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complex. II. Effect of anharmonicity

M. Bacci and A. Ranfagni
Istituto di Ricerca sulle Onde Elettromagnetiche del Consiglio nazionale delle Ricerche, Firenze, Ital&'

M. Cetica
Istituto di Elettronica, Facolta di Ingegneria dell'Universita di Firenze, Firenze, Italy

G. Viliani
Istituto di Fisica dell'Universita di Parma, Parma, Italy

(Received 19 May 1975)

The linear Jahn-Teller interaction of a triply degenerate T electronic term in an O„complex with 6g and T2g

modes has been considered with the inclusion of anharmonic interatomic potential terms. The anharmonic
terms allow the coexistence of stable distortions of different symmetry. The effect of the totally symmetric
coordinate Q, has also been considered and its effects discussed with respect to recent experimental results.

I. INTRODUCTION

The static Jahn-Teller effect (JTE) on a triply
degenerate state T of an O„complex interacting
with & and 73 vibrational modes has been investi-
gated both in the linear' and quadratic' approxi-
mations. As known, in the linear case tetragonal
or trigonal stable distortions are possible accord-
ing to the relative magnitude of the coupling con-
stants b (e modes) and c (7's modes); moreover,
orthorhombic stationary points exist on the lower-
energy surface, but they are never minima. ~

Rec ently, the analysis of Refs. 1-4 has been ex-
tended to the quadratic JTE; in this framework it
was shown that orthorhombic points may become
minima' and that different kinds of minima are
allowed to coexist for suitable values of the qua-
dratic coupling constants (Paper I).7' On the other
hand, as the second-order Jahn-Teller coupling is
estimated to be of the same order of magnitude as
anharmonic interatomic potential terms, ' it
would be better to take the two effects into account
together; but such a complete treatment is not eas-
ily carried out owing to its mathematical complex-
ity. Therefore, in Ref. 7 and in Paper I, we dealt
with the quadratic JTE alone, while in the present

paper the effect of cubic anharmonicity on the
7&(& + vs ) Jahn-Teller problem is considered.

In what follows we show that the linear JTE to-
gether with anharmonicity may cause (a) the ortho-
rhombic points of Refs. 2 and 3 to become minima
(as suggested previously by Wysling and Miillers
and Englman"), and (b) minima of different sym-
metry to coexist. Thus, the inclusion of anhar-
monicity leads to results analogous to those ob-
tained with the quadratic JTE.

In Sec. II the conditions for the existence of the
three kinds of minima are derived; in this section
the mixing of coordinates spanning different irre-
ducible representations is neglected and constitutes
the object of Sec. III, especially as regards the
totally symmetric coordinate Q, . The results are
then discussed in Sec. IV.

In order to lighten the presentation, procedural
and computational details already shown in Paper I
are not reported here.

II. MINIMUM CONDITIONS

The electron-lattice Hamiltonian II, „which was
obtained by the procedure described in Refs. 7 and
11, is given by

H, , = W+ V = —(2b/&3) (QsS, + QsSs) —c(Q4 V'& + Qs g'„+ Qs r'z) + [sK,(Qs + Qs)

+ ~s&AQs+ Qs+ Qs) —s &e(3QsQs —Qs) —s If'Q4QsQsf &,

where 8' is the Jahn-Teller Hamiltonian, V is the
potential energy, K,' and K,' are the anharmonic
coupling constants, and the other symbols have
been defined in Paper I. In writing Eq. (I), we
assume that odd vibrational modes may be neglected
completely (this assumption will be retained

throughout the paper); we have also omitted cubic
terms involving coordinates of different symmetry
and any term containing Q, . The latter will be
considered in Sec. III.

According to the Hellmann-Feynman theorem, '2'~

in order that a given nuclear configuration be sta-
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ble, the expectation value of the generalized force
must vanish; that is,

b3 K, —2B/K,
K, ~c 1+ (1 4B/K3, )'/3 (4)

(a~, ~a)+, =0 (3=1, . . . , 6),

where I a) is the electronic state, I a) =a, lx)+a3ly)
+ a3I z), and obeys the eigenvalue equation

a, , ia)=Eia) .

Following the procedure of Paper I, from Eqs. (2)
we find for the coordinates (Q, ) and energies (E,)
of the stationary points.

A Tetragonal distortions, (a&, u&, u3) =(0,0,1)

Q3 = Q4
——Q3 = Q3 = 0, Q3

———(K,/K', )[1—(1 —4B/K, ) / ],
E' = (2b/v 3)q,'+ —,'K, (q,')3+—', K', (q,')',

E. Orthorhombic minima

B/K3,

O' K~ & 2 —8, with 8 = (1+2B/K3)'/3,

—3&C/K, & —,',
O' K 2
sc. ~e (let/BNe —1) 1+-', (c/sc,') ) '

F. Trigonal minima

—4 ~C/K, ~ 4,

(7)

where B = bK,'/v 3, plus two equivalent tetragonal dis-
tortions. 3 Note that for K,'- 0, Q3- —(2b/v 3K,),
that is, the value of the harmonic approximation;
moreover, Q, = —(K,/K', )[1+(1 —4B/K, )'/3] is also
a solution of Eqs. (2) which corresponds to an en-
ergy maximum and diverges as K', —0. These
points have no physical significance in the present
context and we shall no longer consider them.
Such an argument holds for trigonal and ortho-
rhombic cases too.

B. Orthorhombic distortions, (u&, u&, a3) =(2) .
' (1,+ 1,0)

Q3 = Q4 = Q, = 0, Q3 = —(K,/K', ) [1 —(1+2B/K, )'/3],

Q3=+ c/K, ,

+ 3K~(Q3) —3 K', (Q3),

plus two equivalent couples of orthorhombic dis-
tortions. 3

C. Trigonal distortions, (ul, u2, a3) = (3) ' (1,1,1)

Q'=Q'=0

Q4=Q3 ——Q3=Q =3(K /K', ) [1 —(1+4C/K ) /3],

E =2cq +3K,(q ) —3 K,'(Q )

where C =cK',/9, plus three equivalent trigonal dis-
tortions. 2 The stationary points are minima if
arbitrary increments to the coordinates Q, result
in a positive-definite increment of the energies E, ;
by a procedure analogous to that of Paper I we ob-
tain the following minimum conditions.

b K, 3($ —1) 1 3(P —1)
x, e' s —4 2c'/Ãt 4c'/K' ) '

with P = (I+4C/K3)'/ . (10)

The boundary lines corresponding to conditions
3-10 are displayed in Fig. 1, where the encircled
numbers refer to the relative conditions in the text.
In Fig. 1 the horizontally shaded area corresponds
to tetragonal minima (Te), vertical shading to or-
thorhombic minima (Or), and oblique shading to
trigonal minima (Tr). In the checkered areas the
coexistences Te-Or and Tr-Or are allowed. As
regards tetragonal and trigonal areas, Figs. 1(a)
and l(b) are not related by any common condition
and an inspection of these figures shows that the
Te-Tr coexistence is also possible. An example
will better visualize this point: Let us consider
the set of parameters b = c = K, =E,= 1 which, in the
harmonic approximation, result in a continuum of
minima. ' lt is sufficient to introduce a small pos-
itive value of B/K3 and a corresponding negative
value of C/K3 for the coexistence Te-Tr to be pos-
sible. Figure 2 shows this coexistence for B/K3
= 0. 1 and C/K3= —0. 1. With the same parameters,
by a numerical diagonalization of II, , we have ob-
tained the map of Fig. 3, where coexisting tetrago-
nal and trigonal minima are displayed. In this fig-
ure the coordinate Q& is defined as (3) '/3Q3=Q4
=Q3=Q3 ~

III. EFFFCT OF THE TOTALLY SYMMETRIC
COORDINATE Qg

D. Tetragonal minima

—4 B/K, ~ -', — (3)

As mentioned in Sec. II, the Hamiltonian (1) is
not complete since the following terms should be
added to the potential energy:

+ (Q1 'QJ) + If (Qj) ((aq1+ ~3K~Q4) 3 Qf[K' Qg+ K', (Q3+ Q3) + K g(Q4+ Q5+ Q3)]}s

3 K ((Q3 + Q3)(Q4 + Q3) + Q3Q3}s (j = 2, ~ ~ ~, 6)
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FIG. 1. (a) Domains for the existence of tetragonal (horizontal shading) and orthorhombic (vertical shading) minima
in the plane b K,/c K~ vs B/K, . (b) Domains for the existence of trigonal (oblique shading) and orthorhomhic (vertical
shading) minima, in the plane btK, /ctK~ vs C/Kt, . In the checkered areas different kinds of minima coexist. The en-
circled numbers refer to the corresponding conditions in the text. The curve 8 depends on the value of B/K„and has
been drawn for the two limiting values 8/K2, =-0.5 and 1.5.

In Eq. (11) the meaning of the coupling constants
a, K, K', K'„K'„K,', is self-evident. Here
we shall consider in some detail only the terms
containing Q„because of their possible relevance
to some experimental results to be discussed in
Sec. IV. As for the remaining terms of Eq. (11),
their inclusion would not influence qualitatively the
conclusions of Sec. II, although it would affect the
coordinates of the orthorhombic points and the co-
existence areas of Figs. 1 and 2; the Q3Q& map of
Fig. 3 is practically unchanged in the neighborhood
of the axes.

According to the procedure of Sec. II, the Hamil-
tonian H=H, , +H'(Q„Q&) leads to the following sys-
tem for the coordinates of the tetragonal stationary
point (0, 0, 1):

x [1, ,'(K',K'/K')(Q—)+ (2aK'/K )1'", (»a)

Qs = —K,/K', + s(K~,/K', )Q) + (K,/Kt)

x [1+(K',/9K, ) (Qt) s —(2K', /3K, )Q,

—(4bK'/WSK')]'", (13b)

where the two solutions corresponding to an energy
maximum have been discarded. An exact solution
of this system is cumbersome, but significant ap-
proximate results may be obtained if we assume
that the cubic constants are much smaller than the
elastic ones. In this case, by a power-series de-
velopment of the square roots (1+x)'~s = I+ —,x —~x,
by substituting in (13a) for Qs its value in the har-
monic approximation [Qs = —(2b/v 3K,)], and by ne-
glecting terms in (Q, )s and (Q,), one gets

Qs=Q4=QS=Qs=00 .0 0 0

a+K Qt —sK'(Qg) —s K', (Qs) =0,
2b/WS+ K,Qs + —K', (Qs) —sK', QtQs = 0

which gives

Q', =K./K.' —(K./K.')

(12)
Q, = —a/K~+ a Kn/2K~+ 2b K~,/9K K, ,

Qs= —2b/V SK, —2b K',/SK . s

In a similar way, one has for the orthorhombic
points (I, + 1, 0),

Qs=Q4=Qs=00 0 0
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Q, = —a/K +a K,'/2K

+ baK', /16K K, + c K',/6K~K, ,

Q = b/&3K —b K'/6K

Qa = v 3cK /(3KNK, + aKN, ),
and for the trigonal point (1, 1, 1),

Qa=Qs=0,0 0

Q&= —a/K +a K'/2K +2c K',/9K K, ,

Q4=Q5=Q6= —2c/3K, +2c K,'/27K, .

~ g

]
~

0

b Qo
B C
k2 k2

1 2 3

FIG. 2. Domains for the existence of tetragonal (hori-
zontal shading) and trigonal (oblique shading) minima, in
the plane b2/K, ve ct/K, In the ch.eckered area both '

kinds of minima exist. The encircled numbers refer to
the corresponding conditions in the text. Curves 4 and
10 have been cal.culated with B/K, = 0.1 and C/K, =- 0. 1,
respectively. The starred curve corresponds to the
harmonic case.

We shall not investigate the minimum conditions,
as no qualitative change is expected to occur with
respect to Sec. II. We note that the Qna. Q6 co-
ordinates of Sec. II, when (1 —4B/K, )'~a, (1+2B/
K,)', and (1+4C/K, )' are developed in a power
series, reduce to the coordinates Qac . Qcs of this
section; furthermore, the coordinates Q, of sta-
tionary points of different symmetry do not coin-
cide because of the anharmonic terms. Thus, when
minima of different symmetry coexist, they have
different Q, coordinates.

rv. DrscUssrow

In the light of previous'6' and present results,
it appears that Opik and Pryce's dichotomy be-
tween tetragonal and trigonal minima depends on
rather restrictive assumptions (linear Jahn-Teller
effect and harmonic restoring forces) which are

-2--

FIG. 3. Coexistence of tetragonal (Te) and trigonal
(Tr) minima on the T level. The map in the QSQ& plane
is computed with b=e=K, =K,=1, E,'=0. 173, E,'=-0. S.

unlikely to be met in actual physical systems.
The introduction of quadratic JTE or anharmo-

nicity causes (i) the existence of orthorhombic mini-
ma, (ii) changes in the existence domains of tetrag-
onal and trigonal minima, (iii) possible coexistence
of different kinds of minima. , and (iv) different
kinds of minima to have different Q, coordinates.

In Paper I we have presented a model for the in-
terpretation of the double emission excited in the
A ban'd of KI:Tl-type phosphors; the model assigns
the two emissions (Ar and Ax) to coexisting minima
of different symmetry; the coexistence was pro-
vided by the quadratic JTE alone. The present re-
sults reinforce our model in that both mechanisms—
quadratic JTE and anharmonicity —have similar
consequences when considered separately and they
are reasonably expected to act in an analogous way
if they were considered together. '~

As for the totally symmetric coordinate Q~, re-
cent experimental results by Masunaga et al. in-
dicate that it plays a role in the emission process.
In fact, these authors found that with increasing
hydrostatic pressure, the Az emission of KI: In
becomes gradually stronger while the Ax emission
tends to disappear. In this sense, increasing
pressure is analogous to decreasing temperature.
The pressure dependence of KI: In emissions is
explained by Masunaga et al. ' by the presence of
two minima (stabilized by the quadratic JTE) in
the Q, subspace, which would correspond to tetrag-
onal and trigonal minima in the full six-dimensional
space. These conclusions fit in the model we have
presented in Paper I. Actually, in Paper I the co-
ordinate Q, was neglected, but it is easily seen that
when it is taken into account, coexisting minima of



COEXISTENCE OF TETRAGONAI . WITH . . . II 5911

different symmetry are placed at different Q, 's. In
fact, inspection of the matrix elements of the qua-
dratic JTE, as reported in Ref. 7 shows that Qo, for
tetragonal and trigonal minima depend also on b,
and c „respectively.

In the present paper we have shown that an alter-
native way to reach almost the same results is to
include anharmonic terms which, in particular,
make it possible to have minima of different sym-
metry with different Q~'s, i.e. , two minima in the

Q, subspace. This is just the scheme required in

Ref. 15 in order to explain the experimental re-
sults. We also note that while the simplified mecha-
nism suggested in Ref. 15 gives rise only to the
tetragonal-trigonal coexistence, the model pre-
sented here and in Paper I also allows orthorhombic
minima to coexist with other distortions.

In conclusion, apart from phosphors' lumines-
cence, which we are mainly concerned with, it is
felt that the present theoretical results would be
applicable to many other physical systems because,

even though the presence of a strong quadratic JTE
may be questionable in some cases, anharmonic
terms are, as a rule, effective. On the other hand
the greater adaptability of the theory with respect
to Opik and Pryce's scheme is obtained at the ex-
pense of its incisiveness, since a larger number of
parameters is introduced. As a consequence, it,

is difficult at the present moment to make definite
previsions on particular systems, since most of
the quadratic and anharmonic coupling constants
are not known. One way to get an estimate of these
constants seems to be the method of moments, as
recently used by Nasu and Kojima. '
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