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A pseudo-unit-cell model is utilized to calculate some lattice-dynamical properties of a mixed diatomic lattice
of the form AB, „C„,where 0 & x & 1. The pseudo unit cell is formed by A, (1 —x)B, and xC ions and the

resulting mixed crystal lattice is a repetition of such cells. The lattice dynamics of both a linear and a three-

dimensional mixed zinc-blende lattice have been studied. The lattice-dynamical model consists of central and

noncentral short- and long-range interactions among ions of appropriate efFective ionic charge. The model

parameters are deduced from physical observables such as the elastic constants and the long-wavelength

optical and impurity mode frequencies of the end systems when x ~0 and x ~1.Explicit calculations for the

phonon dispersion and frequency distribution function have been performed for the linear mixed diatomic

lattice and for ZnS, „Se„andGaP, „As.

l. INTRODUCTION

The study of mixed crystals can be dated back to
as early as 1928.' The early work' ' on. the lattice
dynamics of disordered crystal systems was in
most cases of a formal mathematical nature and
therefore not easily adaptable for computational
purposes. Several phenomenological models' '
have been proposed to study the vibrations of
mixed-crystal systems. Verleur and Barker' con-
sidered a cluster model to account for the two-
mode behavior of the mixed crystals GaP, „As„
and CdS, „Se,. This model assumed that like
negative ions clustered around positive ions or
vice versa depending on whether the impurity was
an anion or a cation. In the random-element-iso-
displacement (HEI) model, Chen, Shockley, and
Pearson' assumed that in a mixed crystal A.B, „C„,
the B and C atoms are distributed on the anion sub-
lattice and the anions of like species vibrate in
phase with identical amplitudes against the cations
which also vibrate as a rigid unit. Later, Chang
and Mitra' modified the REI model to include the
polarization field. Subsequently, Chang and Mitra'
proposed the pseudo-unit-cell model and predicted
the zone-boundary phonons of systems exhibiting
the two-mode behavior at the zone center. Recent-
ly, there has been interest in using the Green's-
function technique" and the coherent-potential-ap-
proximation technique" "to study the lattice dy-
namics of mixed crystals. A review of the various
types of mixed crystal models and relevant experi-
mental data is given by Chang and Mitra. ' At
present, complete calculations for the phonon

frequencies in an actual three-dimensional crys-
tal have not been performed.

A natural "brute force" technique to calculate the
phonon frequencies of a lattice is to start with a
large finite lattice and then permute the various
number of ways to configuratively orient the lattice
depending upon the concentration x. For each pos-
sible configuration, the phonon frequencies would
be calculated and the resulting ensemble would then
be averaged to obtain a representation of the phonon
frequencies in the mixed lattice. This technique
would, however, be very tedious and long owing to
the number of configurational orientations, and the
violation of lattice periodicity in most of the con-
figurations. For values of x approaching either
zero or unity, the Green's-function technique could
be applied. However, as the impurity concentra-
tion increases, the impur ity- impur ity inter actions
become significant. This causes the Green's-func-
tion approach to become very complicated.

The purpose of this paper is to calculate the
phonon dispersion and the frequency distribution
function based on a probabilistic repetitive unit
cell defined as a pseudo unit cell. ' Calculations
have been performed for both a mixed linear di-
atomic chain and a mixed three-dimensional zinc-
blende lattice. The pseudo unit cell is formed by
the ions A, (1 —x)B, and xC. Although this unit
cell is simple it is obviously unphysical as far as
the exact representation of the lattice. The fact
that it obeys translational symmetry is a physical
drawback. In spite of these deficiencies, however,
this model has proven' ' to be a simple approach
by which one can estimate general features of the
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optical properties of mixed diatomic crystals. In
particular, this model has theoretically verified"
the experimental behavior of certain zone-center
and zone-boundary phonons in mixed diatomic
crystals. In view of the simplicity and previous
success of this model, it was decided to extend
the calculations to all wave vectors to see if the
model has merit in mixed-crystal lattice-dynami-
cal calculations. In the linear-chain lattice and
the mixed zinc-blende lattice, the modified rigid-
ion (MRI) model" is used to predict the lattice
dynamics. The MHI model consists of short-range
central and noncentral repulsive interactions and
long-range Coulomb interactions among ions of
appropriate effective ionic charge. The model
parameters of the mixed crystal of the form
AB, „C„arededuced from the elastic constants,
optical-mode frequencies, and impurity-mode
frequencies of the host crystals. The model pa-
rameters along with the lattice constant are as-
sumed to vary linearly as a function of concentra-
tion. Explicit calculations have been performed
for a hypothetical mixed linear chain and for
ZnS, „Se„andGaP, „As„.The phonon dispersion
in various symmetry directions and the frequency
distribution function are obtained as a function of
concentration.

II. MIXED LINEAR DIATOMIC CHAIN

A. Pseudo unit cell

The unit cell as defined in perfect crystals can-
not be uniquely defined for the mixed crystals.
However, the mixed-crystal problem may be
treated in a manner similar to the pure crystal
case, if certain assumptions are made on the
distribution of the ions in. the lattice. In a mixed
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(I-x) B (i-x) B

(x) C (x) C
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2(n-I) a
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FIG. 1. Pseudo unit cell for a mixed linear diatomic
chain, A,B& „C„(0~ x ~ 3.).

B. Lattice dynamics

The generalized equations of motion in a mixed
diatomic linear chain may be written

crystal, A&, „C„where0(x(1, the 8 and C
ions are assumed to be distributed randomly in
their corresponding sublattice and to obey the
law of statistics. A corresponding pseudo unit
cell is then formed by ions A, (1 —x)B, and xC.
The resulting mixed-crystal system can be thought
of as a repetition of such cells. Probabilistically
the pseudo unit cell may be thought of as a con-
figurational average unit cell. A schematic rep-
resentation of the pseudo unit cell for a mixed
crystal in one dimension is given in Fig. 1. The
fractional amount of the & and C ions located at
the same lattice site is proportional to the mixing
ratio in the crystal. This means that the cor-
responding forces involving these ions are weighted
by these factors.

mzu2„=(1—x) g (F~s+4&s)(u2„+ —u „)+xg (F +~CcÃc)(u + 2—uz„)+g (E ~ ~4&+~)( +u&2—u,"„),
m m L

(1 —x)msu, „„=(1 —x) g (E„+4s„)(us» +„+—u,„,,) + (1 —x) g (Fss +@as)(u,„,+u2+„+,)

+x(l —x)Esc(uc „-us„„)+x(1 -x) Q (Es'c+4~c)(uc,„,—us„„),

and

(")mc "2' 1 =x g (EAc+~'~c)(u2"l. - u.'. .i)+x' g (Ecc+@cc)(u,'. ...I -u,'...)

+x(1 x)EBc(umn+z + )+x(1 x) Q (EBc+@Bc)(un+1+l u2 +1)
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where 1=+2, +4, +6, . . . , and m=+1, +3, +5, . . . ,
mA, B, c a e the atomic masses, and u2„and u2B„+cl

are the atomic displacements. The subscripts
represent the ion's position. E ~~ and 4~J~ are
the force constants representing the /th-neighbor
repulsive and the electrostatic (Coulomb) interac-
tions, respectively, between the Kth and &'th ions.
It should be pointed out that the force constant EBc
is an unphysical force constant inherent in the
model.

The electrostatic force constants are defined as

ez = —ere' =~8

limit gives three vibrational frequencies. One of
these frequencies is zero and refers to the acoustic
mode of the system. The remaining two modes
pertain to the optic mode of the host lattice and
the impurity mode. These solutions are given as,
at +=0,

+to. xe = (I/&ca) [2F&so+4 20'12(z)e /a))]

I. c = (I/ c) [ 2 Aco +FBco

+ 3.6062 (z 2e~/a3)]

=Impurity mode of C in AB,
at x =1, we have

&2« „e—(I/g„e)[ 2F„eo(1—8) +4 207.2(z,'e'/a, ')]

z is the effective ionic charge and &~ is the distance
between the ions & and &'. The & and C ions are
assumed to have the same effective ionic charge,
therefore,

@AB =O'AC =4'12

=(I/ )[.(2F

+ 3.6062(z', e'/a, ')]

=Impurity mode of B inAC.

(6)

- l l l l
AA BB CC BC 11 (3)

Assuming a traveling wave solution of the form

&(I 2ne-fdt )
2n A

B, C 1[k(2n+1) a-&t ]
2n+1 B~ C (4)

where co is the angular frequency, I|' is the wave
vector, and a is the lattice spacing, and Eq. (1)
reduces to the following secular equation for the
normal modes of vibration:

z, and a, refer to the AB system, z2 and a2 refer to
the AC system, and p» and @Ac are the reduced
masses. The term z'e'/a' is a force-constant-
type term and is assumed to vary linearly with
& as

z'e'/a' =Fz =F«(1 —Ox) .

It was assumed that z, =1.0. This enables the com-
plete determination of the force constant param-

ABO& ACO& BCO~ SO&

The phonon frequencies for the entire composi-
tion ranges 0~ x & 1 can now be obtained by solving
the secular equation (5) at different points in k

space.

AB AC BC
y g

ABO +A CO BCO
(6)

where the subscript 0 indicates the force constant
appropriate for the material AB, AC, or BC.

The solution of Eq. (5) in the long-wavelength

I is the identity matrix, and the dynamical matrix
0 is a 3&3 symmetrical matrix. The three roots
of Eq. (5}give two optic modes and one acoustic
mode. In the limit of infinite dilution (as x - 0 and
x-1), two of the above solutions become the
acoustic and optic modes of the host lattice, while
the third mode becomes the impurity mode.

Explicit lattice-dynamical calculations were per-

formedd

considering nearest-neighbor repulsive
interactions and long-range Coulomb interactions.
It was assumed that the force constants vary linear-
ly with concentration from one end member to the
other as

(,)
d M((d')

(f (uP)
(10)

where the integrated frequency spectrum M(aP) is
the fraction of phonon states the squares of whose
frequencies are less than or equal to ~. This can
be expressed for the mixed-crystal case as

4P

~(~') = ~ f Q)l ~() li)I' '(~ - ~l ()')w),
a, J'

(11)

I e(I I &)I' =
I u~(I I Al'+ (I -x)lus(~l &)I'+xluo(I I &)I' .

C. Frequency distribution function

The frequency distribution function as a function
of the squared frequencies is defined as
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uz(k~ j), u~(A~ j), and uo(&~ j) are the eigenvectors
for the frequency cu~ (&), and K is the total number
of phonon states.

The model parameters were determined using
the value of physical observables appropriate to
ZnS, „Se„.This was done in order to get physical-
ly realizable values for the results. The corre-
sponding lattice-dynamical results are in no way
related to the actual results of the three-dimen-
sional mixed crystals, which follow.

The frequency distribution function for the
ZnS, „Se„caseare presented in Figs. 2 and 3. At
x =0.0001, which is a case of isolated impurities
of Se in ZnS, the frequency distribution function
is essentially of the perfect ZnS system. But as
x is increased, the impurities begin to play an
increasing role in the spectrum and consequently
one notes a gradual emergence of the impurity
frequency band in the gap of the optic and acoustic
band. With increasing concentration, the frequency
distribution in the impurity band increases while
it goes on decreasing in the optic band. As x ap-
proaches unity one also notes the turning of the
optic mode into the impurity mode and vice versa.
And finally, at x =0.9999, the frequency distribu-
tion function is essentially that of the pure ZnS
system.
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FIG. 3. Frequency distribution function for the
ZnS& „Se„easeat concentration of x =0.50, 0.80, 0.99,
and 0.9999.
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III. MIXED ZINC-BLENDE LATTICE

A. Lattice-dynamical model T„„(KK')= Q (Cx'„.)„,e"""'r'x (16)

and

z =(1 —x)z, +xz,

a =(1 —x)a, +xa, ,

(12)

where a, and z, refer to the crystalAB, and a,
and z, refer to the crystal AC. The linear varia-
tion of the lattice constants has been substantiated
experimentally. " The force constants are also
assumed to vary linearly as

o'a

10 20 30 ~10 JRO l 10

=1 —Ox
7

&2o I"3o

where I9 can be thought of as a model parameter.
The generalized equations of motion for the

mixed-crystal system AB, „C„underthe assump-
tion of a traveling wave solution can be reduced to,

[D —&u'l][u] =0 . (14)

I is the identity matrix and u is a 1 & 9 column
matrix. The dynamical matrix 0 is a 9&9 Her-
mitian matrix, the elements of which are of the
form

In the three-dimensional zinc-blende lattice the
A ions are located at their normal lattice site,
while their nearest-neighbor site consists of a
fractional amount of 8 and C ions proportional
to the mixing ratio in the crystal. The interac-
tions between the constituent particles in the lat-
tice are assumed to be of the same type as de-
scribed in the MHI model. " Basically, these in-
teractions consist of short-range noncentral and
central interactions and long-range electrostatic
interactions. For near-neighbor short-range in-
teractions, this gives rise to five repulsive force
constants o.„P„o.„P„ando, The subscripts
1, 2, and 3 refer toA-&, A. -C, and B-C interac-
tions, respectively. The second-neighbor inter-
actions are assumed to be central, giving rise to
three force constants p,„p.„andp, Repulsive
interactions beyond second neighbors are neglected.
The only parameter associated with the electro-
static interactions is the effective ionic charge pa-
rameter z.

The lattice constant a and the effective ionic
charge parameter are assumed to vary linearly
from one end to the other as

where &,K' =A. , B,C, and

~ @acre'
2

(4'rx }..= „,y

r~ ~ is the static position vector between the ions
K and K', and (4x„)„,is the interaction potential
between the Kth and &'th ions. The condition for
a nontrivial solution for the displacement is

ID- ~'&I =o.

The coupling coefficients consist of both a re-
pulsive part, R„„(KK'}and an electrostatic part,
C„,(KK'). Utilizing Eq. (16) along with the sym-
metry of the zinc-blende structure, the repulsive
coupling coefficients for the first- and second-
neighbor interactions are given as follows:

R„„(AA)= (1 —x) [4o., +l/. , (2 —C„„,)]

+x(4[ n, +g, (2 —C„„)]$,
R„„(BB)=4 [o., + (1 —x) p, (2 —C„„)+x(o,, +2p. ,}],
R„„(CC)= 4 [o., +xy., (2 —C„,) + (1 -x)(n, + 2 y, ,)],

(18)

= —(1 —x)'/'a, (a,'+ a,'+ a,'+ a~),

R„„(BC)= —4 [x(1 —x)]'/'(o. , + g,C„„,),
R„„(BB)= ' R„,(CC)"2

(BC)(x)1/2 g xv

=4(1 —x}p, , sinmq„sinn'q, ,

R„(AA)=R„(BB)+R„„(CC),

R„„(AB)= „,' .R„,(AC)(1 x)I/2p

= —(1 —x)'/'P, (a,
' +a,' —a,' —a,'),

R„g(AB}= „,' R,g (AC)
(1 —x)'/'P,

= (1 —x)'/'P, (a,' —a,' +a,' —a,'},

R,g (AB)=,/,
' R,g(AC)

(1 x)I /2P

D„,(KK', k) = [1/(m m )'/'] T„„(KK'). (16)
= —(1 —x)'/'p, (a,' —a,' —a,' —a,'),

The coupling coefficient term T„,(KK'} is defined where
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TABLE I. Physical observables for zinc-blende crystals; ~ in cm i; Ci~ in 10~ dyn/cm2.

C« C(2 C44 Ref. Ref.

ZnS
ZnSe
GaP
GaAs

10.46
8.59

14.11
11.877

6.53
5.06
6.187
5.372

4.613
4.06
7.043
5.944

20
20
22
23

350 270
252 206
406 366
295.5 268

220
297
270
355

19
19
9, 21
9, 20

Extrapolated gap mode.
Local mode.' Gap mode.

C„„,= cosmq„cosmq, + coswq, cosnq„,
e«(e„+a~+q } /2

I
&+(Qg 0&

-
Q~ )/22-

eim{q~-q -q }/23-
(e„-e~-e ) /2

4

q =(a/2s)k .

(19)

B. Model parameters

The model parameters contained in the coupling
coefficients are determined by relating them to
known elastic constants and the long-wavelength
vibrational modes of the system A.B as x 0 and

the system A C as x-1. The relations between
the elastic constants and the model parameters
can be expressed at & =0 as

1
C~~ ~ (n,c+8p,c)+0 1255

A cyclic permutation of the coordinates (x, y, z)
along with the use of the Hermitian property of the
coupling coefficients enables one to generate the
remaining repulsive coupling coefficients. The
electrostatic part of the coupling coefficient is
due to Coulomb interactions between ions of ap-
propriate effective ionic charge. General expres-
sions for the Coulomb coupling coefficients of the
perfect crystals have been given by Woods el aE."
Extension of this work to the mixed zinc-blende
crystals is straightforward. " For the special
case of k =0 tending to zero from the x direction,
the only nonzero Coulomb coupling coefficients
for the mixed-crystal case are

=1 Z 282
(2pio- nM+4&M) -1 324 2' ~

1 Z~eC«, = — (n„+4g„)—0.0 63 2',

[2.519(z',e'/2r ,') —(P,„/r', )]'

and at @=1 as,

(21)

C„„(AA)= —2C„,(AA) = —2C„(AA)= C, ,

C„„(BB)= —2C„(BB)= —2C„(BB)= (1 -x)C, ,

C„„(CC)= —2C,„(CC)= —2C„(CC)=xC, ,

(20)

C„„(AB)= —2C„(AB)=. —2C„(AB)= —(1 —x)'~'C, ,

C„„(AC)= —2Cy„(AC)= —2Cg, (AC) = —(x)'~'C, ,

and

C„„(BC)= —2C,y (BC) = —2C„(BC)= [x(1 —x)] '~'C,

where

C, = Bsz'e'/3v,

and

V =@91
a

1 Z2&2C„,= (n, +Bog»)(1 —8) +0.1255

1 Z28
Cis 2

= (2p« —n2o+4i „)(1—8) —1.324

1 Z e
C,4, =

2 (n,o+4p, ,o)(1 —8)-0.063 22 4

[2 519(z,'e'/. 2r', ) —p,„(1—8)/r,']'
2 n, 0(1 —8)/r', —nz2e'/3r s'

(22)

where r„r,=-,'(a„a,). The second subscripts 1
and 2, in the elastic constants refer to the sys-
tems AB and AC, respectively. The long-wave-
length vibrational mode frequencies can be related
to the force-constant parameters by evaluating the
secular equations for the eigenfrequencies of vibra-
tion at k=0.
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The following expressions may be shown to re-
sult, first, at x =0,

~LA, AB TAo AB

uP=(1/p~s)[n, +-', m&, e'/v ]=&go gs (24)

(u'=(1/g„s)[ n„—-', mz,'e'/v. ] =aPTo „s,(25)

and

of equations and unknown parameters, some of
these equations were solved in the least-square
sense. Equations (24)-(26) and (28)-(30) were
solved simultaneously for n„,e2p, e,p zz and z, .
The remaining model parameters were obtained by
solving Eqs. (21) and (22) by a least-squares meth-
od. The expressions for the least-square error
were formed as follows:

&u' = (1 /m o) (4 n2o+ n,', ) = (u,'
~ c

= impurity mode of C in, AB,

and then at &=1,

(26)

and

|=(Ci, i —C'„,) +(C,o, —C,'o 1)

+(C44 |. C~4 i)

(32)

(d = u —~LAo AC TAo AC s

(u' = (1/p„)[4n„(1—0)+-', (vz', e/v, )]

+Loo AC s

'=(1/V, )[4 „(1— )- l (.''/. )]
2= TO, AC &

uP = (1/ms)(4n, o+ n,', )(1 —6') = a&1' s

=impurity mode of 8 in AC,

where

(2V)

{28)

(29)

(30)

o (Cu 2 Cu. o) +(Cio, o Cia. o)

+(C„,—C,', ,)' .
The primed elastic constants are the expressions

given by Eqs. (21) and (22) with the n„,z„n
„

and z, paramters obtained from Eqs. (24)-(26) and
(28)-(30). The unknown parameters p„,p», p„,
and p.2p were then obtained by simultaneously
solving

8&io a&xo

86 862

20 ~oo

noo =4(n-+»")

1/p. gs c —1/m~ + 1/ms

All the transverse frequencies above are doubly
degenerate and the degeneracy of the impurity
frequencies is threefold. The zero-frequency
solution for the acoustic mode confirms that the
model is con.sistent with the continuum case at
long wavelengths. For a system exhibiting two-
mode behavior, the impurity modes in Eqs. (26)
and (30) are the gap and local modes. For one-
mode systems, the resonant modes are thought
of as being the impurity modes. In the case where
the systems exhibit mixed mode behavior, a com-
bination of resonant mode and gap or local modes
may be appropriate.

Since there is an imbalance between the number

Since the value of the second-neighbor repulsive
force constant for &-C interaction might be ex-
pected to be somewhere between the values of a
second-neighbor B-&- and C-C-type force con-
stants, it was assumed that

i „=(~„i.,)'" . (34)

This makes the determination of n„from Eq. (31)
possible.

C. Phonon dispersion

The phonon dispersion curves for the mixed
zinc-blende crystals were obtained by solving the
secular equation as a function of wave vector and
concentration. Table I lists all the physical ob-
servables used as input parameters and the re-
sulting model parameters are summarized in
Table II. Figures 4 and 5 present explicit phonon
dispersion curves for ZnSz „Se„andGaP, „As„

TABLE II. Force-constant parameters for mixed zinc-blende crystals; 0., P, and p, in 105 dyn/cm.

Clap Pgp P2p P, 2p Cl3p

ZnS& „Se„
GaP& „As„

0.2838 0.3187 0.0337 0.3661 0.3311 0.3406 0.1699 0.0339 0.9309 0.8326 0, 1999

0.4563 0.3697 0.0364 0.5249 0.4261 0.0392 0.2051 0.0378 0.7365 0.7137 0.2188



LATTICE DYNAMICS OF A MIXED DIATOMIC LATTICE 5919

7.0

Z~S[-x Sex

x = 0.0001
x = 0.50
x = 0,9999

8.0-

[-x x

x = 0.0001
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FIG. 4. Phonon dispersion for Zng „Se„in the [111]
direction. Solid line, x =0.0001; dotted line, x =0.50;
dot-dash line, x =0.9999.

as a function of wave vector in the [111]
direction for various values of concentration.
For the Zn, ,Se„systems, the impurity mode at
x-0, was taken to be the extrapolated gap mode. "
The present calculations predict the impurity
mode of Se in ZnS as x-0.0 to be a resonant
mode; see Fig. 4. Thus ZnS, „Se„doesnot ex-
hibit the true two-mode behavior and further clas-
sification of this system is necessary. The
GaP, „As„systemexhibits two-mode behavior
and, indeed, one observes the gap mode at x
=0.0001 and the local mode at x =0.9999.

In general, one observes nine distinct branches
of phonon dispersion for an arbitrary direction in
k space for the mixed zinc-blende crystals. Three
of these branches refer to the acoustic mode of the
system. Of the remaining branches, three are the
optical mode frequencies of the host lattice and the
other three are the impurity mode frequencies of
the system. In the limits of infinite dilution as
x-0.0 and x-1.0, the impurity modes are triply
degenerate throughout the k space. The non-
dispersive behavior of the impurity modes for
infinite dilution is quite evident in Figs. 4 and 5.
As the concentration departs from these limits of
infinite dilution, the impurity mode starts to show
dispersion, while the optic mode becomes less
dispersive. The long-wavelength optical phonons
in ZnS, „Se„andGaP, „As„mixedsystems are
presented as a function of concentration in Figs.

Q[lll]

FIG. 5. Phonon dispersion for GaP~ „As„in the [111)
direction. Solid line, x =0.0001; dotted line, x =0.50;.
dot-dash line, x =0.9999.

6 and V. These predictions are in good agreement
with the experiments' ' ' and the modified random-
element-isodisplacement (HEI) model calculations. '
In Sec. III, it has also been shown that the isolated
impurities as x-0.0 and x-1.0 give rise to triply
degenerate localized vibrational modes. When the
impurity concentration is increased, these three-
fold degenerate localized modes split into twofold
degenenerate transverse modes and a nondegen-
erate longitudinal mode. This splitting behavior
is in agreement with a previous prediction. '

D. Frequency distribution

Utilizing Ell. (11) the frelluency distribution func-
tion is calculated for a mesh of 4096 points in the
first Brillouin zone. Owing to the symmetry prop-
erties of the Brillouin zone for the zinc-blende
structure one needs to consider the determination
of the eigenfrequencies only at the nonequivalent
points in the k space defined as

k = (s/Sa) (q„,q„,q, ),
where

)~q )~q )~q )~0

q„+q„+q,~ 24 .
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FIG. 6. Long-wavelength optical phonons in Zng „Se„
as a function of concentration x.

FIG. 7. Long-wavelength optical phonons in Gap~ „As„
as a function of concentration x.
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FIG. 9. Frequency dis-
tribution function for
Znei „Se„for various val-
ues of concentration x
=0.50, 0.80, 0.99, and
0.9999.
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This particular mesh of k points gives a total of
24 567 frequencies from which a histogram of the
distribution function is obtained.

The frequency distribution functions for
ZnS, „Se„andGaP, „As„systemshave been

calculated for various values of x and are pre-
sented in Figs. 8-11. In the case of ZnS, „Se„,
one does not observe an impurity mode emerging
in the gap of the distribution function when the
concentration is increased from 0.0001. What
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FIG. 10. Frequency distribution function for GaP& „As,
for various values of concentration x =0.0001, 0.010,
0.10, and 0.30.

FIG. 11. Frequency distribution function for GaP& „As
for various values of concentration x =0.50, 0.80, 0.99,
and 0.9999.
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one notes is a peak rising near the top of the
acoustic band. This suggests that the impurity
mode in ZnS, „Se„asx- 0.0 is a resonant mode.
This is substantiated by the fact that Chang and
Mitra" extrapolated their long-wavelength re-
sults for ZnS, „Se„to x-0.0, but they could only
measure the gap-mode behavior to a concentra-
tion of x =0.2. The emergence of the gap and
local modes in GaP, „As„systems, is self-ex-
planator y.

IV. DISCUSSION

Since no neutron-scattering data exist for the
phonon dispersion in mixed zinc-blende crystals
no direct comparison can be made with experi-
ment. The only known neutron data on dispersion
curves in mixed crystals were obtained for
K„Hb~ „Br." It was observed in this work that
the transverse-acoustic and transverse-optic
modes in the [111j direction decreased with an
increasing concentration of the Hb ion. Our re-
sults on GaP, „As„andZnS, , Se„in the [111j
direction show a similar type of trend as the
concentration of the As and Se ions, respectively,
is increased.

The present model is proposed for the entire
composition range 0- x- 1, therefore it reduces
to the vibrational spectrum and predicts impurity
frequencies for the crystal A& with isolated im-

purities C, in the limit of & approaching zero and
likewise also reduces to a corresponding predic-
tion for the crystal AC with isolated impurities
I3, in the limit of x approaching unity. Since this
theory is also proposed to predict the phonon dis-
persion behavior throughout the Hrillouin zone, it
also predicts the k = 0 phonons of the mixed crys-
tals at all values of concentration. The present
model essentially is an interpolation scheme be-
tween two perfect crystals. It is, however, capable
of predicting impurity mode behavior. These
modes have flat dispersion at low concentration
and then become increasingly dependent on & as
concentration increases. This is the behavior
one would expect in &-conserving neutron-scat-
tering experiments.

Since a more physically realizable model capable
of yielding phonon dispersion and the frequency
distribution has yet to be applied in detail for
three-dimensional lattices, the present model
might serve as a useful tool in analyzing experi-
mental results on mixed-crystal systems.

In order to further test the present approach
more neutron-scattering data on mixed crystals
are needed.
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