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A new method for studying the electronic structure of binary alloys within the tight-binding framework is

presented and developed in detail. The method involves treating part of the system exactly as a cluster of
atoms and simulating the rest of the environment by connecting to each atom at the surface of the cluster a
Bethe lattice of the same coordination number. The method includes from its inception the idea of short-range
correlation effects of a nearest-neighbor order parameter. Clusters of different size have been studied and

analyzed in detail. An illustrative example is presented to show the striking differences which appear in

various concentration sequences. These sequences are selected to be (i) random, (ii) with a tendency to
segregation, and (iii) with a tendency to form binary compounds. The results emphasize the need to include
short-range correlation effects when dealing with alloys. The method also provides a clear identification of
localized states. In addition, it gives very naturally the position of band edges and energy gaps. The method,
when averaged over all alloys with equal concentration and all short-range order parameters, reproduces in a
satisfactory way the results of the single-site coherent-potential approximation.

I. INIODU(LTION

In the last ten years there has been an increasing
interest in both the experimental and theoretical
study of the electronic properties of binary alloys
and disordered system. ' ' Most of the theoretical
work has been confined to the completely disor-
dered cases in spite of the fact that a large number
of experiments show the importance of the local
environment on the magnetic and electronic pro-
perties of alloys. ' Among the various theoretical
approaches, the most common by far has been the
single-site coherent-potential approximation
(CPA). This approximation considers only the
fluctuations of the site atomic energy levels„which
are supposed to depend only on the chemical nature
of the atom occupying that site. The CPA, then,
cannot take proper account of local environment
effects like short-range order. There have been
several extensions of CPA to include correlation
between the different sites, 6 "the main short-
comings of these extensions being that they are
either too formal to be of any value in practical
applications6 or they give several possible solu-
tions and the choice of the right one is not unam-
biguous. " In addition, some of the proposed ap-
proximations lead to unphysical results, such as
negative densities of states. ' "

Another approach to the study of the electronic
properties of binary alloys has been to incorporate
the local order in a Green's-function formalism. "
This approximation is quite interesting, but so far
it gives only partial results. In addition to the al-
ready mentioned drawbacks, it should be pointed
out that none of the above approximations as they
stand can take into account topological disorder
because they use the k-space representation to

get the density of states.
In this paper, we study the electronic properties

of a binary alloy using a method recently developed
by the authors" which has the following character-
istics: (a) It incorporates the short-range order
of the alloy in a, very natural way; (b) It deals with
real potentials instead of "mean" or "effective"
ones, albeit only in the tight-binding approxima-
tion; and (c) It takes proper account of both topo-
logical and substitutional disorder.

We assume that we are dealing with a binary
alloy of constituents A. and & with concentrations
xg and xs, respectively (xg +xs = l)~ 1I1 such a way
that each atom is surrounded by z nearest-. neigh-
bor atoms throughout the whole system. We use
in this case the following tight-binding Hamilto-
n lan:

If=+U;Ii&&i I++ I;, I'&&j I, (I.I)
&f j&

where Ii) is the atomic orbital wave function of
the site i. U; takes the values U~ and U~ depend-
ing on whether the i atom is of class 4 or &. The
summation (ij) is restricted to nearest neighbors
only. V;& takes the values V~~, V»&, or V&~ de-
pending on whether the ith and jth atoms —that is,
the (i, j) bond —are both of class A, both of class
&, or one of each class.

In addition to the concentrations x& and x~, we
characterize the alloy by the short-range-order
parameters pg and Ps." The parameter Pz (ps)
gives the probability that when choosing a nearest-
neighbor pair such that one of the atoms is of class
A (&), the other atom is of the same class. In this
way, we define the parameters &~ (Xs) and q~ (qs)
by
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(and similarly for &s) such that X~ =1 corresponds
to a complete segregation —all atoms of class A.

surrounded by atoms of class A—and ~~ =-1 cor-
responds to a perfect binary compound —all atoms
of class A. surrounded by atoms of class B. The
parameter q~ (qs) defined in (1.2) gives the prob-
ability that when choosing a nearest-neighbor pair
such that when one of the atoms is of class A (B),
the other atom is of class & (A). Of course, the
allowed values of p~ and 9'& are limited by the
concentration x~ and by the requirement of con-
servation of the total number of particles. If use
is made of the definition of g~ and g&, when we
count the number of pairs of nearest neighbors in
the system formed by two different atoms, we get

Xgg~ =Sang

or„equivalently,

+A ~A +3~B +A +B ~

(1.3)

(1.4)

With the above mentioned characteristics of the
alloy in hand, we calculated the local density of
states around the atoms in an alloy using the clus-
ter-Bethe-lattice method. "' In this paper we
are concerned mostly with diagonal disorder only,
i.e., V» = V» = V», the results for the off-diag-
onal disorder will be reported in a future publi-
cation.

The remainder of this paper is organized as
follows: In Sec. II we extend the cluster-Bethe-
lattice method to study binary alloys; the formalism
is presented and described in detail. In Sec. III we
study the simplest possible cluster, namely, one-
atom and (I +a)-atom clusters. Although they are
very simple, they give an enormous amount of
information. We define three different sequences:
random, segregation, and binary compound. In
the case of the simple clusters we calculate ex-
actly the density of states for these sequences. We
find, as expected, completely different results for
different cases. In addition, distinction between
localized and extended states is made and dis-
cussed in detail. In Sec. IV we study, for z =4,
clusters of 17 and 2'9 atoms. We generate a ran-
dom distribution of clusters and, in addition to
analyzing each of them, we calculate the averaged
density of states which compares satisfactorily
with CPA calculations. Finally, in Sec. V, some
concluding remarks are made.

II. EXTENSION OF CLUSTER-BETHE-LATTICE METHOD

TO STUDY OF BINARY ALLOYS

Given a binary alloy characterized by the concen-
trations x~ and x& of constituents A. B,nd &, re-
spectively, and by the short-range parameters
P~ and P&, we seek a method to determine the lo-

cal density of electronic states about particular
atoms. We therefore select a given atom called
0 of, say, class A. We take a representative clus-
ter of 1+n atoms which includes the central atom,
and saturate the "dangling" bonds of the atoms in
the periphery of the cluster by the appropriate
Bethe lattices. We are aiming at the use of stan-
dard procedures" for the calculation of the density
of states at atom 0.

It is evident that in order to obtain a meaningful
final result the selection of the central atom, the
cluster, and the Bethe lattices must be made care-
fully.

In order to illustrate our procedure, we chose
the 1+4 cluster of Fig. 1 corresponding to an atom
and its four nearest neighbors for an alloy of co-
ordination number z =4. We label such a cluster
C.

If atoms 0, 1, and 2 are of classy, and 3 and 4
of class &, the use of Dyson's equation

EG =1+aG, (2.1)

FIG. 1. Five-atom clus-
ter formed by the central
atom labeled 0 and its four
nearest neighbors. The
shaded atoms correspond
to atoms of classy; the
unshaded atoms correspond
to atoms of class B. Each
of the noncentral atoms has
its three dangling bonds
connected to a Bethe lattice
of coordination number &

where C is the Green's function and II the Hamilto-
nian (1.1), yields a set of equations"

(E-v„)&olalo&=1+v„„&llalo&+v»&2lalo&

+ v &3l Glo&+ v &4lalo&

(E-v„)&llalo&= v»&olalo&+sv~T~&1lGlo&,

(E —U„) ( 2
l
a l 0) = v„„(0 l a l 0) + 3 v„T& ( 2 l G l 0),

(2.2)

(E- v, )&slalo&= v„,&olalo&+sv, T, &slalo&,

(E-v, )&4lalo) = v»&olalo)+sv, T, &4lalo&.

In (2.2), V~ and Vs are effective potentials for the
Bethe lattice and T& and T& are the transfer ma-
trices, both of which characterize the connection
of atoms A and B to their respective Bethe lat-
tices. If V» V~, T~, and T~ are known, solution
of (2.2) to obtain (Ol Gl 0) is straightforward
From ( 0 l G l 0) we obtain
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n(E) = g (dcno(E, C), (2.4)

where all possible clusters C contribute, each with
its proper weight +z.

The problem therefore consists of four parts:
(a) Determination of the transfer matrices T~ and

Ts and the effective potentials V„and Vs; (b) Se-
lection of the proper clusters and their attendant
weights &uc; (c) Solution of the various systems of
equations, similar to (2.2); and (d) Proper aver-
aging, according to (2.4).

We first focus our attention on (b). It is evident
that clusters with central atom A contribute, re-
lative to clusters with central atom B, in a ratio
proportional to the concentrations x~/xs. For
each given central atom, say, A, the weight of the
various clusters should be compatible with the
short-range-order parameter P~. The calculation
of the weights becomes more involved as the size
of the cluster increases. In the 1+4 example of
our illustration, with short-range-order para-
meters Pz and Ps, the weights are

A:A.AAA,

A:AAAB,

A:AABB,

A:ABBB,

A: BBBB,

B BBBB,

B:BBBA,

+APA y

4

4xAPX@A )

(() = 6x~»(I~ )

4+APA~A p

(d = Kgb

4xBPB fs )

(2.5)

B BBAA tu = 6xsps(fs,

(2.3)

where n, (E, C) is the local density of states of atom
0 of cluster C. The total density of states is then
given by

For larger clusters it may- become more expedient
to resort to a random sampling of clusters com-
patible with the above conditions.

To determine a good expression for the effective
potentials V~ and V~ and the matrices T~ and T»
we first choose to measure our energies from the
average value of U& and U~, i.e.,

U~+U~ =0, Ug =U, U~ =-U, (2.6)

(E- L')T„'= V„„+(~—1)V„„T„'T„,
which gives the solution

T~(E, 1) = T~(E, 1) = [ 2(x —1)V~z] '

((E —~)+[(E-U)'-4( —1)V' ]' ']

(2.8)

In the case of the binary compound P&=0 and ~&

T~ is the solution of"

(E- 8T~- V~s+(& —1)V~sT~T~,

(E + U) T~ = V~s + (& —1)V~s T~ T~,

&~=-1, (2 9)

which yields

and focus our attention on V~ and T„only (Vs and
T~ are obtained by changing U —U, P~-P~, and
V~& —V»). In the two Ismitmg cases Pz =1 and

Pz = 0, the transfer matrices are well known. In
the first case, T~ is the solution of'~

(E —U)T~ = V~~+(& —1) V~~T~T~,

p„=X„=1, (2.'I)

B:BA.AA. ,

B:AHA.A. ,

(d -4xgpggg ~

(d =Span'g .
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For a completely random environment, i.e., for an
atom A surrounded with equal probability by A or
& atoms (P~ =0.5, Az = 0), we take for the transfer
matrix and the connecting potent:al a virtual crys-
tal approximation, ' i.e., we replace

~~=a(V~~+Vsz), U=z(U~+Uz)=o,

which yields

T„(E,0) = Tx(E, 0)

=[2(z —1)V~] 'tLE+[E' —4(z —1)72„]'t'].

(2.11)

Given the three values ~~=1, ~~ =0, and ~~=-1„
we now introduce ad hoc interpolation formulas,
which yield the correct results in those three
cases:

natural framework where the problem of localized
versus extended states may be discussed.

III. STUDY OF CLUSTERS OF 1 AND 5 ATOMS

In this section we apply the method of Sec. II to
study in detail the density of states corresponding
to a single atom surrounded by the Bethe lattice
and also the density of states corresponding to a
cluster of 1+z atoms connected to the Bethe lat-
tice. These two examples can be calculated ex-
actly„and although they seem oversimplified pic-
tures of an alloy, they give an enormous amount
of information that helps us to under stand more
complicated eases. In the rest of the paper we are
going to assume that z =4 and that there is no off-
diagonal disorder, i.e., V~& = V~& =—V» = V. In
addition, U =2.5V in our examples.

V„(X~)= 2[(1+A~) V~~ +(1 —A~) V~s],

T„'(E, ~„)= [2(z —1)V„]-' (E —~„U)

E 4(z —1)V„(E—X„U)
E- f~„f U

(2.12)

(2.13)

A. One-atom cluster

Let us take one atom of, say, class A surrounded
by the Bethe lattice of coordination number 4. The
diagonal part of the Green's function is the atom
is given by

(0 I Gf0) =[E-U 4VT„(E, ~-„)]-'. (3.1)

~~(E, &~) = [ 2(z —I) V~] ' (E —
I &~ I U)

4(z-)))' (I —lx I &) P'E- A.gU

(2.14)

These three formulas constitute only an interpola-
tion scheme, which has several appealing features
and physically meaningful properties: (a) It re-
places the actual random solid by one in which the
interactions related to an atom A are given by the
weighted average (2.12), and V„depends crucially
on the short-range parameter A~. (b) It effectively
replaces a nearest neighbor to A by an atom with
an effective intra-atomic potential A&U, and the
second nearest neighbors have an effective poten-
tial &~U, etc. (c) It satisfies post hoc the neces-
sary (although by no means sufficient) condition
that, when substituted into the proper Green's
functions (2.2), the imaginary part of (0I GIO&,
integrated over all values of E, yields the re-
quired value of 1.

This interpolation procedure completes the
scheme to calculate the density of states (2.4).
The short-range properties of the alloy are both
included in the cluster —through the weights +&-
and in the Bethe lattice. The latter provides an
appropriate boundary condition for the former and
~akes calculations with small e'usters, even as
small as a single atom, meaningful. It also
provides an infinite system where the electronic
wave functions may propagate, and therefore a

The local density of states is given by (2.3).
%hen we study the imaginary part of the diagonal

matrix element of the Green's function (3.1) we
notice that there are two different contributions to
the density of states. One contribution depends on
the sign of the expression inside the square root
in T~ (2.14); for values of E such that

4(z —1)V'(E —UAg)

(E- Uf~„ f)
(3.2)

is negative, the transfer matrix T~ is complexwith
a nonvanishing imaginary part, and thus the local
density of states is also nonvanishing. Another
contribution is given by the poles of (0 I G I 0) .
%hen the diagonal matrix element of the Green's
function has a pole, the density of states is a &

function. Of course, when the & function appears
at energies such that (3.2) is positive, the two con-
tributions to the density of states never overlap.
The contribution at energies such that (3.2) is neg-
ative is continuous, whereas the &-function con-
tribution gives a set of discrete levels.

The values of E such that (3.2) is equal to zero
correspond to the edges of the continuous bands.
The position of these band edges depends very sen-
sitively on the value of X&. In Table I we have
listed the positions of the band edges for a com-
plete range of values of X~, in Fig. 2, we have
plotted the corresponding local density of states.
In addition, in Table I we also include the weight
(residue of the pole of (0 I G

I 0)) of the & function



L. M. FALICQV AND FELIX YNDURAIN

0.6

o—).0
FIG. 2. Local density of

states for a single A.-atom
cluster as a function of the
short-range-order parame-
ter A {U=2.50V). The ener-
gy is in units of the hopping
integral U.

—6 —4 —2 0 2

ENERGY (E/V)

for the same values of ~&. There is a maximum
of one & function because there is only one state
in the cluster (A. atom). Since the transfer matrix
T~ (E, A~) transfers from the atom A. to the rest
of the infinite Bethe lattice, the states due to a
nonvanlshlng IIIIRgillRI'y pRri 011 Tg (E, Xg) Rl'e de-
localized states, extending throughout the whole
system. Qn the other hand, the &-function states
are no longer present far away from the central
atom. They are localized around the cluster (one
atom, in this case) and decay exponentially into
the Bethe lattice. This localization is related to
the probability that the central atom A. is sur-
rounded by & atoms giving rise to a localized
state.

With this simple model, one atom connected to
the Bethe lattice, we can make a very clear dis-
tinction between localized and delocalized states;
the Bethe lattice, of course, provides the band-edge
positions independently of the size of the cluster.
The above discussion is therefore valid for any
cluster. Looking at Fig. 2 and Table I, we realize
that there is a gap between extended states when
A.,~&0. This is due to the fact that when A~&0 there
is a tendency to form a binary compound and a gap
opens in the middle of the band (of course, the gap
is maximum when A~ =-l). This result is con-
firmed when dealing with bigger clusters (see Sec.
lV).

Looking at the density of states when we go from
X„=l to X„=-i (Fig. 2 and Table I), we see how
the localized state splits off the continuous band.
When A& =0.6, there is a sharp peak in the density

of states close to the band, and when X&=0.2, a
state has already separated from the band. The
weight of the & function gives the total weight at
the central atom of the charge density of the iso-
lated state. In particular, when ~~=0, the sep-
aration in energy between the position of the &

function and the band edge as well as the weight
of the & function are maxima. This is so because
when A~ =0 there is no correlation between atoms
of class 4 and class & in the Bethe lattice, giving
rise to the most favorable situation to get local-
ized states.

It can be easily seen that, in order to get a ~

function, &~ has to be such t:hat

%eight

1.0
0, 8
0.6
0.4

0.0
—0.2
-0.4
-0.6
—0.8

4.500V
4.181V
3.903V
3.819V
3.778V
3.811V

0.060
0.434
0.562
0.548
0.481
0.280

5.964V,
5.464V,
4.964V,
4.714V,
3.964V,
3.464V,

+3.500V,
+3.606V,
+3.775V,
+4.000V,
+4.272V,

—0.964V
-1.464V
-1.964V
-2.214V
-2.964V
-3.464V
+0.500V
+l.000V
+1.500V
+2.000V
+2.500V

TABLE I. Characteristics of the density of states for
a single A-atom cluster as a function of the short-range-
order parameter A, ~{U=2.5V throughout).

Position of
~ function Band edges
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(I/U)/U [(z —2)/(z -I)'~']Vj - Z„& —,'[-z+(z —2)(l+4V2/U')'~'] .

B. Five-atom cluster

So far we have characterized the all, oy by means
of the parameters ~~ and ~& only. We have said
nothing about the concentration. It is clear that
the range of the allowed values of ~& and ~& is
constrained by the concentration. The sum rule
(1.4) must be satisfied. In addition, since both
~~ and AB can vary only between -1 and +1, we
obtain the extra condition that

1 —2xs/xg ~+ A.g ~& 1 for xg & xs . (3.5)

The limiting case ~& = 1 corresponds to the case
when all the A and & atoms tend to be completely
spatially segregated. The limit A~ = 1 —2xs/x„
corresponds to the case when al/ the & atoms tend
to form a, perfect binary compound with a fraction
of the A atoms. The rest of the A atoms (pro-
portional to x„—xs) are located at random.

We then may define sequences of alloys" such
that as x~ varies from 0 to 1, X~ takes a well-de-
fined series of values. In this way, we write the
following:

Segregation sequence. All the atoms of class
A. (B) are surrounded by atoms of class A (B). The
alloy has a tendency to segregate into two separate
regions, the A. and & regions, respectively. For
this sequence, we get

A.„=A.~ =1 for any x„. (3.6)

Random sequence. In this sequence, there is no
short-range correlation between the atoms. This
sequence corresponds in some respect to the
philosophy of the virtual-crystal" or coherent-
potential' approximations. In this sequence, we
have

(3.'t)

'J3inm"y -coumPound sequence. All the atoms of

It is also interesting to notice that for this sim-
plest cluster we cannot have localized states in-
side the gap. The reason is that the energy of the
localized state should be such that ~E~~&U. The
band-gap edges, on the other hand, appear only
through the A. -& interaction, and are always lo-
cated at values )E„„„d„,j «U.

Let us finish this discussion of the atom-Bethe-
lattice system by pointing out that in order to get
a localized state at all, U has to be larger than a
critical value U,

U' = V(z —2)/(z - 1)". (3.4)

This value is obtained from (3.3) when A& =0.

class A want to be surrounded by atoms of class
B and vice versa. If the concentration is not x~
=x~ =0.5, only the minority class can form a per-
fect binary compound. In accordance with (3.5),
we get

A.„=-l; As =1 —2x~/xs xf xg &xs.,

Xs = —1; X~ = 1 —2xs/x~ if x~ & xs .

In order to study these three sequences in detail,
we have chosen a cluster of five atoms, the central
atom and its four nearest neighbors. We can study
all possible clusters (AAAAA, AAAAB, AAABB,
AABBB, ABBBB, and BBBBB). Each cluster is
weighted consistently with a binomial distribution
compatible with &„and &s, i.e., the values (2.5).
The local density at the central atom in each clus-
ter contributes to the total density of states in Bn
amount proportional to its concentration.

In Fig. 3 we show the density of states corres-
ponding to the five-atom cluster for the three
above-mentioned sequences and for different con-
centrations. We show the total density of states
by analyzing the central atom in each of the ten
clusters given by (2.5).

For the values here chosen (V= 1, U=2. 5V), the
segregation sequence shows a single wide band
extending from the bottom of the band B to the top
of band A, with a considerable incoherent overlap
in the middle. The hump in the distribution be-
comes more pronounced at the equal concentration
x& =x~ =0.5. For this sequence there are neither
localized states nor energy gaps. For laxger
values of U (U& [4(z —1)V']'~') an "atomic" gap
appears throughout the whole range of concentra-
tions, 0 ~+xg ~+ 1.

The random sequence shows completely different
behavior. Localized states appear in the middle
range of concentrations, 0.23 &x& &0.'t'7. There is
no energy gap in the middle, but a sizeable de-
pression in the density of states is apparent,
mostly for x&=0.5. In the middle range of con-
centrations no energy gap is present, regardless
of the values of the parameters U and V.

The binary-compound sequence exhibits a minor-
ity-component-induced gap throughout most of the
concentration range. In our particular example,
the gap is of "ionic" character near the middle,
0.33&x&&0.67 [where, according to (3.8), both
X~ and Xs are negative], and mixed ionic-atomic
gap close to the end of the concentration range,
x~&0.23 and x~&O.VV, where the band edge of the
single band lies inside the ionic gap. In this last
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SEGREGATION
SEQUENCE

(A1}
Q.4— XA=O

RANDOM
SEQUENCE

t ( ( l

(Bl}

BINARY COMPOUND
SEQUENCE

( I ( I I

Xp, =0(c}}

0.2—

o(
t. 06

(A2)
Q.4—

O
0.2—

o(
Z 0.6

(A3)
0.4—

j I (

Xp = 0.25

I

(62)

(63)
Xp = 0.50

Xp = 0.25

Xp = 0.50

(C2)
Xp = 025

Xp = 0.50
02— /=~

Qi~ i ~ ( (

—6 —4 —2 0 2 4 6 —4 —2 0 2 4 6 —4 —2 0 2 4

ENERGY (E/V)

FIG„3. Total density of
states for the five-atom
cluster. Three sequences
are shown —(A) segregation
sequence, (8) random se-
quence, and (C) binary com-
pound —for three concentra-.
tions: (1) x~=0, x~=1; (2)

=0 25, =0 75; d (3)
xz =xz =0.50. The two addi-
tional concentrations (4)
x =0.75, x =0.25 and (5)
x&=1, x~=0 can be obtained
from (2) and (1), respective-
ly, by changing the sign in
the energy axis. Shaded
areas correspond to states
localized in the cluster. A
very small constant imag-
inary part has been added
to the energies to make the
density of states due to lo-
calized states visible in the
plots. The energy is in
units of the hopping inte-
gral V'.

case, there is an incoherent superposition of states
which are itinerant and extend either mostly
throughout the majority-species atoms or coher-
ently through the binary-compound portion of the
alloy. The ionic gap is, of course, maximum for
x& = x~ =0.5, which is the perfect binary compound.
Localized states appear for concentrations not in
the end or middle ranges; they are, in general,
localized about the majority species atoms.

Since the band gaps and positon of the band edges
are a function of the boundary conditions (Bethe-
lattice) exclusively, the above results are quite
general and do not depend on the size of the clu-
ster. The effect of the cluster size appears only
on the structure and on fine details of the density-
of-state function.

the central atom are taken into account. Topo-
logical properties of the lattice are therefore intro-
duced at this point. For clusters with a number of
atoms larger than the small ones considered in
Sec. III, the combinational aspects of calculating

IV. STUDY QF CLUSTERS QF MFFERENT SIZE:

CQMPARISQN WITH CPA

In order to study how the density of states con-
verges towards the exact result, we have studied
the density of states corresponding to clusters of
1'7 and 29 atoms in the topological arrangement of
the diamond lattice. The cluster of 29 atoms is
drawn in Fig. 4; the cluster of 17 atoms can be
obtained from it by removing all the atoms beyond
the 16th (see Fig. 4). The 17-atom cluster con-
ta..'.ns the first- and second-nearest neighbors of
the central atom. The 29-atom cluster contains
in addition the third-nearest neighbors in such a
way that 12 sixfold rings of bonds passing through

FIG. 4. Position of the atoms in the cluster of 1+28
atoms in the diamond structure arrangement. The cen-
tral or reference atom is labeled 0. Bethe lattices of
coordination number 4 are connected to the dangling
bond of atoms labeled 5-16 and to the two dangling bonds
of atoms labeled 17-28.
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FIG. 5. Number of clusters with the same A, corre-
sponding to our random sampling. Only the 78 clusters
with centrals atoms are reported.

the weights ~& as well as the sheer number of
different clusters to consider makes the calcula-
tion extremely impractical. We resort therefore
to a random selection of a not-too-large number
of clusters (78 in our case} to make the compu-
tation manageable. The clusters which we consider
are chosen at random from a sampling of the x&

=xs =0.5 concentration only. In this case, (1.4)
requires ~~ =~& = ~. Each of these random clusters
was assumed to correspond to that X which is ob-
tained by the nearest-neighbor pair analysis of
the cluster (40 pairs in the case of a cluster of 29
atoms).

For the clusters of 29 atoms, the random selec-
tion was made with v atoms of class 4 and 28 —v

atoms of class & with weights proportional to a
binomial distribution

W(v) =28! /v! (28 —v)! .
The central atom was alternately considered to be
of classes A and &. We took 2&78 clusters in this
form, of which 14 had a central atom A. and an
equal number (14+14) of A and & atoms surround-
ing it, and another 14 had a central atom & with
exactly the same distribution of the 28 noncentral
atoms of the cluster. Analysis of the 40 nearest-
neighbor pairs of the 156 clusters yielded a variety
of ~ values. The histogram of Fig. 5 shows the X

distribution of our clusters. We see that the histo-
gram does not differ radically from a Gaussian
curve to which it must converge when the number
of clusters becomes infinitely large.

The random distribution for the clusters of 17
atoms was obtained by removing the atoms beyond

the 16th (see Fig. 4} of the 29-atom clusters de-
scribed above. For the clusters of 17 atoms, we
took the same ~ as the corresponding 29-atom clu-
ster from which it originated. In Figs. 6-8 we
have plotted the density of states corresponding to
three particular clusters of our distribution. We
have plotted the density of states of a cluster of
29 atoms and its corresponding clusters of 17 and
5 atoms. Since we take the same ~ for the three
different clusters (5, 17, and 29 atoms), the range
of energies where the states are localized is in-
dependent of the size of the cluster.

The positions of the atoms in the three clusters
corresponding to Figs. 6-8 are given in Table II.
It should be noticed that in the cluster of Fig. 6

the central atom of class & is surrounded by three
atoms of class A and one of class &. In the cluster
of Fig. 7 the central atom has two A atoms and
two & atoms as nearest neighbors. In the cluster
of Fig. 8 the central atom has three & atoms and
one A. atom as nearest neighbors. The direct com-
parison of (a)-(c) in Figs. 6-8 shows that the local
configuration determines the over-all shape of the
density of states. The main difference in the den-
sity of states is in the number and energy of the
localized states; i.e., ~ functions. The number
of such localized states cannot exceed the number
of atoms in the cluster; hence the larger the size
of the cluster, the more &-function singularities
are likely to appear. It is, however, important to
remark that the total weight of the density of local-
ized states projected onto the central atom is in-
sensitive to the size of the cluster, 2nd that the
over-all energy range —and hence the degree of
localization —of the localized states does not vary
appreciably with the size of the cluster.

Since we compute total density of states accord-
ing to (2.4} by adding local densities of states, it
is obvious from the observations above that very
small clusters —even the simplest cluster of one
atom —yield a fairly good description of the total
density of localized states.

Although the total density of states of the five-
atom cluster looks different to the corresponding
ones of 17 or 29 atoms, the gross features remain
throughout. Figure 6 shows itinerant states which
exhibit a peak and a shoulder for a five-atom clu-
ster and a double-peak structure for the corre-
sponding 17- and 29-atom clusters. The high-
energy shoulder of Fig. 6(a) gets enhanced by, and
combined with, the localized & functions arising
from the larger clusters.

Figure 8, on the other hand, shows a simple one-
peak structure in the itinerant states of the five-
atom cluster which splits and separates into two
peaks for larger clusters. The high-energy peaks
merge smoothly into the multiply-structured loeal-
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ized states.
In Fig. 7, the five-atom cluster yields for the

itinerant states a very similar structure to those
of the larger clusters.

Several additional features are worth remarking
upon. It is possible for large clusters to produce
localized states in the ionic (negative X) gap [see
Figs. 7(b) and 7(c) and 8(b) and 8(c)]. Also, in

0.8

0.4—

0.2—

contrapositon with perfectly ordered solids, '+"
the presence of rings of bonds in an alloy produces
little or no effect in the density of states. This can
be clearly seen by comparing Figs. 6(b), V(b), and
8(b)—corresponding to lV-atom clusters and no
rings —with Figs. 6(c), V(c), and 8(c)—which cor-
respond to 29-atom clusters and 12 sixfold rings.
The only apparent effect of the closed rings seems
to be to extend slightly away from the itinerant
band the "band" of localized states, i.e., to pro-
duce localized states which are more localized in
the cluster.

In order to test the general validity of our theory
we have compared our results with the results ob-
tained with the CPA. ' In the CPA, it is assumed
that there is no correlation between the atoms in
the alloy and thus the density of states is a function
only of the concentration and chemical composition.
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FIG. 6. Local density of states corresponding to the
cluster 1 of Table II. {a) Local density of states corre-
sponding to the five-atom cluster. We obtain this clus-
ter by taking only atoms 0—4 of cluster I described in
Table II. {b) Local density of states corresponding to the
17-atom cluster. We obtain this cluster by taking only
the atoms 0-16 of cluster 1 described in Table II. {c)
Local density of states corresponding to the 29-atom
cluster 1 of Table II. Shaded areas correspond to states
localized in the cluster. A very sma11 constant imaginary
part has been added to the energy to make the density of
localized states visible in the plots. In this case, A, =0
and U =2.50V. The energy is in units of the hopping
integral V.
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FIG. 7. Same as for Fig. 6, for cluster 2 of Table
II and A, =-0.15.
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FIG. 8. Same as for Fig. 6, for cluster 3 of Table
II and A, =-0.05.

We have calculated the averaged density of states
of the 156-cluster distribution, and have done this
for the clusters of 17 and 29 atoms. In Fig. 9 the
average total density of the clusters of both 17 and
29 atoms are drawn. In addition, the exact density
of states for the Bethe lattice within the CPA is
also shown. As we can see, our density of states
compares satisfactorily with the CPA. Of course,
we get a structure that does not appear in the CPA;
this is in part due to our random sampling, and
to the fact that we have a finite number of & func-
tions. The position of the band edges is very
similar; where the CPA shows a gap, we get a
pronounced dip in the density of states. In Fig.
9(b) we have plotted the average total density of
states corresponding to the 29-atom cluster.
Again, we notice here that the density of states
does not change much when we increase the num-
ber of atoms in the cluster. We conclude that the
density of states drawn in Fig. 9(b) corresponds to
our particular random distribution, and that the
structure found in the density of states is real and
does not depend on the method of calculation.

The above average (Fig. 9) corresponds to a ran-
dom alloy with no short-range correlations; for
this case our method does not present very impor-
tant advantages with respect to previous theories
(CPA). Where our method is an improvement over
other previous theories is when the alloy is such
that short-range correlation exists. Suppose, for
instance, that the alloy in which we are interested
is such that ~& = -0.15. In order to calculate the
local density of states at an A. site, we take the
averaged density of states of the clusters in our
random sampling with a central atom 4 and with
the same & (-0.15). The averaged density of states
for clusters of 17 and 29 atoms are drawn in Fig.

TABLE II. Three random clusters of 29 atoms. Topology corresponds to that of Fig. 4,
and the resulting densities of states are shown in Figs. 6-8.

Atoms of class &
Atoms of class &

Atoms of class A
Atoms of class &

Atoms of class A
Atoms of class B

Cluster 1 (Fig. 6)

0, 1, 2, 3, 7, 9, 10, ll, 13, 15, 16, 19,25, 26, 27
4, 5, 6, 8, 12, 14, 17, 18, 20, 21, 22, 23, 24, 28

Cluster 2 (Fig. 7)

0, 1, 2, 9, 10, 11,12, 13, 17, 18, 19, 21, 24, 25, 26
3, 4, 5, 6, 7, 8, 14, 15, 16, 20, 22, 23, 27, 28

Cluster 3 (Fig. 8)

0, 1, 7, 9, 12, 14, 15, 19,21, 22, 24, 25, 26, 27, 28
2, 3, 4, 5, 6, 8, 10, 11,13, 16, 17, 18, 20, 23
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10. In this case, we can again distinguish between
localized and extended states. Since &&0, the band
of extended states exhibits a gap which is partially
filled with localized states T. his local (A atom)
density of states resembles the by now "classical"
picture of a disordered semiconductorv with a
"mobility gap,

" i.e., two bands of itinerant states
sandwiched between three bands of localized states.

As a last remark, we would like to point out that
the appearance of an ionic gap in our calculations
when ~&0—which is mathematically due to the
I &I dependence of our transfer matrices in the in-
terpolation formulas (2.13) and (2.14)—can be post
A,oe confirmed by the results of our calculations.
As seen in Fig. 3, a fairly large reduction in the
density of states at E = 0 appears in the random
case; in addition, the over-all averages of Fig. 9,
which are heavily dominated by the large clusters,
show the pronounced dip in the middle of the band
which is due to those clusters which have a large
number of unlike pairs, i.e., those clusters with
negative ~. %e can state categorically that the
cluster calculations confirm the qualitative cor-
rectness of our calculational scheme.

V. CONCLUSIONS

The technique developed in this paper and the
illustrative model and examples presented here
have allowed us to introduce a new theory of bin-
ary alloys with the following characteristics: (i)
It incorporates from the start short-range proper-
ties described by a nearest-neighbor order para-
meter A.. (ii) It can treat in principle any realistic

tight-binding model, with an arbitrary number of
orbitals per atom and with realistic potential para-
meters. (iii) It allows for the simultaneous treat-
ment of substitutional and topological disorder.
(iv) It produces the expected ionic energy gape

. when binary-compound tendencies appear in the
random alloy. (v) It gives a natural way of identi-
fying states localized in the cluster"; they appear
as poles of the Green's function outside of the
Bethe-lattice continuum. (vi) Statistical sampling
of large clusters and averages across-the-board,
regardless of short-range order, reproduce in a
satisfactory way the results of the CPA —consid-
ered at present the best theory for the single-site,
completely disordered alloy.

The technique and the model can of course be
improved as well as applied to specific problems.
In particular, we can think of the following lines
for future research: (a) Application to realistic
semiconducting alloys, in particular, germanium-
silicon alloys" where the available calculations
indicate the necessity of including short-range-
order considerations in order to explain experi-
mental data. (b) Application of the model to liquid
alloys, including those which exhibit as a function
of concentration metal-semiconductor transi-
tions. " (c) Extension of the theory to second- and
higher-neighbor correlations. " This in turn
should make it possible to treat more general
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FIG. 9. Total density of states obtained by averaging
over the 156 clusters of our random sampling (heavy
full lines). (a) Total density of states of the 17-atom
cluster (full line) and total density of states given by the
coherent-potential approximation (CPA) in the Bethe
lattice of coordination number z =4 (broken line). (b)
Total density of states of the 29-atom cluster. U =2.50V.

FEG. 10. Averaged local density of states corre-
sponding to the clusters of our random sampling vrith
the central atom of class A and A, = -0.15. (a) Density of
states corresponding to the 17-atom cluster. (b) Density
of states corresponding to the 29-atom cluster. Shaded
areas correspond to localized states. U =2.50V.
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tight-binding Hamiltonians. (d) Improvement of
the approximations (2.13) and (2.14) to allow for
bonds of varying length, in which case, in addition
to topological and substitutional disorders, struc-
tural disorder could also be treated by the same
approach. (e) A more ab initio theory could be
attempted to justify or improve the interpolation
formulas (2.12)-(2.14) which would give the posi-

tion of the edges of the bands of delocalized states
more precisely. (f) A more extensive theory of
localization of electron states" could be developed
for the model.

We believe, however, that even in its present
state, our technique offers new possibilities and

paths to investigate the properties of disordered
alloys with short-range correlations.
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