
PHYSICAL RE VIEW B VOLUME 12, NUMBE R 12 15 DE CEMBE R 1975

Specific heat of nearly-one-dimensional tetramethyl ammonium manganese trichloride
(TMMC) and tetramethyl ammonium cadmium trichloride (TMCC)
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The specific heat of tetramethyl ammonium manganese trichloride and its cadmium isomorph is measured for
2 & T & 52 K. The temperature dependence of the lattice specific heat of the cadmium compound could be
fitted with an expression based upon a pseudoelastic approach of the lattice vibrations in this low-dimensional
system. Application of this approach to the manganese compound yields a magnetic contribution which fits
the overall behavior of a one-dimensional Heisenberg model with an intrachain interaction of J/k = —6.7+ 0.5
K. Inspection of the low-temperature region yields a satisfactory agreement with the expression
C = 1.1~ kT/J~+0. 5i kT/J~' —0.13

i
kT/J~', predicted by recent calculations.

INTRODUCTION

Tetramethyl ammonium manganese trichloride
(TMMC) is considered as one of the best one-di-
mensional antiferromagnetic compounds known at
this moment. Recent publications have shown that

, the Ni (TMNC) and the diamagnetic Cd (TMCC)
compounds can be considered as isomorphic. The
one-dimensional magnetic behavior of TMMC orig-
inates from the crystallographic arrangement of
isolated Cl, -Mn-Cl3 chains separated from each
other by N(CH, ), groups. The ratio of inter- to
intrachain exchange interactions

~ J"iJ i has been
estimated to range between 10-3 a d 10 5. 2 The
exchange can be considered as highly isotropic,
small anisotropy effects have only been observed
in susceptibility measurements. ' Neutron-dif-
fraction experiments have shown that the correla-
tion lengths and the dispersion relations of the
spin waves are consistent with a highly one-dimen-
sional behavior with Heisenberg exchange, although
there is some discrepancy between the inferred
values for the intrachain exchange coupling. '
Although a large number of papers have been de-
voted to the magnetic properties of TMMC, the
over-all behavior of the magnetic specific heat does
not seem to have been reported. In a previous
paper, the total specific heat up till 4. 2 K, includ-
ing the behavior near the ordering temperature
(T„=0. 885 K) was reported. s Recently Dietz
et al. and Vis et al. ' published their specific-heat
results in the range 0. 3-300 K. The specific heat
of the isomorphous TMCC from l. 7 to 18 K was
reported by Blacklock et al.

Our aim was to obtain an estimate for the mag-
netic contribution to the specific heat of TMMC and
compare it with the extended theoretical estimates
for a $= ~ Heisenberg linear system reported in

recent publications. The main difficulty, how-
ever, is the lack of information about the temper-
ature dependence of the lattice contribution. The
low dimensionality of the system prevents the ap-
plication of standard expressions for the lattice
heat capacity based on purely isotropic and elastic
behavior. Therefore we. used a recently developed
theory for anisotropic media based on a pseudo-
elastic approach. The specific heat of the dia-
magnetic Cd" isomorph was used to establish a
functional form for the over-all lattice heat capac-
ity of TMMC, containing a minimum of adjustable
parameters.

PREPARATION AND EQUIPMENT

Specific heat measurements were performed on
samples consisting of 0. l mole of small crystals
(average dimensions 5 mm). The specimen was
sealed inside a copper capsule with a small quan-
tity of He exchange gas. The capsule was sus-
pended inside an evacuated can placed inside a He
cryostat. Between the capsule and the outer can a
temperature-controlled heat screen was fitted,
which enabled us to perform very accurate mea-
surements at temperatures up to about 50 K. Tem-
perature readings were obtained from a calibrated
germanium thermometer which was attached to the
capsule and measured with an ac resistance bridge
operating at 172 Hz. An over-all check of the ac-
curacy of the system was performed by measuring
the specific heat of 99.999ok spectrographic pure
copper. The data below 25 K were compared with
the copper reference equation of Osborne et al. ,
those above 25 K with the selected values evaluated
by Furukawa et a/. The precision of the mea-
surements was estimated to be better than- &% in
the whole temperature region.
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FIG. l. Specific beat of TMMC. Drawn line through
the data points represents the best fit to the total heat
capacity. Lattice and magnetic contribution are drawn
separately.

The specific heat of both TMMC and TMCC was
measured from 2 to 52 K. The experimental re-
sults on TMMC are shown in Fig. 1. Representa-
tive data for both compounds are tabulated in Table
I. A general inspection of the data shows that the
results for TMMC below 4 K and for TMCC below
18 K are in good agreement with the earlier pub-
lished results. At low temperatures the specific
heat of TMMC rises above that of TMCC, because
of the increasing relative magnitude of the addi-
tional magnetic contribution in the Mn compound.
At high temperatures the specific heat of TMCC is
slightly larger than the specific heat of TMMC,
which is not surprising in view of the larger mass
of the Cd" ion.

In order to get information about the magnetic
contribution to the specific heat, we have to per-
form a separation of the magnetic and lattice con-
tribution. In the majority of cases such a separa-
tion is obtained, at least in a restricted temyera-

The crystal samples were grown by slow evapo-
ration of equimolar solutions of the appropriate
chlorides and NH4Cl in water. The starting mate-
rials contained less than 0. I% impurities.

RESULTS AND DISCUSSION

ture region, by utilizing established limiting tem-
perature deyendences of both contributions and fit-
ting the coefficients to the experimental data (e. g. ,
C~=aT +bT ). In our case such a procedure does
not seem possible for several reasons. As we
stated before, our aim was to establish the over-
all magnetic contribution in the temperature range
studied. So it is not enough, for this purpose, to
know the limiting temperature dependence. More-
over, our experimental data points are restricted
to relatively low and intermediate temperatures.
As we shall argue further on neither the low-tem-
perature behavior of the magnetic contribution nor
that of the lattice contribution is known to a suffi-
cient degree of accuracy. Qf course, one may
speculate on a certain limiting low-temperature
behavior. For instance, the specific heat of
TMMC in the region 2 & T & 6 K can be represented
fairly well as C~=0. 098T+0.046T, a relation also
reported by &is et cl. with slightly different coef-
ficients. One may argue that the first term arises
from the mag'netic contribution and confront it with
the theoretical expression for C from linear spin-
wave theory. However, in the temperature region
4 & T &10 K, the total specific heat can equally well
be described by C~= 0. 21T+ 0.0044T . The same
procedure will give quite different results now.
gee will return to this low-temperature behavior
more specifically in a later stage but will conclude
that, unless more detailed information on the be-
havior of both the lattice and the magnetic contri-
bution is available, procedures of this kind should
only be applied with great care.

A more direct approach to the problem seems to
be the subtraction of the specific heat of a diamag-
netic isomorph. The only available compound for
this purpose is TMCC. However, owing to the
rather large mass difference between the Mn" and
the Cd" ion, the scaling procedure as suggested
by Stout and Catalano 6 may introduce serious
errors in this case. Moreover it has been shown
that, in general, the scaling factor is slightly tem-
perature dependent, so that one yrobably cannot
scale the whole region of interest with one single
parameter. Despite this, the resulting magnetic
specific heat after subtraction of the scaled heat
capacity of TMCC was rather realistic. The scal-
ing factor was determined to be 1.083 through the
conditions that C &0 at higher temperatures and
the total magnetic entropy gain should equal
B ln(2S+ I). The curve showed a maximum of
=. 6. 8 Z/mol K at T = 40 K, which is in agreement
with the behavior of a Heisenberg $= —, linear chain
system with 8/k = —7. 6 K. However, the ex-
perimental curve showed serious systematic devi-
ations from the calculated curves for such a system.
Partially this might have been expected because,
in contrast to the description of the total specific
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TABLE I. Representative value& of the specific heat of TMMC and TMCC.

CMn Ccd
T {K) {J/mole K) {J/mole K) Ccd Ccd

2. 00
2. 20
2.40
2. 60
2. 80
3, 00
3.20
3.40
3.60
3.80
4. 00
4. 20
4. 40
4. 60
4. 80
5. 00
5. 20
5.40
5. 60
5. 80
6. 00
6. 20
6.40
6. 80
7. 00
7. 20
7.40
7. 60
7. 80
8. 00
S.20

0. 370
0.423
'0. 488
0. 555
0.621
0. 689
0. 764
0. 843
0, 925
1.013
1.100
1,192
1.286
1.387
1.491
1.596
1.704
1.826
1.941
2. 066
2. 196
2. 323
2. 496
2. 815
2. 986
3.163
3.347
3. 540
3.734
3.945
4. 157

0. 026
0. 035
0. 047
0. 061
0.081
0. 105
0.137
0. 174
0.216
0. 266
0. 320
0. 378
0. 440
0. 513
0. 594
0. 680
0. 771
0. 873
0. 980
1.095
1.214
1.341
1.476
1.773
1.931
2. 097
2. 271
2, 456
2. 640
2.838
3.045

8.40
8.60
8. 80
9.00
9, 20
9, 40
9.60
9.80

10.00
10.50
11.00
ll. 50
12.00
12.50
13.00
13.50
14.00
14.50
15, 00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20. 00
20. 50
21.00

4. 373
4. 601
4. 826
5. 067
5. 301
5. 545
5. 797
6. 057
6.317
6. 994
7.719
8.475
9.237

10.036
10.881
11.735
12.601
13.495
14.384
15.292
16.208
17.138
18.174
19.159
20. 108
21.092
22. 120
23. 020
24. 070
25. 189
26. 220

3.255
3.482
3.702
3.924
4. 165
4.400
4. 629
4. 887
5. 139
5.798
6.538
7.303
8.129
8. 947
9.621

10.505
11.362
12.230
13.118
!3.997
14.882
15.845
16.517
17.725
18.706
19.662
20.638
21.636
22, 628
23.619
24. 674

21.50
22. 00
22. 50
23. 00
23. 50
24. 00
25. 00
26. 00
27. 00
28. 00
29. 00
30.00
31.00
32. 00
33.00
34. 00
35. 00
36.00
37. 00
38. 00
39.00
40. 00
41.00
42. 00
43. 00
44 00
45. 00
46. 00
48, 00
50.00
52. 00

27, 257
28. 291
29. 337
30. 388
31.409
32, 349
34. 497
36. 568
38.613
40. 620
42. 546
44. 725
46. 767
48. 504
50. 439
52. 202
54. 027
56. 107
57. 876
59. 710
61.721
63. 793
65. 141
66. 695
68. 524
70. 210
72, 009
73. 599
76, 759
79.370
81.988

25. 725
26. 716
27. 777
28. 813
29. 825
30. 854
32. 910
34. 992
37, 091
39.117
41.130
43. 360
45. 057
46. 951
49. 010
50. 797
52. 760
54. 862
56, 653
58. 663
60, 473
62. 836
64. 8S5
66. 939
67. 892
70, 764
71.972
73.642
76. 329
80.142
83.423

heat of TMMC with linear and quadratic terms in
the region 2 & T & 6 I, the specific heat of the Cd
compound in that same region could only be de-
scribed with cubic and higher-order terms.
Whereas the lattice contribution in TMMC at those
temperatures amounts to roughly 50%, this pre-
sents a strong indication that simple scaling, as
we argued before, will not hold.

Qf course the rather complicated behavior of the
lattice contribution is not surprising in view of the
fact that the crystallographic structure of TMMC
and TMCC can be described as a system built up
from chemically loosely coupled chains. It has
been shown both theoretically and experimentally
that in such cases a description of the lattice spe-
cific heat in terms of three-dimensional Debye
functions is not realistic. Tarasov, for instance,
concluded that in a first —rather crude —elastic
approach it can be shown that the specific heat of
such a system is described by a combination of
one- and three-dimensional Debye functions. 17

This may give rise to temperature regions where
a dominant three-dimensional or a dominant one-
dimensional behavior can be detected. A modifica-

tion of this theory was used to explain the specific
heat of CsMnC13 ~ 2H20.

A somewhat more refined model was proposed
by Kopinga et al. ' In a pseudoelastic approxima-
tion in which dispersion effects for the low-energy
vj.brational modes are taken into account, the spe-
cific heat of a one-dimensional system can be ex-
pressed as the sum of the contributions of the three
vibrational modes:

The functions E, represent the contribution from
the longitudinal and transverse modes with dis-
placements perpendicular to the chain direction,
while E~ represents the mode with displacements
in the chain direction. , The variables g&, 8&, and 9,
are related to the elastic constants and the eventual
additional bending stiffness due to covalent bonding
effects. The functions E& and E2 can be expressed
as combinations of suitably normalized one-, two-,
and three-dimensional Debye functions.

A fit of (1) to our specific-heat data on TMCC
with 0„o"„and 0, as variables, gives an over-all
agreement (see Fig. 2) better than - 2% for 4 & T
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FIG. 2. Relative error in the fit to the experimental
specific heat of TMMC and TMCC as a function of tem-
perature.

& 50 K with 0, = 442 K, 0, = 154 K, and 0H, = 36. 5 K,
which is quite satisfactory considering the rather
large temperature interval. In view of this good
fit and the isomorphy of TMCC and TMMC, we may
expect that the same model will apply to the latter
compound with roughly the same lattice-parameter
values. We therefore tried to fit the total specific
heat of TMMC simultaneously varying the lattice
parameters in the expression for the lattice spe-
cific heat as well as the exchange parameter J in

TMMC

0.2—

FIG. 4. Magnetic specific heat of TMMC. Open cir-
cles are the experimental data points corrected for the
lattice contribution. Drawn curve represents the theo-
retical estimate for a Heisenberg linear chain with &/k
=-6.7 K.

the expression for the magnetic specific heat. For
the magnetic contribution we took the results of the
extended high-temperature series expansion com-
bined with results of the extrapolation of finite
chains for the S = —,

' Heisenberg model as published
recently. '

A least-squares fit to the experimental data
points yielded J/k = —6. 7+ 0. 6 K, O, = 473 K, O,
= 169 K, and 0,= 39 K. Comparison of these re-
sults with the parameters for TMCC confirms the
conjectures made before, to the extent that the 0
values increase about 8% for TMMC, which is not

surprising, considering the smaller mass of the
Mn" ion. The results of this fit are shown in Figs.
1 and 2. Figure 3 gives the best-fit squares sum
as a function of the fixed J'/k value. The uncer-
tainty in J/k is estimated from the width of this
curve as 0. 5 K.

In Pig. 4 we show the magnetic specific-heat
data points obtained by subtraction of the calcu-
lated lattice contribution from the total experi-
mental specific heat, corrected in the sense that
the remaining deviations, as shown in Fig. 2, are
contributed to the lattice and magnetic system pro-
portional to their relative magnitude. As one can

TABLE II. Values for the intrachain exchange inter-
action 4 in TMMC obtained from several experimental
techniques.

'l I I I

-6.0 -6.5 -7.0 -7.5
J/K (K)

FIG. 3. Squares sum of the fit to the specific heat of
TMMG vs the intrachain exchange interaction.

Technique

Susceptibility
Susceptibility
Neutron scattering
Spin-wave dispersion
Specific heat, direct fit

J'/k

{K)

—6. 3
-6.47+0.13
-7, 7+0„3
—6.6+0, 15
-6.7+0.5

Reference

2
5
5
5

present work
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FIG. 5. Total specific heat of TMMC and TMCC (
and +, respectively). Open circles represent C

and are obtained from C~(&) = &&,~c(2')—
C&, TMc(&/1. 08). Below. &=2 K the magnetic and total
specific heat almost coincide. Shaded area is the es-
timated low-temperature limit for &~ in the case of
Heisenberg exchange with ~/k =- 6. 7 K. Curve denoted

by spin wave 1 represents the linear spin-wave predic-
tion for this case with &/k'= —6.7 K. Curve denoted by
spin wave 2 represents the result for &~ obtained from
direct integration of the experimental dispersion relation
(H,ef. 7).

C (T) = C, ,(T) —C, (T/1. 06). (2)

We have chosen here for subtracting a scaled heat
capacity of. TMCC to avoid any interference be-

see, the agreement with the theoretical estimate
is very good over the whole temperature range
2& T &50 K. The value of J'/k= —6.7+0. 5 K in-
ferr ed from this experiment compares favorably with

the values cited in literature deduced from sus-
ceptibility, magnetization, and neutron-diffraction
experiments, as can be seen in Table II. In view
of this we may conclude that we have shown the
applicability in this case of both the expressions
for the lattice and the magnetic specific heat de-
rived for low-dimensional systems like TMMC and
TMCC.

Because of the small ratio ~
J'/J ) and the low

three-dimensional ordering temperature, TMMC
offers a good opportunity to get experimental evi-
dence of the limiting low-temperature behavior of
the magnetic specific heat of an antiferromagnetic
S = 2 Heisenberg system. In fact, the experimen-
tal information on this point seems rather scarce,
while the theoretical predictions contradict.
Therefore we will now focus our attention to the
relative low-temperature region in more detail.
In Fig. 5 the data points below 7 K are shown,
The points of the magnetic specific heat curve are
obtained by

tween the magnetic and the lattice contribution
which might arise from simultaneous fitting pro-
cedures. In this temperature range the magnetic
contribution obtained by scaling lies within 2% of
the curve obtained by the procedure outlined be-
fore. The scaling factor 1.08 was chosen as an
average of the factors following from the increase
of 8&, 8„and 8,. Otherwise the curve does not
change significantly upon varying the scaling fac-
tor because we are still in the range where CL
& C . For the sake of completeness we have also
reproduced the total specific heat of both com-
pounds. The shaded area through the data points
represents the estimate for the low-temperature
limiting behavior of a linear antiferromagnetic
Heisenberg S=2 system calculated by De Neef et

&0-12.

with J/k= —6.7 K.
The agreement is rather satisfactory. The

slight systematic deviations are comparable with
the estimated inaccuracy which amounts to 4%.
The value for the intrachain coupling is the same
as the value found from the over-all fit, and com-
pares very well with. those obtained from inelastic
neutron scattering and susceptibility measure-
ments. We thus feel confident to state that the
suggested low-temperature limit (3) is in good
agreement with the experimental evidence.

The linear term in (3) is about 50% smaller than
the one expected on the basis of linear noninteract-
ing spin-wave theory. ' A similar fact was ob-
served by Bonner and Fisher for a S = 2 Heisenberg
linear chain. 0 The discrepancy in that case
amounts to a factor of about three. Apparently the
spin-wave approximation yields a better result
when the spin value increases. The region in Fig.
5 where C can be approximated by the linear term
only is greatly obscured by the three-dimensional
ordering phenomena. However, this region does
not extend above -2 K, which corresponds to k T/
tJ)=0. 3. In view of this fact it seems to us that
the validity range of the linear behavior of the spe-
cific heat is somewhat overestimated in earlier
publications. For comparison two of these esti-
mates are reproduced in Fig. 5.
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