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Effect of an electric field on impact-ionization probability

Masumi Takeshima
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Using electric-field-dependent wave functions the transition probability per unit time of the impact
ionization has been calculated by time-dependent perturbation analysis. Results of numerical calculations
are presented for the case of ionization across the direct band gap of GaAs. It is found that the

present calculation yields a remarkable reduction in threshold energy in comparison with previous
results obtained using Bloch functions.

I. INTRODUCTION

Ca,rrier multiplication through impa, ct ionization
is an essential mechanism in the operation of vari-
ous semiconductor devices. A number of theories
have been presented' explaining this phenomenon
in terms of the threshold energy, the optical-phonon
energy, the ionization mean free path, and the
mean free path for optical-phonon scattering.
However, the threshold energy often used for ex-
plaining the experimental data has been chosen
rather arbitrarily. On the other hand, recent the-
oretical calculations' ' arrived at the conclusion
that plural thresholds of energy should be consid-
ered.

In the previous theories where the field effect on
the electronic state was neglected, the threshold
energy obtained is considerably larger than the
band-gap energy. The reason is as follows: The
total crystal momentum and the total energy of the
system have to be conserved simultaneously before
and after the impact transition. In the presence of
an electric field, however, the crystal momentum
of an electron in the field direction is no longer a
good quantum number. As a result the requirement
for momentum conservation is relaxed so that a
lower value will be expected for the threshold en-
ergy. The present author has stressed the impor-
tant effect of the simultaneous conservation of
crystal momentum and energy on the threshold en-
ergy for Auger processes. '

This paper describes a calculation of the transi-
tion probability per unit time of the impact ioniza-

II. TRANSITION PROBABILITY IN DIRECT-BAND- GAP
MATERIALS

In this section we calculate the probability of the
impact ionization across the direct band gap, which
occurs via the normal process only. Consider an
incident energetic electron (1) with an energy of W,
which is scattered to state (1 ) with an energy of
W, , producing a pair of an electron (2 ) with Wz.
and a hole (2) with Wz. The scattering is assumed
to occur under the Coulomb interaction such that

~(rg —rg) =e'l~~ rg —ra~ (2. 1)

where r,. (i =1, 2) is the position vector of the ith
electron, e the dielectric constant, and e the elec-
tronic charge. The screening effect is neglected
when considering the high-field case. Using time-
dependent perturbation analysis the transition
probability per unit time of the above scattering
process is given' by

tion on the basis of the field-dependent wave func-
tions and energy levels, i.e. , the Stark structure.
The calculation is carried out for the simple model
of a single-valence-band structure, i.e. , the heavy-
hole band. The numerical result obtained for GaAs,
where excitation across the direct band gap is taken
into account, is presented and discussed. It is con-
cluded that the field dependence of the wave func-
tions has a remarkably large effect on the threshold
energy.

P(1-1, 2-2)= i [)f(121 2)~'+)g(121 2))'+ jf(121 2)-g(121 2)~']&&2, (2. 2)

f(121 2 ) = Q*, (r, ) Qz (ra)'U(r, —rz) (t),, (r, )$2, (r2) dr, dr2, (2. 2a)
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P„„(k„r)= g C„„(k)P„(k, r) (2. 3)

for the nth energy band, where the x axis has been
taken along the field direction. In the above equa-
tion C„„(k) is the expansion coefficient, k, the wave
vector in a plane perpendicular to the field direc-
tion, i.e. , k, = (0, k„, k,), and v an integer specify-
ing the discrete Stark levels as

W„„(k)= +— E„"'(k„k,) dk„. (2.4)K„E„gg2

In Eq. (2.4), F is an electric field multiplied by
the electronic charge, K, is the width of the Bril-
louin zone in the x direction, and

E„'i(k) = E„(k)—FX„„(k), (2. 6)

)t=(i/e)(w, +w, —w, . —w, , ) . (2. 2c)

In Eqs. (2.2)-(2.2c), P, (r;) (i =1, 2, 1,2, j =1, 2)
is the wave function of the jth electron in the ith
state, t the time, h Planck's constant, and the factor
2 in Eq. (2. 2) arises from the summation over spin.

Equations (2. 2a) and (2. 2b) are calculated by us-
ing the field-dependent wave functions and energy
levels which appeared in a number of papers. " '
In the crystal-momentum representation, the sta-
tionary wave functions in an electric field are di-
rectly obtained as an expansion in the complete set
of Bloch functions g„(k, r), i.e. ,

where E„(k) is the energy of an electron in a peri-
odic lattice and we define, in general,

x„„.te='J „'(ic, ) „.(k, )a, (2. 6)

with u„(k, r) being the modulating part of the Bloch
function.

The coefficient C„„(k) in Eq. (2. 3) is given by

C„„(k)=,q, exp — [W„„(k,) —E„"' (k,', t, ) ] dh„' ),
(2. 7)

where N„ is the number of the k„states in the Bril-
louin zone, neglecting the interband mixing effect
arising from the factors X„„,(k) (n Wn ). The ne-
glect of X„„,(k) (n en ) is reasonable on the basis
of the estimations'5'~ that X„„, (n cn ) is small for
a weak field except near points of degeneracy. It
should be noted that the impact transition occurs
substantially apart from point of degeneracy of the
valence band.

Using Eqs. (2. 3), (2.6), (2. 2a), and (2. 2b) and
the expansion

g„(k, r) =~g A„(K, k) exp[i(k+ K) ~ r], (2. 6)

where V and K are the volume of a crystal and the
reciprocal-lattice vector, respectively, we obtain
by neglecting the umklapp processes"

f (1 2 1 2 ) = Q C, (k, ) C~ (k~) C, , (k,.) Cp, (k~. ) D, (k, , k~, , k„k2) 5» (k, + k2 —k, , —k~, )~V 1 1 2 2 1' 1' 2' 2' 1 1' y 2'y 1) 2 IC 1 2 1' 2' (2.Qa)

p ~ 4we 2

g(l 2 1 2 ) = Q C, (k, ) C~ (k~) C, , (k, , ) Ca, (k2, ) D2(k, , k2. , k, , k~) 6r (k, + k2 —k, . —ka. ),&V
(2.9b)

where

F(1 1 ) F(2 2 )
D, (k, , k, , k„k,) =

1 1'
(2.Qc)

u, = g F(I- I', 2-2') (Iv(q, ))
'1112~1'~2'

(2.10)

F(1 2') F(21')
D~(k, , kq. , k„k2) = (2. Qd)

F(ij) = u*, (k, , r) v,,(k„r)dr . (2.Qe)

In Eqs. (2.9a) and (2. Qb), L«& means taking sum-
mation over k,„, k2„, k1.„and k,.„, and 6„ is Kro-
necker' s delta.

Now the total rate of impact transition is given

for an incident electron of a quantum state q„where
q; (i = 1, 2, 1,2 ) denotes a quantum state such as
q; = (v;, k;,) for a field-dependent state or q, =k,. for
a Bloch state, and (N(q, )) is the occupation proba-
bility.

As shown in Appendix A, the transition probabil-
ity 6'(E,) per unit time per unit volume per unit en-
ergy for an energetic electron having an energy of
E, is given from Eqs. (2. 2), (2.9a), (2. 9b), and

(2. 10) in the form
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3W2 ea a ma&a
+(E&) g I &a 1 2 GgsOIDI (~i+'4) ~

(1 y2&aE )a~a p,dE» iE E isla E»1 —. (1 + 0&E» —Es
0 (&, -E„'j &+20,

2G, & 'g 'o 'o (1+2e&E„)"' 1
E») ya

(
r(so Is +s s I)3~~0 0 -s0 -sD

x(1 —cos(a [s&+sa+sa+(s&+sa —sa) + psg —p(sg+s&+sa) + p, (sa —sa —sg)

+ p, (s, +2sa —s, +sg)'] g-(E»)(s, +sa)})

(2.11)

(2. 11a)

(2. 11b)

where &a = (1 —m, /mg) Ee, with m, and mg being
the effective mass of an electron and the free-elec-
tron mass, respectively; p = (1 +2o&E») '~; i&. =m, /
m„, with m„being the effective mass of a hole; GD

=(g F /2m, )'; sg =GgK„/2E,

sg =2sg(2m, /5 K„) ~ (1+2nE») (E, —E»)

g(E») is defined by Eq. (Allb); and

r(s)=o for s&o

=1 for s —0.
Naturally, Eq. (2.11) is meaningless for such a
value of E, as to give &P(E,) & 0.

III. TRANSITION PROBABILITY IN INDIRECT-BAND-
GAP MATERIALS

In this section we consider a material having an
indirect band gap, where the transition occurs via

the umklapp process as well as the normal one.
As for the conduction and valence bands we assume
a silicon-like band structure, which consists of six
equivalent valleys in (100) and other equivalent
directions. It is also assumed that the electric
field is applied in the (100) direction. Evidently the
above assumptions are not prerequisite, but the ex-
tension to more general cases is straightforward
though the results will be obtained in more complex
forms.

In addition to the notations used in the previous
section we define b as the wave vector measured
from a conduction-band minimum and g as the sep-
aration between the extrema of the conduction band
and the valence band. This gives k=b+gn, where
n is the unit vector from the Brillouin-zone center
toward one of the valley minima.

From Eqs. (2. 2a) and (2. 2b), we obtain, retain-
ing the most contributing terms only,

E(1 1 ) G(2 2 )f(121 2 ) =~ C, (b, ) Ca(ba) C,.(b, , ) Ca. (ba ) ~ ~ a bs(k, +ka —k, , —ka, ) .
(b ) fK1 —K1i J

(3.1a)

g(121 2 ) =Q C& (b, ) Ca(ba) C&. (b, .) Ca, (ba. ) ~ a br(k, +ka —k, . —ka, ) (3.lb)

G (i, j) = Z A (K, , k,.) A(K; + K, k)) (3,.1c)

where g&» means taking summation over b&„, ba„,
b, ,„, and b2.„,

and C;(b), A(K, k), and E(ij) are defined by Eq.
(2.7) with k replaced with b, by Eq. (2. 8), and by
Eq. (2.9e), respectively.

By a similar procedure as adopted in Sec. II we
obtain

2

f(1 2 1 2 ) = Dy Q C& (b, ) Ca (ba) C& (b& ) Ca, (ba, ) br(k, +kg —k, . —ka, + K)V (b~)
(3.2a)

and

g(121 2') =(Da/D~) f(121 2 ), (3.2b) and

Dy =E(11 )G(22 )/I&&-&& I'

where Da = F(21 ) F(12 )/ I k, —k, ' I
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both of which are evaluated at b, , =b3, =0 and at b,
satisfying E,(b, ) =Eo. In Eqs. (3.2a) and (3.2b)
we have the normal process when K =0 and the
umklapp process when RN0.

Considering a pair of valleys in the (100) and
(100) directions and other two equivalent pairs for
the transition processes, we obtain

7T8f(1 21 2 ) = D&(Z) P C& (b, ) C3 (b2) Cq (bq ) C2 (b3 ) 6r(bq +bq —b&. —bz. +Zn)V ~ 1 1 2 2 1 1 2 2 E 1 2 1. 2 (3.3a)

and

g(1 2 1 2 ) = [D (Z) /Dy(Z)] f(l 2 1 2 ), (3.3b)

where Z=K„—Sg, K„-g, or g. The case of n par-

allel to the field and the case of n perpendicular to
it must be treated in different ways. Quite anal-
ogously to the procedures adopted in Sec. II, we
finally obtain

3&2 e' 'm"' 1
s (E,)=, —' „C,s,' g(iD, (Z) i'+ iD, (Z) i') [H, (Z) +2H, (Z)], (3.4)

H, (Z) = g, + g, (Z), (3.4a) less and must be put equal to zero.

H, (Z) = g,'(Z) + k', (Z), (3.4b)

where P, is the same as that given by Eq. (2.11a),
&z(Z) is obtained in Eq. (2. lib) by replacing
g(s3 —s2 —s6) and p(s, + 2s, —s, + se) with p(s3 s2
—s8+sz)' and p(s, +2sz —s, +se+sz)', respectively,
where sz = (k /2m, F)'~ Z, and g,'(Z) and gz(Z) are
obtained in Eqs. (2. 11a.) and (2. 11b) by replacing
E& with

p, g

Any negative values of H, (Z) and H, (Z) are meaning-

IV. VfEAK-FIELD APPROXIMATION

In this section we discuss a relation of the field-
dependent impact ionization probability to the field-
free one. The discussion is restricted hereafter
to the case of the normal process for ionization
across a direct band gap. The extension to other
possible cases is straightforward.

Noting Eq. (2. 4) and the relation

dv exp[i(2vv/K„)k] =K„6(k)

the integration over v in Eq. (A6) can be performed,
ylelc'. ing

a V 2 E ~u. dki. j. dk2'~ dk& dk3 dks dks

where

3 4(- k» —k4, k„k» k» —k„ku, k(, ~, k~, ~) Q (ks ku)) (4. 1)

~, =exp — (E, - E, )(k, +k, ) + (k', +k', +k', +k4) + (k,'+k,') + (k7+ks)
6m„ Ji

(4. 1a)

with Eq. (4. 1b) as

and

k~= —(k, +ke+k, ), k~= —(k, +ke+k, ),

E, =En — k~ — (kr, +k~.,).
h'

~
A'

2m„2m,

(4. lb)

(4, lc)

i I'
5 4

= exp —— (k5 + k6) —
~
k

~

(k + ke)
1 2

+(E„+E,—Eo)(k, +k~) (4. 2)

Equation (4. la) can be rewritten with the aid of where
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E„=
2

ko —
2

kv — (kg+ko),
2'M,

y 2'w~ 2'.~

1 2 1 1 1 1 1 1
and —= (0, ~ 0,) + 0, + —h, )rn, my m„ m, ' ' m„ ' m,

(4. 2a)

(4. 2b)

Defining a new variable

s= —(k, + k, )/c

with

c = (2X,E/n')'"

and restoring the original notation according to

we obtain

2 4~83 ~ P' 3 1 (E +kg )c /3

x(N(k, ))C'(kg. „-cs, ko.„-cs, k,„—cs, k,.„, k,.„, kg„, kjl, , ko. J. , kgb), (4. 3)

where

with E& (i =1, 2, 1', 2') being the energy of an electron in a periodic lattice.
Since 4 is the slow'ly varying function of k, 's, for an extremely low field we can neglect the t." dependence

of C in the integration over s noting that e tends to zero as E approaches zero. This we obtain

8 d dk B

where

(4. 4)

(4.4a)
(++AD~ jc. /3

8, (a, b, )=c— exp[i(o so-bs +as)jds,
(E~ k~)c I/p

and D; (i = 1, 2) is now a function of k,„(f=1,2, 1,2 ). Equation (4.4) is the convolution expression for the
electric-field effect in the weak-field approximation.

For E„&2lkj„l, we have

1 Ej+Ea —E(, —Ea. 1/2
].j.m &,. ——,, c =6 E)+Ea —E). —Ea.
Qw 0

(4. 5)

so that the effect of the electric field can be represented by replacing the 5 function. in the zero-field ex-
pression (A2) with a function of unit area of finite width. The field therefore lowers the threshold by s,
magnitude of the order of SA in comparison with the zero field case.

We can not derive a simpler formula for the transition probability a (E,) either from Eq. (2.11) or from
Eq. (4.4). In the special case of the zero field, however, we can obtain from Eq. (A2) the approximate
expression for a'(E, ) as

ea e' 'm'. ~&o
s'o(Ei)= o

— 'io IDI';1 2 )oso~E~(1+&Ei)l"'(I+2~Ex) E& 1- (I+«,) -Eo1 +2/,
(4. 6)

where the suffix 0 indicates the zero field case and D (=D, =Do) is evaluated for k, , =ko, =0 and E,(k,) =Es.
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~&&LE I. Material parameters of G~s.

FIG . 1~ Schematic
illustration of impact
transition in the energy
scheme of a periodic
lattice.
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V. NUMERICAL RESULTS AND DISCUSSIONS

In this section we describe the numerical results
obtained by applying the theory in Sec. II to GaAs,
for which only the direct band gap is consider ed .
For the evaluation of

~

D
~

in Eq. (2. 11}, the rela-
tion'

[E(2j)
~

= c&,„~k; —k2[ /(E, —E2).
is used and IE(li) I' is calculated directly from the
k ~ p perturbation theory.

The fourfold integral in Eq. (2. lib) is evaluated
by a Monte Carlo calculation. Since the integrand
is a rapidly varying function of s„s&, and s„ the
calculation for a low field, especially for a field
below 5 x10' V/cm, requires long computing time
because of the large magnitude of s, ~ For the zero
field, however, the calculation is facilitated with
Eq. (4. S) .

Figure 2 shows the result of the numerical cal-
culation of the transition probability &P(E) at 300 K
for fields applied in (100) direction. lt is seen that
the threshold energy decreases with increasing
field . This is the direct consequence of the relaxa-
tion of the crystal momentum in the field direction.
The threshold energy is pronouncedly reduced even
below the band -gap energy as a result of tunneling
of electrons into the forbidden gap . Conseque ntly,

taking the threshold value of 1 . 5E&, as has often
been done, seems to be quite unreasonable .

The threshold energy also decreases with in-
creasing field in the case of the indirect band gap .
As for the indirect band gap the term except H, (Z)
vanishes in the vicinity of the lowest threshold
energy. Since %,2(Z) in Eq, (3.4a) is nearly equal
to R, 2 in Eq, (2. 11), no situations distinct from the
case of the direct band gap are expected in the case
of the indirect band gap.

In all the discussions we did not take into account
the collision broadening of the Stark levels due to
phonons and/or crystal imperfections. Especially
for an energetic electron, the effect of phonon
scattering may be important. The level broaden-
ing will relax the requirement for the conservation
of the energy as well as of the crystal momentum,
and eventually may enhance the lowering of the
threshold energy.
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APPENDIX A

It is convenient for the later discussion to in-
vestigate the conventional case at fir st, where the
field dependence of the electronic states is not
taken into account. Using Bloch functions for
P&(r&} in Eqs. (2. 2a) and (2. 2b), we obtain .im-
mediately

fo(121'2') = (4we /e V)D&(kq, , ka, , kq, ka)~r(k&+ka —kt ~

and

gp(121 2 ) = (4&&e /e V) Da(kg, , ka, , kg, ka)~If(kg+k8 k1' k2')

(Ala)

(A lb)

in place of f (121'2 ) and g(121'2') in Eq. (2. 2), where the suffix 0 refers to the zero-field case. Using the
above functions and replacing the summation $&f& with the integral [V/(2v) ] fdk. . . , we obtain the total rate
of the transition for the zero -field case in the form

4+ 4 2 2 y 3
(Ro= — 3 dkg dk~~ dk2. D& + D2 + D& —D2 N k& 5 E&+E2 —E~~ E2 (A2)

where 5 is the Dirac 6 function.
For the field-dependent case, we obtain with the use of Eqs. (2. 2), (2. 9a), (2. 9b), and (2. 10) in the form
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——
4 d k1~ d k1.i d k26i

v1 P2
1' 26

&II&1»l'+I22D2I'+ S1(D, -D2)i'](N(q())&(W1+W2 W1' W2')1 (A3)

where I.„ is the length of a crystal in the x direction, dk,.~= dk„dk, „and 81 is the integration operator act-
ing on D1 and D2, defined as

1 dkix dki'x dk2i& C1 k1 C2 k2 C1& k1& C26 k26 '5E k1&+ k2~ k1 ~ k2 (A3a)

For the calculation of Eq. (A3a), we use the fol-
lowing relations:

obtained using the relation

(k 2/2m. ) k', = &,(I+ &&1), (A6)
E;(k;) = (k /2m, )k; (z = 1, 2 ),
Z, (k,)= -Z, -(k'/2m„)k', ,

(A4a)

(A4b)

E1(k1)= E11(k1,) + (h /2m, ) k,„ (A4c)

2 ~@2 1/2
E11(k11)= 1+ k 11 —1 2(5, (A4e)

with n = (1 —m, /m6) E~ (m6 being the free-elec-
tron mass), k»=k1x+k„, and Eo is the band-gap
energy. The energy is measured from the bottom
of the conduction band. Equations (A4c)-(A4e) are

where m, and m„are the masses of an electron and

a hole, respectively, at k=0,

m, = m, [1+ (2(2h'/m, ) k'„]'/', (A4(1)

from which E, is approximately estimated for
@ k12, /2m, «4Eo. Further, we neglect the second
term in Eq. (2. 5), which vanishes for a crystal
with a center of inversion or may be small for a
weak field even in a crystal without it. This sim-
plification is not essential in carrying out the cal-
culation.

Defining the new variables according to the re-
lation

k,.„=k, and —k2,

k2.„=k3 and —k4,

and k6,

k2, =k7 and —ke,

Equation (A3) can be rewritten'6

't/' 3
Q p 1

(2 )3 I ~~ dv1 dv2 dv1

22 @( k2 s k4 i k6 i k11 k3 i k51 k1J. i k1'1 y k2'4)

X SK(k(1+ k24 —k1.4
—k2.1) S(W1+ W2 —W1. —W2r),

te

dv2 ~
~

dk11
4

(N(k, , k„))

dk1i4 I
dk2' J.

where the summation over p has been replaced with the integral over p. The integration operator g2 acting
on C (N(k, , k, )) is defined as

„E„/2

-E„/2 & ~Kg /2 " -Kx/2

K /2 „K~/2 „K~/2
dk1 dk2 dk3

~ K„/2 K„/2 2
dk

~

dk,
~

dk6exP i & [(v2 —v1.)(k, +k2)
x

+ (v2 v2 )(k3+ k4)+ (v2 v1)(k5+ k6)l + [(E2x E1 x) (k1+ k2)+ (+2x E2 x) (k3+ k4) + (E2x E1x)(k5+ k6)]

2 2 2

+
6 (k1+ k2+ k3+ k4)+ 6 (k5+ k6)+ (kv+ k6)
Gmc GI1 Gm„

(Asa)

In Eqs. (A6) and (Asa) we have the relations

v=k1+ k3+ks ks=k2+k4+k6 (Asb) D1 D1+D2 2+ (D1 D2)(D1 2) (Asd)

2
„E„/2 g2

Eq„———
~

k)„dk)„,
- -Z„/2

(Asc)

where D, =D;(k1, k3, —k, , k7) and D*,. =D,*(-k2,
—k4, k, , —k, ) for D s defined by Eq. (2.9c) and
(2. 9d).



MASUMI TAKESHIMA

Now we simplify the calculation by considering
D& and D2 to be slowly varying functions of 9&'s in
comparison with the rest of the integrand in Eq.
(AG). Then D, and D3 are evaluated at k,.= k3. = 0
and at k, satisfying E,(kl) =Zo. This will be a
reasonable approximation as far as an incident
electron has a kinetic energy close to the band gap

energy. Consequently we put D1 = D~ = D, resulting
in the relation f(121'2') =g(121'2').

By definition of

we obtain

IId, I, d, &Id,. d,.
qV )i w w w)

x
l,

, dk„ l, rBcp, ( df,., s, (w(a„k„))) (i7„+i„—3,., —)7,.,))(w i w, —w, . —w, .), (AV)

Ga- G1 G~ —Ga. GP —G1
&o =

)

dsl I~
d83'

, ds3 ' ds4
~

ds3 )I dso cos (Sl+ s3)+ (83+ 83)+ (83+ so)
w) a$0 4 ISO So w) ea$0 G() Go

5 6

+ 3 (Sl+ 83 + 83+ 83) + (83+ 83) + il (Sl+ 83+ S3) + il (83 + 84+ So)
3 3 3 3 ~~ 3 3 3 3

m1
(AVa)

so = '(@'/2m. »'"&.
Go-—(K E /2m, )

It is convenient to define new variables of integra-
tion j and h as

j = klieg+ kohl
—I2P/(1+ 2P)] kg,

and

G; = 2liV; F/f3„+ El„~

h = k1&y k9&g ~

We obtain

(A8b)

3 jL(, g 2m~
2

W, + W3 —W,.—W3. = (3+ il) j + 3 )3 +
2m, i+2/ 3 (E»(kl. ) - G.) (A8c)

G. = G1 + Ga —G1 —G2+ EG .

For an incident electron with an energy El(kl), 6t is given by

Pi Q $ 5 p' 3 $ 2~ + 5 /3
(8 = 4 — —~ ( D) 4 @3 1 2

d~l„' d&l d&3: dl)l
I

dl)3
I

~lld~ll5' 1+2@, „o

p, h~
&IO &1~k1~ —

j1+2p, 2&l~
(AQ)

Ga- G1 Ga- G1
T, = '

ds,
I

ds3 I ds, ds4
I

ds, cos (sl+83)+- (83+Sl)+ (83+83)
0

w) ~SO Go Go Go

+ 3 Sl+ 83+ 83+ 83+ (S3+ 83)+ P(sl+ 83+ 83) + P, 8834++ S6),3 3 3 3 ~~ 3 3 3 ( 3
(AOa)
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integration should be performed in the range where
the quantity in the square bracket is positive.
Defining

$ = (G3 —G1 )/Gp I

n= (G, G;—)/G. ,

and

t; = (G. —G,)/G. ,

we make the transformation

10
0 V/cN

li] d, d, d, d

=(K„/21/E) G, I dG, .d)dydee. . . .
10

t-2
I I I I

& 4 1 6 1.8 2.0 2.2

E(eV)

FIG. 2. Transition probability (P(E) per unit time per
unit volume per unit energy of impact ionization in GaAs
as a function of energy of an incident electron with the
field as a parameter. 6t= V (P(E1) (N(E1)) dE1 .

~I

(Al0)

Let us define the transition probability &p(E, ) per
unit time per unit volume per unit energy for an
incident electron having an energy of E, as

with s3=2sp/31„/K, . In Eq. (A9) the original nota-
tion is restored according to k5- —0&„. The

Noting Eqs. (A4c)-(A4e) and L„'JdG3. =F, we ob-
tain from Eq. (A9)

(1+243E )3/3
&(E1)=32~ — —

@10 Gp 1 2
IflI dE» E E 1/3 f(E»)2g 1+ 2JLt, „p 1»

where

(All�)

OO OO ~ OO ~ Sp

I(E») = d$
~

d1) ' dt; ds1
g wOO 4 ~Sp g WSp

p So Sp Sp

dsa
I ds3

I

ds
4 -Sp 6 aSp

d Sp

ds5
Sp

X COS ( $(S1+ S3) + 'g(S3+ S4)+ f (S3+ Sp) + 3 [S1+S3+ S3+ S4+ p(S3+ Sp)

+ P(S1+ S3+ S3) + P, (S3+ S4+ Sp) ]][g(E11)+ $+ Yj f] GP

(Al la)

with we first perform the integration
P

g(E»)= E» 1- ]U,

1+ 2p,
(1+aE„) —Ec

(Allb)
o "'o

d$ dg

P=(1+2uE„)
Now let us transform Eq. (Alla) into a more

tractable form. In place ot the integration

n '~

4 ~OO aOO aOO

and then we make $p and gp infinite. Defining new
variables a, = —,'($+ 1)) and a3= 3(& —1)), the integra-
tion is performed noting that the value of [g(E„)
+ a1 —f] should never be negative. After further
integration over sz and s~ we finally obtain the re-
sults given by Eq. (2. 11)-(2.lib).
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