all of the same form for Q
atI'40 as they are for q atI'=0. Accordingly,
to transform the moments for I' =0 to those for
P w 0, one simply replaces 8 by 8' and Eo by Uo.
For convenience we use the notation m„=M„/Mo,
and we present the second central moment m, 2

(the second moment taken about the band centroid,
m, ) instead of the second moment m„because
m~ can often be related to the half-width of the
band. The emission moments are denoted by the
subscript c, and are obtained analogously to those
for absorption. Table I lists the pressure depen-
dences of the zero-phonon transition energy (for
a transition between i = 0 and f = 0), the first mo-
ment (centroid) and second central moment of the
band shape, the energy separation of the band
centroid and the zero-phonon line, and the Stokes

simple harmonic, but with a different frequency
(Bru) than that (&u) of the ground state, and pos-
sesses an equilibrium position that is shifted in
both energy and normal coordinate from that of
the ground state.

Note that for I' =0, 8' reduces to 8, U, reduces
to E„and Q reduces to q. In fact, Eqs. (13) are
identical to the I' =0 results with two exceptions:
(i) the Huang-Rhys factor S is appropriate when
P =0 is replaced by S'[Eq. (lib)] when P WO; (ii)
the energy Eo, appropriate when P =0, is re-
placed by II, [Eq. (12)] when Px0. That these two
replacements are all that is required to transform
E, and E, to U, (P) and V, (P) means that any prop-
erty of the band shape depending solely on these
quantities can be readily transformed to its pres-
sure-dependent form. We now consider a few
examples of such pressure-shifted properties of
the band shapes.

The eigenvalues of Eqs. (13) are

e, = (i+-,')ha),

e, = U, —S'B6&u + (f+ —,')BS&u,

where s ls the vlbl RtlonR1 quRntuIQ nuIQber of the
electronic ground state a, and f is the vibrational
quantum number of the electronic excited state b.

The three lowest moments (and only these
three") of the band shapes are given by

shift b,(P) representing the energy separation of
the absorption and emission centroids. These
pressure dependences were obtained by making
the substitutions S' for S, and Uo and Eo in the
quantities in the second column from the left that
give the well-known I' =0 results. There are no
terms proportional to I", so that the sum of the
three right-hand-most columns gives the quantity
in the left-hand column.

III. DISCUSSION

The zero-phonon line has a pressure-dependent
position E,~ regardless of the value of S, 8, or V
(except in the trivial case where B=1, V=1, and
S =0). Since B ls usually on the order of unity
(0.9 to 1.1), the zero-phonon line energy linearly
decreases with I' for low pressure; but it can be
quadratically increasing or decreasing at high
pressure, depending on the sign of R' —t/'.

The zeroth moment is pressure independent.
This is not surprising because here, where elec-
tronic effects are not considered, the zeroth mo-
ment is related to the number of absorbing centers.
The centroid always has a pressure dependence
regardless of whether R = 1, V= 1, or S =0, as
long Rs Rll three do not occur slIQultRneously.
Note that the pressure dependence of m, is differ-
ent from that of E,~, so that one is always shifted
with respect to the other This shi. ft, m, (P)
—E,~(P), is given in Table I. It is pressure inde-
pendent only when there is a strictly linear inter-
action (B = V=1). Note that, depending on the val-
ues of R and V, this shift can display a minimum,
a maximum or be a monotonically increasing or
decreRslng function of I . Fox' bRnds that Rx'e

near-Gaussian in shape (usually the ease for
Sa 3), the centroid closely approximates the peak
position, and the above statements concerning the
pressure dependence of the centroid can be taken
to apply (with the near-Gaussian caveat) to the
peak position as well. For such near-Gaussian
bands, m„ is related to the full width y at half-
maximum (half-width) by p = (8 ln2) ~ (m~2) ~ . For
V=B' there is no pressure dependence of m~ (and
thereby the half-width). This appears to be the
usual ease experimentally. Typically, B~ 1 (al-
though there can be exceptions), and since re-
ported pressure dependences of many experi-
mentally measured half-widths are either small
or not detected, ' this implies that V also is very
close to unity. There are, however, instances' '
where the band does display a pressure dependent
half-width that can be a linear or quadratic func-
tion of pressure. For low pressure and B&l V'~'l,
the half-width can even decrease with increasing
pressure. For near -Gaussian-shaped bRnds, the
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TABLE I. Pressure dependences of properties relevant to absorption- and emission-band shapes. The expression
for any quantity in the left-hand column is given by the sum of the expressions in the three other columns.

Quantity

Absorption

mo(I'}

mg P')

n'c 2(

m)(p) -&,p (I')

Pressure-independent
term

fah

E(, +~1 (R2 —1)@vcoth(0/2T)

(6&)~SR~ coth(0/2T )

+ 8(R~ -1) (Ace)2 coth~(0/2T)

2(2SR +1 -R)Ru

+-,' {R'-&)S~ coth(0/2T)

Linear-pressure
tel m

—PCR ~ (2S@/R cu) ~/~

+ 2P Cv S R~(kz)2(V -R2}

x (2R ~ha~) ~/~ coth(0/2 T)

+I'C(V -R2) (2Sh/R cv)~/~

Quadratic-pressure
tel In

+P2C2 (3. +R2 —2V) /2cu2

+I'2C~ (V -R2)~R~ (Aced)
2

x (2R3k~') ' coth(0/2T)

+I' C2O-V 2)/2~~

Emission

m, o (&)

m, g(&)

fba

go —(].+R ~)ShcvR

+41(R~ —1)S~R ~ coth(RO/2T)

(5 R «)2S coth(RO/2T)

+PCR ~(2S@'/Rx) /

x (R~ -V -R~V)

+2PCWS (V-R )(@~R ')

+P2C~V(2+2R )
~

x (2R~ -V -R~V)

+I 'C'(V -R')'(A~R '}'

z„{J) -m„(P)
+ ~(R~ —y) (hcoR )~ coth (R 0/2T)

1(R y 2SR)5~+ {].+R ~)ShcoR

+—'(R~ —].)6'~R ~ coth(RO/2T)

x (2R3@~3) '/ coth(RO/2T) x (2R3h~ ) 'coth(RO/2T)

-PCR (R -V)(2S@/R~) 2 +g2C2(V -R )~/2

&,p V')

&(&)

so+-:tR

(& +R 2 )SR~R ~ + (3./4R ) (R —1)@&

x tR coth(0/2T) —coth(R 0/2T)]

I V C(2SS/R ~)"'
+S CR-'(V -R') (1+R')

x {2S@/R~)'"

+I ~C~(R~ -V2)/2R ~2

+I 'C'(V -R')'(1+R')

x(2co~R4) ~

product of y and the peak intensity is proportional
to Mo, which is constant. Hence the peak intensity
is a function of I', and varies approximately in-
versely as y(P).

The emission results are closely analogous to
those of absorption. The location of the zero-
phonon line for emission is coincident with that
of absorption Isee Eq. (14)]. As for the absorption
band shapes, the zeroth emission moment is pres-
sure independent, the emission centroid is always
pressure dependent, and the second central mo-
ment for emission is quite similar in form to that
of absorption. Also, as for absorption, the pres-
sure dependence of the second central moment
(hence the haU-width) for emission vanishes if
V=R', The separation of the emission centroid
and the zero-phonon line is pressure independent
if V=82, whereas for this to occur for absorption
it is required that V=R2=1.

The Stokes shift h(P) is the sepa. ration of the
absorption and emission centroids. It is pressure
independent only if V=R', but otherwise always
has a pressure dependence.

The compressibility in the vicinity of an im-
purity has been found to be essentially the same

as that for the host lattice for many impurity-host
systems, ' But for impurity ions whose radii are
significantly different from those of the ions they
replace, the local compressibility may differ from
that of the host lattice. Additionally, experiment-
Rlly meRsured compresslbllltles have been found

to be pressure dependent. " The compressibility
of the volume V at constant temperature T is

Lazarus LRwson Rnd SlRter give Rn expres;
sion for V(J'), based on work by Bridgman" and

Slater, "from which

For KC1, A. = 5.68&10 bar ', B= -7.24 ~10 "
ba, r ', and, both here and typically, B/A = —10 '
bar '." Thus, for pressures less than about
0.5 kbar, p is constant and equal to A, whereas
for pressures between about 0.5 and 2 kbar,
P=A —2BP and linearly increases with increasing
pressure. For higher pressures P is a more com-
plex function of I'.
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This variation of P with P introduces a second-
order effect in those expressions in Table I that
involve C. This can be corrected to a first ap-
proximation by giving P, and thereby C, the pres-
sure dependence of Eq. (1'I).

IV. CONCLUDING REMARKS

The aim of this paper has been to obtain ex-
pressions for the pressure dependences of the
main properties of absorption and emission band

shapes within impurities in solids. These are
tabulated in Table I. These pressure dependences
are shown to be describable through a definition
of a pressure-dependent Huang-Bhys factor and
a, pressure-dependent energy separation between
the minima of the electronic ground and excited
states. The figures of merit for these optical
transitions are f,~ (also, f~), E„R8,,S, V, and
C. All but the last two can be determined, at
least, in principle, from measurements made at
atmospheric pressure. A determination of the five
remaining unknown parameters from an atmo-
spheric-pressure absorption or emission measure-
ment requires highly accurate data-especially if
a moments technique is employed. Nevertheless,
such a determination is possible if unwa, nted ef-
fects are not present or are carefully removed.
In addition, several of these five parameters can
be pressure dependent. For example, the pres-

sure dependence of the compressibiiity introduces
additional constants to be specified. To deter-
mine Vand C, pressure-dependent studies are re-
quired. V and C can be obtained from such non-
atmospheric pressure measurements using the
expressions listed in Table I. In fact, it would be
informative to analyze the pressure-dependent
moments of band shapes to obtain values of C and

V.
For the linear interaction (8= 1), the convolu-

tion approach of Ritter" has been found" to ac-
curately. portray the exact quantum-mechanical
band shape. The technique applies to cases of
reasonably large S (~3) and gives a continuous
line shape rather than the 6-function spectrum of
the exact quantum-mechanical treatment, and is
accordingly easier to compare to experimental
spectra. The convolution approach is relevant
also to pressure studies. As mentioned in the
previous sections, all that is required is the defi-
nition of S' and U,.

For high pressures, the pressure dependences
of Table I may not be followed because of de-
partures from the approximations made in the
derivation of the relations in Table I. These in-
clude the possible continuous dependence of the
vibrational frequencies on pressure, the mixing
of vibrational modes, the requirement of several
normal coordinates for adequate discriptions of
the band shapes, and the pressure dependence of
the compressibility.
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