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The dominant relaxation rates in electron-hole condensation are calculated from the stochastic rate equations

proposed in a previous paper. These govern the time scale for the nucleation of electron-hole droplets and for
fluctuations in the number of electron-hole pairs bound to a nucleation center. The calculational procedure
makes use of exact recursion relations for the temporal moments of the probability distribution. It is found

that metastable states of electrons and holes can exist at high temperatures (T) 2'K in Ge), for a limited

range of exciton densities. At low temperatures the finite carrier lifetimes lead to measureably short relaxation
times. The importance of the time dependence of the exciton density in experiments at fixed generation rates
is stressed. Some of the reported discrepancy between spectroscopic and thermodynamic values of the work

function may be ascribed to supersaturation effects.

I. INTRODUCTION

The gain or loss of an electron-hole pair by an
electron-hole droplet is a random event. The se-
quence of pair collections, evaporations, and re-
combinations make up the stochastic process which
governs the time evolution of droplets in an exci-
ton vapor. In a previous paper, ' the author pro-
posed stochastic rate equations for the probability
distribution of the number of electrons and holes
bound to a nucleation center. ' The properties of
the steady-state probability distribution, to which
the system must eventua, lly relax after sufficient
time, were studied in detail. The present paper
examines the rate of relaxation to the steady state
and the related question of metastable states of
electrons and holes in highly excited semiconduc-
tors.

The principal feature, which distinguishes the
nucleation kinetics of the electron-hole liquid-gas
transition' ' from that of ordinary liquid-gas tran-
sitions, is the finite lifetime of the electrons and
holes, ' Large electron-hole droplets, where the
surface-to-volume ratio is too small for pair col-
lection to make up for recombination, are unstable
and will decay. Small electron-hole droplets are
also unstable, since the surface free energy sig-
nificantly enhances the evaporation rate. Thus,
gas-phase densities higher than the equilibrium
thermodynamics coexistence curve are needed to
give a high enough pair collection rate so that the
condensate exists. At densities above this mini-
mum, stable droplet sizes may be found above a
minimum value that is a strong function of tem-
perature. The change in the measured coexistence
curve is small at high temperatures (T~2'K in Ge)
where previous studies of the electron-hole phase
diagram have been made. e 9 Since evaporation
rates and pair coOection rates decrease strongly

with temperature, whereas recombination rates
are almost temperature independent, the finite
lifetime effects become very important at low tem-
peratures.

The finite lifetimes also affect calculation of the
nucleation rate of electron-hole droplets, since
the conventional assumption owing to BUcker and
Doring" that the nucleation rate is time indepen-
dent ean no longer be made. Rather, in Sec. II a
phenomenological model will be proposed in which
a nucleation center can exist in only two states,
either with a multiexciton complex, '""or with
an electron-hole droplet bound to it. A simple pair
of stochastic rate equations describes this system,
and may be solved trivially for the time depen-
dence. In the Appendix the parameters of this bvo-
state model mill be derived by a moment technique
from the complete time-dependent rate equations
of the previous paper. The relaxation time calcu-
lated in this way governs both condensation rates
and the time scale for fluctuations in droplet size
at constant gas-phase density. For readers not
interested in the ea1.culational method, the results
a,re summarized in Sec. II C.

In Sec. III the question of metastable states will
be discussed. If, at fixed exciton density and-iezn. —

perature, the relaxati. on time is astronomically
long, a metastable state of the electron-hole sys-
tem ean exist where equilibrium bebveen com-
plexes and droplets is not achieved on a measure-
able time scale. ' The size of droplets in a meta-
stable state can differ from the steady-state value.
The range of density and temperature where this
can occur will be calculated. At low temperatures,
because of the finite lifetimes, metastability can-
not occur.

In Sec. IV a discussion wil1. be given of the time
evolution of the electron-hale system after an ex-
citation source such as a laser is turned on. Since
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considerable supersaturation may be required at
high temperatures for nucleation rates to be ap-
preciable, a correct theory of the nucleation of
droplets must take into account the time depen-
dence of the gas-phase density. This problem will
be addressed, but not completely resolved since a
numerical or Monte Carlo solution of nonlinear
stochastic rate equations is required.

l„=g and ——", & 0.
dn g„' „

Then the Gibbs potential falls with increasing n
until a second minimum, or "stable" point, labeled
3 is reached where

II. TWO-STATE MODEL

A. Properties of the steady-state probability distribution

For n larger than n, the Gibbs potential rises
monotonically with increasing n.. For comparison,

In the previous paper, ' it was argued that if P(n, f)
18 the probabll1ty d1strlbut1oQ of the number of
electron-hole pairs bound to a nucleation center,
then

=/„„P(I+I, f) —I„P(n, f)dP(n, t)

7=2..04 K

II
Density = 2. I X IO err

where /„ is the rate of loss of excitons by an n-pair
complex and g„ is the rate of gain of excitons by an
n-pair complex. The rate of loss includes contri-
butions from both evaporation and recombination

where the parameters are: A, the thermionic
emlsslon constant; +~~ the radius of an Pl-pair
complex„7, the lifetime of electron-hole pairs in
droplets; 8, the surface tension„p, the pair den-
sity of the Liquid phase; and 4„, the chemical po-
tential of the infinite liquid. The rate of gain is
given by

Sn =4&+a~-'e8cx~

where v„„ is the exciton velocily and p„is the exci-
ton density.

The steady-state solutions of Eci. (I) are

P(n) (] /~ )8-G(n)/lhgy2'

where G(n) is a generalized Gibbs potential given
by

The schematic behavior of G(n) is illustrated in
Fig. 1. There is a local minimum for very small
e labeled as point 1. The Gibbs potential increases
for increasing n until an "unstable" point 2 is
reached where

IO

I
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I
I

I
I
I
I
I
I

IO IO

FIG. 1. The solid line gives the generalized Gibbs
potential as a function of pair number for the finite
lifetimes characteristic of electron-hole condensation.
The potential rises toward positive infinity for very
large droplets. There are two minima in the potential
at the "stable" points labeled 1 and 3. The most prob-
able number of electron-hole pairs bound to a nucleation
center are values near the minima. Pair numbers near
point 1 correspond to multiexciton complexes, those
near point 3 to electron-hole droplets. Equilibrium be-
tween multiexciton complexes and droplets is controlled
by the magnitude of the potential barrier at "unstabl"
point 2. For comparison, the dashed line gives the
ordinary Gibbs potential for infinite carrier lifetime.
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shown as the dashed curve is the Gibbs potential
for infinite lifetime. The potential falls monoton-
ically for n&n, and there is no "stable" point.

At the two local minima in the generalized Gibbs
potential at points 1 and 3, there are peaks in the
steady-state probability distribution. The peak
centered around point 1 corresponds to "multiex-
citon complexes, " while the peak centered about
point 3 corresponds to "electron-hole droplets. "
The Gibbs potential barrier at point 2 controls the
rate at which equi1ibrium is established between
complexes and droplets.

P(n, f) =P'(n)e (10)

and solve for the eigenvalues A, and the eigenvec-
tors P~(n). The initial conditions could be matched
by a suitable linear combination of eigenvectors
and the time evolution studied. One can prove on
general grounds that there is only one zero eigen-
value corresponding to the steady state and-that
all the remaining A. are positive so that relaxation
to the steady state must eventually occur. These
statements follow from the properties of tridiago-
nal matrices.

In practice, such a procedure is to be avoided
for two reasons. First, since m, is typically sev-
eral powers of ten, matrices at least of that di-
mension must be considered and the calculation
would be prohibitively difficult. Second, and more
important, little physical insight would be gained
by such a brute force procedure.

The simplified approach adopted in this paper
follows from noting that most of the probability
distribution is centered either in a narrow region
about "'multiexciton complex" point 1 or in a nar-
row region about "electron-hole droplet" point 3.
The unstable point 2 is a minimum in the steady-
state probability distribution. Then the probabili-
ty of being in a "multiexciton" complex state might
conveniently be defined by

I'c(I) =f del*(n, I) .
(I

The probability of being in an "electron-hole drop-
let" state is similarly defined by

P (I)=f dnI'(n, I).
fl2

Then a simple pair of stochastic rate equations

B. Time-dependent probability distribution

A brute force method, which might be employed
to solve for the time evolution of the probability
distribution starting from some initial condition,
is as follows. One would rewrite Eq. (1) as an
eigenvalue problem substituting

may be written which has as parameters the rate,
g, of transition from complexes to droplets and
the rate, l, of loss of droplets back to complexes.
We write

dPJt) =gPc(t) —LPD(t) .

X =0, P ocl/(l g)+, Po~ =g/(l+ g)
a,nd

(16)

Suppose, for example, that the system started
out with no electron-hole droplets. Then the time
evolution is given by

(18)

which starts with zero probability of finding elec-
tron-hole droplets at t =0 and evolves toward the
steady-state probability at t =~.

As another example consider fluctuations in the
number of pairs bound to a nucleation center. Sup-
pose a center starts with a droplet on it a,'. time
t =0. Then at a later time t the probability of find-
ing a droplet on it is given by

PD(t) = (g+ le '" ')/(l+g).

Clearly, relaxation to the steady state of an en-
semble of nucleation centers is related to the fluc-
tuations in the number of electron-hole pairs bound
to an individual center. This is simply another
manifestation of the fluctuation dissipation theo-
rem.

The condition for the validity of this two-state
model is that relaxation to the steady-state prob-
ability distribution for sizes in the separate re-
gions m&n, and n&n, must occur much more rap-
idly than the establishment of the steady-state rel-
ative probability of being in either of the two re-
gions. A simple physical rationale for this is that
the peak in the Gibbs potential at point 2 presents
a barrier through which a cluster of electrons and
holes must, in effect, tunnel by fluctuations from
one side to the other. This process is certainly
slow if the barrier height G(n, ) is sufficiently
large.

lt is trivial to solve Eqs. (13) and (14) for the
time dependence of electron-hole condensation.
The method of solution using eigenvectors will be
useful in motivating the derivation of the pa, rame-
ters l and g given in the Appendix. We write

Pc(t) =Pce ' and P~(t)=PDe ~'.

Then the eigenvalues and eigenvectors are
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"1—-G(n)/0+ G(n)/~

Bg gg 0
(21)

First, it shou1d be noted that these expressions
give the correct answer for the relative probabil-
ities of multiexeiton complexes and electron-hole
droplets in the steady state. Second, the dominant
contribution to the second integral in these two
expressions comes from G(n) near its maximum
at n„so that as expected the height of the Gibbs
potential barrier controls the relaxation rate to
the steady state.

I'bird, in the limit of infinite carrier lifetimes,
as in an ordinary liquid-gas transition, ns goes to
~ and G(n) goes toward —~ for very large n The.
rate of gaing goes to the expression for the rate
of nucleation calculated by Decker and Dorirg. '0

The rate of loss l goes to zero so that there is no
normalizable steady-state probability distribution
in an ordinary bquid-gas transition.

III. METASTASLE STATES IN ELECTRON-HOLE

CONOEN SATION

In the previous sections, expressions have been
given for the rate g at which because of statistical
fluctuations multiexciton complexes convert to
electron-hole droplets, and the ra, te l of the re-
verse process in which droplets convert to com-
plexes. In the steady state the distribution of drop-
lets and complexes will be such that

(22)

Howevex, if the rates l and g are astronomically
slow, relaxation to the steady state may not be
achieved within the duration of the excitation. In-
stead of a steady state, the measured distribution
of droplets and complexes, as well a.s the size of
droplets, will depend on the history of the excita-
t1on process.

ln this seet1on calculations will be presented fo1
the dependence of l and g on exciton density and
temperature. The range of density and tempera-

C. Rate parameters

The utility of this two-state model of course re-
quires knowledge of the rate of gain g and rate of
loss l as a function of density, temperature, and
the other parameters of the system. These must
be determined from the complete set of equations
(1). A procedure for doing this will be given in the
Appendix. Here, we will only state the answers
which, to a good approximation, are given by

n2
e-G(n)/k&r eG(n)~

n3

g.
'

0

ture where both l and g are negligibly slow, and
therefore metastability can occur, will be given.
The relation of spectroscopic determinations of the
work function to "thermodynamic" determinations,
which measure the threshold excitation level for
observable condensation, will also be considered.

1 @ (p)2/3 (23)

typical of liquid metals.
The high va, lue of 8 used in the previous paper

can be ruled out because it produces a Qibbs po-
tential barrier to condensation so large that den-
sities higher than the liquid-phase density would
be needed for measureable droplet nucleation
rates. The new value of S might have been used
to fit droplet size measurements if a correspond-
ingly larger A. were chosen. However, this would
assume that the steady state had been reached in
these experiments. Bather, the parameters are
chosen to be close to theoretical values. It is em-
phasized that the present paper is not a determi-
nation of the parameters of the electron-hale liq-
uid-gas transition.

B. Study of re1axation rates

The controlling variable in the ca.leulation of
rate, E, of conversion of droplets to complexes is
the height of the Gibbs potential barrier G(n, )
—G(n, ). This barrier goes to zero at densities be-
low

A. T2e /@ e" 2S
Ve~ 3Vq iX@~7

where x is the solution of

x'e" = (2S/37. keT'A)e "/ er.
x = 2S/R„pkeT. -

These lower bound expressions were given in the
previous paper' and correspond to the density at
which n, equals n, . As the density is increased
beyond these values the rate l drops dramatiea, lly
a.nd electron-hole droplets become stable.

In Fig. 2 the logarithm of l, calculated in the
Gaussian approximation, is plotted versus exeiton
density for p,„greater than Eq. (24) and 7=2.0'K.
It is seen that the relaxation time 1/I is quite ob-

A. Parameters

Some significant changes are made in the param-
eters of this paper compared to those of the pre-
vious paper. The work function 4„ is changed to
its spectroscopic value 4„=23'K, and the surface
tension S is taken to be 1.5&&10 4 erg/cm2. This
corresponds to
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G(n, ) 1$r8'
ksT 3P2(keT)'In2(AT e "~'&r/v~„).

This is a good approximation at high levels of
supersaturation, and is always a lower bound to
the actual barrier for finite lifetimes as seen in
Fig. 1. Since this is in turn exponentiated in the
Gaussian approximation to g,

(2V)

servable at sufficiently low densities, but it in-
creases to astronomical size with a small increase
in density.

The controlling variable in the calculation of the
rate, g, of nucleation of electron-hole droplets is
the height of the Gibbs potential barrier G(n, ). If
the lifetime were infinite, it is readily proved tha

densities near Eq. (24). As the density is in-
creased the nucleation time drops until, as shown
in Fig. 3, the nucleation time becomes sufficiently
short to be observable. (Shown for comparison as
the dashed line is a g of 1/T. ) This is the well-
known phenomenon of "supersaturation, " where a
density considerably higher than the coexistence
curve is needed for nucleation to proceed at a
measureable rate. The actual densities needed
depend strongly on the strength of binding to nu-
cleation centers. The stronger the binding the
faster the nucleation rate g.

C. Metastable states

~n2 -1
e-~~~&~"a~ g ~(~2)/~+~g = —'8

gn

(28)

In the previous paper, a detailed study was made
of the properties of the steady-state probability
distribution. The relative probabilities of multi-
exciton complexes and droplets in the steady state
changed rapidly over the small density range near
where the curves for / and g cross in Fig. 2. How-

small changes in the value of surface tension 8, or
the degree of supersaturation, can change g by
orders of magnitude.

Also plotted in Fig. 2 is the logarithm of g ver-
sus exciton density at T=2.0'K. It is seen that
the nucleation time 1/g is astronomically large at

10
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FIG. 2. Logarithms of the rate of nucleation, or gain
N, of electron-hole droplets from multiexcitan complex-
es, and the rate of decay, or loss E, of droplets back ta
complexes are plotted vs exciton density for densities
near the condensation point. A logarithm of zero corres-
ponds to R relaxation time of 1 sec. In the steady state,
condensation occurs near the density where the nuclea-
tion and decay curves cross. However, if the rates of
nucleation and decay are astronomically slow, as in Fig.
2, then metastable states are possible where the steady-
state distribution of complexes and droplets is not
achieved on a measurable time scale.
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FIG. 3. Logarithm of the rate of nucleation, or gain g,
of electron-hole droplets is plotted vs exeiton density
for densities higher than the condensation point. In
ox'dex' fo1 Il16asurable condensatloIl to occur» the lIlvex'86
of the product of g and the number of nucleation centers

t be comparable to the duration of the excitation. As
h I'ig. 3 this may require densities considerab y

t Thishigher than the steady-state condensation density. s
is the well-known supersaturation phenomenon in phase
trRnsltlons. For compRrlson the dashed line corresponds
to g =-1/& where 7 =40 @sec. The actual values of g may
be increased significantly by strong binding to the nuclea-
tion center.
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ever, as is clear from the figure, the relaxation
rates are negligibly small at high temperatures.
Relaxation to the steady state may not occur within
the time scale of the typical experiment. The
attempts at comparison with experiment made in
the previous paper may be criticized, aside from
the question of transport effects, because it is
questionable whether the steady state had been
achieved in these experiments.

Rather, we consider the possibility that there
is a range of exciton densities at a given tempera-
ture where metastability can occur. This is a
range where the number of droplets changes as-
tronomically slowly with time. Clearly, a lower
bound on this range is given by Eci. (24) since 1/l
is measurably short at this density. As Fig. 2

shows, a small increase in density increases 1/f
to astronomical values. The upper bound to this
range is given by the densities where 1/@becomes
measurably short.

The solid line in Fig. 4 gives the exciton densi-
ties at which l =g. Except at low temperatures
(T&2'K) these densities are only slightly larger
than Eq. (24). The dotted line gives the exciton
densities at which the relaxation time 1/g is 10
sec. The dashed line gives the densities at which
the relaxation time is 10 ' sec, the excitation
pulse length of typical experiments.

The first lesson of Fig. 4 is that experiments
which attempt to determine the work function by
measuring the threshold for observable electron-
hole condensation in a short pulse length will un-
derestimate the work function. Exciton densities
considerably larger than the coexistence curve are
needed to reduce nucleation times to, say, 10 '
sec. In practice nucleation times do not have to be
this short since the number of nucleation centers
may be large, e.g. , -10" cm ' in the purest Ge.
Nevertheless, even in this case there exists a con-
siderable difference between the density at which
nucleation becomes observable and the coexistence
curve. This may account for some of the reported
discrepancy between spectroscopic and so called
"thermodynamic" values of the work function.

The second lesson of Fig. 4 is that metastability
can occur only at high temperature (T&2'K). The
10 sec and 10 ' sec curves cross the L=g curve
at temperatures less than 2'K. The finite lifetimes
of electrons and holes in droplets require densities
increasingly greater than the equijibrium thermo-
dynamics coexistence curve at low temperatures.
Hence, the Gibbs barrier is smaller and relaxation
faster at low temperatures.

IV, 'I~hii DEPLNOENCE OP EXCITON BENSITY

The calculations of the preceding sections have
considered the relaxation rates l and g when the

IO

IO
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IXT(K )

G.7 0.8 0.9

FIG. 4. Solid line: exciton densities at which the rate
of gain g equals the rate of loss l as a function of
temperature; dotted line: exciton densities at which the
relaxation time 1/g is 10 sec; dashed line: exciton den-
sities at which 1/g =10 3 sec. Since typical phase-
diagrarn experiments employ pulsed excitation at

1 kBz, Fig. 4 shows that some of the reported di
crepancy between spectroscopic and thermodynamic
values of the work function may be ascribed to super-
saturation effects, At low temperatures, the solid line
devxates strongly from the usual lrqurd-L:;- coexrsten .
curve. The rates of gain and loss become measurably
fast and metastability phenomena such as supersaturation
cannot occur.

exciton density is held constant. In laser experi-
ments it is the total generation rate of electrons
and holes, rather than the exciton density, which
is constant. However, the present calculations
may be applied to laser excitation experiments if
it is assumed that the instantaneous values of l and

g are determined by the instantaneous value of the
exciton density.

One can speculate on the sequence of events
which occur after the source of excitation, a laser,
is turned on. Assume for simplicity that the ex-
citation is uniform throughout the crystal. The ex-
citon density will begin to rise. Measureable con-
densation will occur if the density rises to a high
enough level that the nucleation rate g is signif i-
cant. A number of embryonic electron-hole drop-
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P; =G-~"'-X (g. -E„)P(n, t),
7ey

(29)

where N; are the number of nucleation centers and
G is the generation rate. A time-dependent solu-
tion of these equations is beyond the scope of the
present paper. We note that the steady-state so-
lution for the probability distribution is the same
as discussed in the previous paper. '

Finally, we emphasize two areas where out-
standing theoretical problems remain. The first
is the nucleation kinetics near the critical temper-
ature where the interaction of clusters with one
another is undoubtedly important. The second is
transport effects in single-photon laser excitation
experiments where the electrons and holes must
migrate inward from the crystal surface.

lets of size greater than the critical size n, will
be formed. The embryonic droplets grow at the
expense of the excitons in the gas phase. If the
temperature is high enough for metastability, the
fall in the exciton density as the droplets grow mill
shut off the nucleation of more droplets.

Eventually, a state shouM be reached where the
droplet size is at a "stable" point, n„a minimum
in the generalized Gibbs potential, and the exciton
density is high enough to provide a strong Gibbs
barrier, G(n, ) —G(n, ), to the decay of droplets.
However, we know that there is a minimum stable
droplet size given by Eqs. (25) and (26). The num-
ber of embryonic droplets formed initially may be
too large for the generation rate to make up for
recombination of excitons and electron-hole pairs
in that number of droplets at the minimum stable
size. The exciton density will have to fall to a lev-
el where the decay rate / is appreciable so that
some droplets decay. Then the exciton density
may rise again as t e remaining droplets reach a
stable size. This shouM yield values of droplet
size and exciton density close to steady-state val-
ues.

If the number of embryonic droplets initially
formed is smaQ enough, a metastable state should
be reached where the droplet size and exciton den-
sity are higher than steady state. Relaxation to the
steady state may occur at an astronomically slow
rate.

At low temperatures, where metastability can-
not occur, the steady state should be reached with-
in the measureable relaxation times. Further-
more, fluctuations in cluster size between com-
plexes and droplets should be observable. "

These speculations could be given more weight
by a solution of Eq. (l) with the exciton density al-
lowed to be a function of time. The equation for
the exciton density in the case of uniform excita-
tion is

The procedure to be followed in deriving the re-
laxation rates was deduced from the remark of
Goodrich'4 that for birth and death stochastic pro-
cesses an exact recursion relation for the tempo-
ral moments of the probability distribution,

0 (m)= J ( P(m(), , (Al)

can be derived from equations such as Eq. (l) pro-
vided P(n, f) tends to zero for long times.

For electron-hole condensation, in contrast to
ordinary liquid-gas transitions, P(n, f) tends to a
steady-state value at long times. Instead of deal-
ing with Eq. (Al), a new temporal moment ls de-
flI1ed,

0 (m) = f ( [I'(m, () -P(n)),

where P(n} is the steady-state probability distribu-
tion.

Then from Eq. (l) and

0 = f„+,P(n+ l) —/„P(n) -g„P(n)+g„,P (n —l)

one may readily derive that
n

g„+kg,,(n+1) = ], , — ~'--a

m=p 1+m

x k,k,(0) — ()k",—') Q(P(k, 0)-X'(k, 0)l,

(A4)
which is an exact expression for the zeroth tem-
poral moment in terms of the initial probability
distribution. As in the previous paper, this is
readily converted to an expression for continuous
n by introducing the generalized Gibbs potential.
G(n}. One finds

kk(~(k, 0) ~(k))) . (A5)

One can eliminate y,,(0) from this expression with
the nor malization requirement

P n, I; -Pn dn=0.
0

This gives

(A6)
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APPENDIX: DERIVATION OF THE RELAXATION RATES

A. Method of temporal moments
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e C(-n)/22 T
g„p ()2) = e

dnd e C(n-e)/ndd T
(I/g )e G( -)/22'

nl n~'

x f de" e e"~e
J d)e(dd)e, 0) -p()t)]) .

(A7)
One may derive in similar fashion for the higher-
order moments that

-C(n)+g 2' 00

-C (n'}/WTgn&m ~ -C(n)/a T
gn e ~ 0 gn

n n"
x I( de" e'e"'exe e„,(ndd).

~n 0

(A8}
It is clear from Eqs. (A'I) and (A8) that the tem-

poral moments to all orders may be calculated
from a given initial distribution. These rather
formidable exact relations are the starting point
of the calculations to foQow.

B. Initial probability distribution

The purpose of the two-state model is to describe
the relaxation of the electron-hole system after the
initial transients have died out. A probability dis-
tribution in which relaxation to the steady state has
already occurred in the separate regions n &n,
and n&n, but not between those two regions would
have

( n p( ) (e(e, —e)()/d„)e e'"'e

f 2 (I /g )e G(n)/(ecT-

(A9)
(9(n -n, )(1/g„)e c(n)/22T

f (1/g )e C(n)/)e2 T-

where C is some constant.
By comparing with Eq (17), o.ne sees that Eq.

(A9) is similar to the eigenvector of the two-state
model which has a nonzero eigenvalue. Therefore,
if the two-state model is correct, it should be pos-
sible to prove from the exact relations Eqs. (A I)
and (A8) that P(n, t) P(n) decays-exponentially in
time. The exponential decay constant should pro-
vide the quantity I+g. Since I /g is already known
from the steady-state distribution, the parameters
l and g can be separately determined in this way.

Since the mathematics is a bit tricky, we will
outline the procedure here. Consider the integral
in Eq. (A'I)

nil

J (n") =
~t dk[p(u, o) -p(n)j

0
(A11)

n' n

dT)n CC(n )/J!CTg(+II)
~t

CG(nn)/2'(T(ll)
n2 n2

(A12)
Since the principle contribution comes for n" near
n2 (including the properties of J' discussed above)
this integral is to a good approximation

I= ()(n' —n2)e(n2 —n) dn' CC("")/ &

0 ~

—8(n2 —n')(9(n -n2) dn" eC(n ) "&, (A13)
0

except for n' and n very close to n, . Divide the
integral over n' into two parts from 0 to n, and
from n, to ~. Then it is readily seen that

q, (N) = (1/)(. )[p(n, o) -p(n) j, (A14)

J"2 dnnd&G(n ')/n&T n2
0 e-g(n'}/I ~ T

1 (I/g )e G(n)/22 T -p g„'

X ~t dn" —e-C("'»2T
gn

Since the structure of Eq. (A8) is similar to that
of Eq. (AV) the same mathematics can be applied
to the higher-order moments. In this way it may
be proved that

(A15)

P. (n) =+ (m/)())), (n) = (m! /)(. )!),p(n).

This behavior is consistent with

p()2, f) -P(n) = [p(n, o) -P()2)jc-",

(A16}

(A17)

i.e., an exponential decay. Q. E. D.
Now we make identification with the two-state

model in order to identify the parameters l and g.
We have

and

is very close to I for n" near n2 and is very close
to 0 for n" larger than n, . Hence, only the n" in-
tegral around n need be considered.

Break up the integral over n" as follows:
nt

dn" e (""}/'a Z n"

n~ n Jl

dn" e'(" }/" ma a, 0 -a a Alo e -a(n}/~~T &-C(n}/a~ T-C n

o gn n2 gn
(A19)

with the initial guess of Eq. (A9). The principal
contributions to the n" integral comes from the
regions where G(n") is large This occurs. for n"
near n and for n" larger than n, . However, for
our initial guess

which reduces to Eqs, {20) and (21) for g and I
It should be apparent that this method could be

adapted to nucleation kinetics problems where
there are more than two minima in the Gibbs po-
tential.
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