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The dielectric screening matrix moo (q) for aluminum is evaluated using realistic band energies and wave

functions. The Bloch states are obtained from a self-consistent tight-binding calculation in which Gaussian
orbitals are used as basis functions. Results are presented for three principal directions of q, [100], [110],
and [111],with 15 values for the reciprocal-lattice vectors G and O'. It is found that the oIF-diagonal

elements are, in general, small compared to the diagonal terms and that the diagonal terms show some
directional efFect in their monotonic decrease as ~q + g increases.

I. INTRODUCTION

The response of electrons to a potential causes
readjustment of their distribution and gives rise
to the screening of the potential involving the well-
known quantity, the dielectric function. This quan-
tity plays an important role in the study of various
properties, e.g. , transport phenomenon, lattice
defects, and optical properties. Consequently, it
has been the subject of many investigations.

The formal theory of dielectric screening pro-
vides an expression for the dielectric matrix, '-

e 4, Q ) = 55' —I'4)X'" (Q, Q ),
~/ (1)Q=q+G, Q =q+G,

where V(Q) is the Fourier transform of the effective
electron-electron interaction given by

(2)

The function G(Q) corrects for exchange and corre-
lation effects. The quantity X' '(Q, Q ) is the irre-
ducible polarization part of the density response
matrix given in terms of Bloch states.

Most studies have concentrated on evaluating only
the diagonal parte of the dielectric matrix or have
approximated the Bloch states by slightly modified
plane waves7 to evaluate the off-diagonal terms.
Recently there have been several studies' " to
evaluate e(q, to) (only diagonal terms in q, q ) utiliz-
ing the real band structures. Off-diagonal parts of
the dielectric matrix have been evaluated for dia-
mond, silicon, '~ and transition metals (Pd and

Ni). " We present here a method to evaluate the
complete dielectric matrix by using realistic band
structure and wave functions obtained from a tight-
binding self-consistent calculation. ' Such an ex-
haustive study has never been done before for any

metal.
The basic formalism is presented in Sec. II. We

start from the random-phase-approximation (RPA)
expression for the dielectric matrix, expand the
Bloch states in terms of the set of Gaussian func-
tions used for the band-structure calculation, and

where E„(k) and N„(k) are the energy and the occu-
pation number, respectively, of an electron of mo-
mentum k and band n; )nk) is the Bloch state for
such an electron, and N is the number of unit cells
of volume 0 each. The summation over bands and

momentum vectors k and q is obviously limited to
cases where one band is occupied and the other one
is empty; both k and q vary over the whole of the

first Brillouin zone (FBZ).
One must make some assumption about the Bloch

states to obtain numerical results from Eq. (3). In

the present case, we expand the Bloch states in
terms of Gaussian orbitals to be able to use the
realistic bands and wave functions obtained by a
self- consistent band calculation. ' We write

~nk) = ~ get"'"sa„;(k)u,.(r —R„)
V

where u,.(r —Rs) is a member of the set of the
Gaussian orbitals (consisting of 52 such orbitals:

(4)

obtain an expression that can be attacked numeri-
cally with the available data. Section III provides
a brief summary of the band-structure calculation
and some of the details of the Brillouin-zone inte-
gration using the tetrahedron method. ' Results
are presented in Sec. IV for three principal di-
rections, [100], [110], and [111], for q and 15 va, l-
ues for the reciprocal-lattice vectors G and 0 .
Owing to symmetry relations [Appendix and Eq.
(32)], we need to evaluate a much smaller num-
ber (than the 225) of elements for each value of q.

II. FORMALISM

The response of the free electrons to the oscilla-
tions of the ions of the lattice is described by the
dielectric matrix &. In the random-phase approxi-
mation, we have the basic result'

e„(p)= ~(p+ K„p+K,)
4ttes N„(k) —N, (q)

NQ(p+Rt) „s ts E„(k)—Et (q)
«0

x&fq~e*"' ""'~nk& &nk~
- """~fq&, (3)
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nine of 8-type symmetry, six each of the three p
types, and five each of the five d types) centered
around the lattice point 5n and a„;(%) is the mixing
coefficient. The self- consistent band calculation
provides us the values of these a„,.'s for various
bands and k points in the Brillouin zone.

Using expression (4) for the Bloch states, we
simplify the matrix elements in Eq. (3), i. e. ,

(l q~
e' n'"s '~nk) =—g e 's "va'f&(q)a„&(k)e'" "n'

Os P&

x (u~(r —R„)
~

e'"'"s'"
~u,.(r —R„))

pression can be simplified by defining a matrix of
the wave-function coefficients. If we form a matrix
A(k) such that its nth column consists of the coef-
ficients for the nth band, i.e. ,

A,.„(k)= a„,(k), (10a)

we can define a new set of matrix elements,

m&„$, K„q) = ga»(q)P&, (p+ K.„q)a„,((q —p)s)0
= [&'(q)&(p+ K., q)A ((q -p)s)]i. (»b)

and we have the simplified expression

=—pan»(q)P&, (p+ R» q)a„,.(k)
Ss 4

~0

~ j(y+k»g) nR~ (5)

4«' ~ &.((q - P)s) -&~(q)
&~(p+&s)' „, - &n((q - P)s) —&~(q)

xm, „(p, K„q)m*,„$,K„q) .
where we have defined the matrix I' by

«0

Pz,.(q„qz) = ge 'ns' "(u&l(r —Rn) ~e'n" ~u&(r)). (6)

The summation over p, can be carried out indepen-
dently, using the fact that such a sum is zero un-
less p+ k- q happens to be a reciprocal-lattice
vector, to give

1 ~,.(g+p q) Q 1 whenever p+k-q =G
0 otherwise

0')

However, since q and k are limited to within the
FBZ and in the presence of K„K, to give off-di-
agonal elements, p is also restricted to this same
region, for any given k, p, and q we can have only
one value of 0 that will satisfy the 5 function. Thus
we have the result

(/q~e'"' "~nk) = ga„.(q)P&, $+ K„q)

x an;(k)6f (s.n) (8)

where

(q p)s = q p+G- (8a)

and G is a reciprocal-lattice vector such that q- p
+0 is a vector in the FBZ.

We insert (8) and the corresponding expression
for the other matrix element in Eq. (3),

4ve ~ N„(k) —N, ($)
ls(p) st ~g(~++ )S ~ @ $) E («) 4(s Il)S

n», lq

x a*,&(q P&,.(p+ K„qa„,.(k
ig

x 2,"P )q)PP; )P K g, ila„ tK)) . l&)
~ g g0

The k sum can be performed immediately. The ex-

From the definition of the matrix m [Eq. (10b)] and
the value of (q —p)s, it is obvious that m, „depends
on p+K, rather than individual values of p and K„
z. e. ,

ln(pl Ks s q)™[n(p+ Ksl q) (12)

It does not change the energy or occupation number
of a state if the wave vector is shifted by a recipro-
cal-lattice vector. This fact can be used with Eq.
(12) to rewrite Eq. (11) in the form

4ve' m &.((q-p.)s)-&~(q)

mtn(ps) q)mtn(pti q) (13)

~ (YPs) 'YPS) = e (Psl PS )l (14)

i. e. , when both values of the wave vector in the
matrix elements of c are rotated by the same opera-
tor, the result does not change. This property re-
duces substantially the number of a-matrix elements
to be evaluated,

III ~ MATHEMATICAL DETAILS

A. Band structure

The linear- combination-of atomic- orbitals method
is employed in a variational approach to obtain the
band structure self-consistently. '4 The Bloch states
are expanded in terms of the Gaussian orbitals [Eq.
(4)], using a total of 52 basis functions of s, p, and
d types. The calculation is begun by constructing

where p, and p, differ only by a reciprocal-lattice
vector. Thus we may have

pa= p+ Ksu pt p+ Kt

and of course (q —p,)s = (q —p, )R = (q —p)s. Since the
sum for q is over all values in the FBZ, Eq. (13)
in combination with the transformation (AV) gives
a fundamental symmetry relation for the matrix
elements c~].'
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a crystal potential from a, superposition of overlap-
ping neutral-atom charge densities, with the atoms
assumed to be in the 3s'Sp configuration. The
wave functions used in forming the atomic charge
density are taken from the Hartree-Fock self-con-
sistent field calculation of Clementi. 7 Energy lev-
els and wave functions are determined for this po-
tential and used to initiate an iterative procedure
leading to self-consistency, In this process cor-
rected Fourier coefficients of the Coulomb poten-
tial are calculated using wave functions of the occu-
pied states at 89 points in 4's of the Brillouin zone
resulting from the previous iteration, The ex-
change parameter for the Slater-type exchange po-
tential was set at the value -,'.

This method uses GRu881RQ orbitals thRt Rx'e Qot
orthogonal and as a result the coefficients a„, sat-
isfy the orthogonality (with the overlap matrix)

At(k)S (k)A(k) =I (15a)

where A(k) is the matrix defined by (10a.) and S(k) is
the overlap matrix

S„.(k) = Q e '"'"~(u, (r —R„)~u,.(r))

=P);(0, k)

The energies and wave functions are evaluated by
diagonalizing the Hamiltonian matrix H(k), i.e. ,
solving the determinantal equation

iH), (k) —E(k)S), (k) i
= 0 (16)

where H&,.(%) are the matrix elements of the Hamil-
tonian given by

Hz,.(k) = ge +'"~(u&(-r —R„)~[-Va+ V(r)j~u,.(r)),
(1V)

A simple unitary transformation is introduced so
that the Hamiltonian and overlap matrices mill be
real. Specifically,

S(k)-US(k)U',

%e utilize the transformation property of the vari-
ou8 quantities vAth 1'espect to the cubic group to x'e-
duce the region of integration to the ~18 irreducible
subzone (SZ) along with a sum over group operators
P). Any operator g in the cubic group can be ex-
pressed as the product of two operators, one be-
longing to the group of the wave vector (y say) and
the other R member of the set generating the star
of p (o), giving

The dielectric matrix elements are thus given by

4gea
eg.(P) =~s~ -fl,,- g;3 @~a(P)Atp+

(20)

0 dE

d, &.(4-~-'p)s) -pi%)
(gradb„, (j, n 'p) [

x ~ m~. (o. "V '(p+K.),71)
yeGQ)

x m f„(n 'y '(p+ K,), c(),

xm, „(p+K„t)q)m*, „$+K„aq)
and Q„possesses the symmetry

Qg. (p) = Q.)$)
%e can Qow make use of the fact that the energies
are the sa,me at all q values that are connected by
an operator of the cubic group to reduce the I3 sum
to separate sums over the ~ and y operators. The

q integral can, of course, be converted to a sur-
face integral and an integral over energies to give

gives the unitary transformation in block form, the
blocks referring to d, s, Rnd p types of Gaussian
functions~ respe ctlvely.

B. BriBouin-zone integration

The sum over q in Eq. (13) is easily converted to
an integral over the Brillouin zone by using

~.r(ci o' 'p) =&.((i- o 'p)&) -&&(i),

and the surface integral is over all q within the sub-
zone satisfying the condition +, = Z.

The surface integral is performed by dividing the
SZ into tetrahedrons filling up the entire region.
This method has the basic advantage that the occu-
pation number in the integral is ta.ken care of easily
by x'educing the tetrahedron into smaller ones that
%111 conti lbute. The general 1ntegx'Rl involved 18

of the type

The energies at the four corners of the tetx'ahedron

are a.rranged in an increasing order, i.e. ,
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ko

(a)

F.

l
t
I
1

l
l
l

kl

k

3. E, &E~&E3. This final case is the most com-
plicated and results in three smaller tetrahedrons
[Fig. 1(b)]. First we find point k, where E(k, ) =Ez
along the kok3 direction. This gives rise to two
tetra, hedrons: kok&k2k, of the type 2 (here the ener-
gies are in the order E„~E~ ~ E~~ = E~ ~ E~ ) and
the tetrahedron k,ksk2k, of type 1. Thus we have
the total contribution being that from tetrahedrons

I f I& I fl
k fk3kp k 3 and kok, k 3kB minus that from k 3kskg kg.
All the primed k points are obtained by linear inter-
polation between the corresponding directions to
find the energy Ez.

Once the tetrahedron has been reduced to the con-
tributing part without the 8 function, we have the
straightforward surface integral of the type

ko
(b)

—-f k

;.I
::I

I

k)

(26)

(27a)

and

for which we make the linear expansion both of
A(k) and 4 values,

A(k) =AD+ c ~ (k —ko)

FIG. l. (a) Division. of the tetrahedron kok~k2k3 to get
the contributing part for cases when E& —E& «Ez and

EI, «Ez «E„. (b) The case when EI, «Ez«E& gives
2 . 3' f 2

three different tetrahedrons needed for the contributions.

4(k)=b'0+b' (k ko) (27b)

thereby reducing the integral in (26) to the form

" dSI = [Ao+ c ~ (k —ko)]. l&I

Eo~ E)~E~«E3
where

(A, +c [S(E)-k,]],f(E)

where

(28)

E,=E(k)), i =0, 1, 2, 3

Depending upon the value of E~, the portion of the
tetrahedron that contributes is obtained in three
separate cases:

1. ED~ EJ, ~E,. If EO=EF, all of the tetrahedron
has k points giving rise to E'(k) & Ez and there is no
contribution at all. Otherwise, we find points A,
8, and C [Fig. 1(a)] where E(k) =Ez given by

0

It is then the tetrahedron (k+BC) that is relevant
for the surface integral. When Ez = E» point A co-
incides with k,

2. E~ ~ EJ, ~ E,. Again, a simple case develops
when E~ = E, and the whole of the tetrahedron con-
tributes. Otherwise, we find points D, E, and F
[Fig. 1(a)] given by

q, =k, + ' (k, —k, ), i=0, 1, 2,

ftE)=t dS

gives the area of the constant-energy surface inside
the tetrahedron and s is the first moment given by

f(E)S(E)= kdS

The values of S(E) and f(E) are obtained in different
forms for the various cases of E relative to the
values of 4 at the four corners arranged in an in-
creasing order. We have the following cases:

E 4, . If E =ho, the constant-energy
surface ends up as a point, line, or a triangle. The
only case with nonzero contribution will be

(i) E = ho = hq = h~'.

f(E) [v j 1
l&l

with the resulting tetrahedron DEFk, being excluded
from consideration (integral for tetrahedron
kok, km@, minus integral for tetrahedron DEFk,).

S(E) = ko+ 3 [(k( —ko) + (km —ko)]

where

(29a)
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v: [ (k& kp) x (ko kp)] (ko —ko) f(E) lv l (E —no)'
lb l 2 (bi —6o)(bq —ho)(b, o- ho)

(29b)

is six times the volume of the tetrahedron.
(ii) hp ( E ~ 6,: We find the points A, 8, and C

such that 4 = E along the three directions, just like
for the case of occupation number. The results
turn out to be

and

S(E) =ko+ P -' o

,. 1 b,. —Q0
(29c)

2. ~2~ E ~ ~3. Just like case 1 above, we have

and

f(E) lvl „
IQ} 2

1

I0,

E —61—A2 —h3

otherwise

(30a)

h3 —E ~ k,. -k,
k3+ E& h3

S(E) i"-Py ii 2 3 i

ko + 3 [(ki —ko) + (ko —kp) + (ko —ko)], E = 6i = &o = &o

(30b)

3. ~, ~ E ~ A2. The constant-energy surface
evaluated in the simple manner of case 1 above can
extend outside the tetrahedron in this case and as
a result we have the difference of the contributions
from two such surfaces; i. e. , we have

E
x + 2 — + (ko —ko)

3 0 2

x -+2—- (31f)

f (E) fo(E) fi(E)
}&} I&} l& l

(31a)

and

S](E)=k, +
ga0~2o 3 j 1

(31d)

However, when 40 = &1 &E & &2, it becomes impos-
sible to find the closing point of the triangular sur-
face of 4= E in the A;0k, direction. For that case,
we have the limiting results

f(E) lv l E —Ap bo —E bo —E
l b l 2 (6o —b, o)(bo —)kko) b,o

—b.o

(31e)

BIZ)=k, k(
' - '

) (lk, —k) (
—'

)

So(E)fo(E) —S,(E)f).(E)
fo(E) -fi(E)

where fo(E) and So(E) are a,s given by Eq. (29b) and

f (E) lvl (E —b i)o

lb l 2 (hi —ho)(ho —ho)(b, o
—b, i)

and

When the two cases E= +0=~1= ~2 and E=+1=~2 ~3
involve an outer face of the original tetrahedron
(before Fermi-function truncation), we must use an

extra weight factor of —,
' for f(E).

IV. RESULTS AND DISCUSSION

We evaluated the matrix Q„(p), given by Eq. (23),
for three principal directions, I'X, I"E, and 1 L,
for a total of nine values of p. The reciprocal-lat-
tice vectors K, and K, were allowed a range of 15
values [(0, 0, 0), eight variations of (1, 1, 1), and

six variations of (2, 0, 0)]. The integration was done

by using four-point division along the I'X line. The
simplest ca.se, P = (2o/a)( —,', 0, 0) and K,= K,
(0, 0, 0), was also evaluated by eight-point division
and the results were found to agree within 6%.

Table I shows the values of Q„(p) for p along the
I'X line and those values of K, and K, that give
rise to independent matrix elements (31 such
cases). The complete matrix (15x 15 in size) for

Q„(p) can be obtained by applying the symmetry
relations

q $+ K„p+K, ) = q(p+ K„p+ K,)

+ + + (ko —ko)
3 0 2 0 3 0

Q(r$+ K.),r$+ K, ))= 9$+K., p+ K,),
where

(32b)
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TABLE I. Values of Q«(p), defined by Eq. (23), for
p in [100j direction. Only those values of K, and Kt that
give rise to independent matrix elements are shown.
K~, Kg, and p are in. units of 7f/2a and Qgg(p} in. Hy '.

P
Kf

(o, o, o)

(4 44)

(4, 4, 4)

(8, 0, 0)

(s, o, o)

(o, s, o)

Ks

(o, o, o)
(4 4 4)
(4 4 4)
(8, 0, 0)
(3, 0, 0)
(o, s, o)

(4 4 4)
(4, 4, 4)
(4 4 4)
(4, 4, 4)
g, 4, @
(/gal
(s, o, o)
(s, o, o)

(o, s, o)

(o, s, o)

(g 4 4)
(4, 4, 4)
(4, 4, 4)
(s, o, o)

(8, 0, 0)
(o, s, o)

(o, s, o)

(s, o, o)
(s, o, o)
(o, s, o)

(8, 0, 0)
(o, s, o)

(0, 8, 0)
(o, s, o)
(o, o, s)

(l, o, o)

2y 32 1
—0. 0260
-0.0971

0. 1472
—0.0659

0. 0288

—1.154
—0. 1906
—0.0424

0. 1311
0.1478
0.1574

—0.0424
0.0504

—0.0424
O. 0198

—l.472
—0.2734
—0. 1095

0.0603
—0.0327
—0. 0529

0, 0209

—0.5294
—0. 0901

0. 1126

—l.457
0. 1599

—0.951
—0.2625

0.0388

(2, 0, 0)

-2.499
—0.0283
—0.0729

0.0509
—0, 2051

0.0265

—0.928
—0.1332

0.0157
0.1265
0.1458
0.1292

—0.0280
0.0348

—0.0404
0.0192

—,l.646
—0.3336
—0. 1026

0, 0435
—0.0175
—0.0532

0.0178

—0. 1907
—0.0798

0.0665

—1.719
0.1492

—0. 866
—0.2198

0.0373

(3, o, o)

-2.444
—0.0296
—0.0396

0, 0315
—0. 1885
—0.0077

—0.607
—0.0657

0.0293
0.1673
0.1311
0.0947

—0.0164
0. 0201

—0.0331
0. 0132

—1.698
—0 ~ 3333
—0.0771

0.0372
—0. 0032
—0. 0459

0. 0272

—0. 0611
—0. 0674

0. 0399

—l. 952
0. 1239

—0. 762
—0. 2029

O. 0508

(4, 0, 0)

—2. 234
—0. 0464
—0.0628
—0.0136
—0.5929

0. 1269

—0.2871
—0.0284

0.0064
0.1062
0. 0621
0.0731

—0. 0122
—O. 0036
—0.0167

0. 0052

—l.736
—0.3388
—0.0574

0. 0207
a

—0.0491
0. 0207

-0.0235
—0. 0601

0. 0195

O. 0937

—0.5711
—0.1630

0. 0436

Available from other terms by use of symmetry
relations.

Q(p+Kt, p+K,) =Qt.(p) . (32c)

Results for p along I"E and 11 directions are
shown in Tables II and III, respectively.

As expected, values of Q„(p) are largest (in mag-
nitude) for the case of K, =R, = (0, 0, 0). However,
some other diagonal matrix elements have large
values. In general, the off-diagonal elements are
small. Table IV lists all the diagonal elements
evaluated here. A general trend is noticed; i. e. ,
they all have the same sign and the magnitude de-
creases as ) p+ K, ) increases, except for some
fluctua, tions and slight directional effects.

The dielectric matrix s„(p) can now be obtained
by using Eq. (20). It is well known, however, that
the RPA expression [Eq. (20) here, similar to the
Lindhard'e expression for the free-electron gas)
leads to some unphysical features of the pair dis-
tribution function in the range of metallic densities
(2» r, ~ 5). In a classical paper on the exchange
and correlation energy of a free-electron gas, Hub-
bard proposed to replace the Lindhard expression

1 Q (k, rg)
(33)

s(R, &u) 1+Q' '(k, u&)

TABLE II. Independent values of Q&,(p) for p in [110)
direction.

(o, o, o)

(4, 4, 4)

(4 g 4)

(s, o, o)

(4, 4, 4)

(o, o, s)

(s, o, o)

K

(o, o, o)
(4 4 4)
(4, 4, 4)
(8, o, o)
(4 4 4)
(0, 0, 8)
(s, o, o)

(4 4 4)
g, 4, 4)
(4, 4, 4)
(4, 4, 4)
(s, o, o)

(4, 4, 4)
(4 4 @
(0, 0, 8)
(o, 0, 3)
(8, 0, 0)

(4 g 4}
(4, 4, 4)
(4 4 4)
{4 4 4)
(s, o, o)
(o, s, o)
(4, 4, 4)
(4 4 g)
(o, o, s)
(o, o, s)
{8,0, 0)
(0, 8, 0)

(s, o, o)
(0, 8, 0)
(4 4 4)
(o, o, s)
(8, o, o)
(o, s, o)

(4 4 4)
(4, 4, @
(o, o, 8)
(0, 0, 8)

(8, 0, 0)

(o, o, s)
(o, 0, 8)
(s, o, o)

(s, o, o)
(o, s, o)

(1, 1, o)

-2.384
—0. 0796
—O. 0904
—0. 0300
—0.0119

0. 0640
0. 1243

-1.671
—0.3300

O. 1082
0. 1461

—0. 0528
0. 1555
0. 0851

—0. 0420
0. 0365
0. 0549

—l.281
—0.2215
—0.0050

0.0897
0.0530

—0.0253
O. 1454
0.1244

—0. 0505
0. 0283

—0.0369
0.0386

—1.380
0.0313
0.0390
0, 1621

—0.0830
0.0414

—0.960
—0. 1573
—0. 0732

O. O116
—o. 0475

-0.922
—0.2281

0. 1027

—0.5117
0. 0112

P

(2, 2, o)

—2.369
—0.0568
—O. 0849
—0.0003
—0.0228

0.0893
0.0726

—l.959
—O. 4274

0.0825
0.1747

—0.0365
0.1014
0.0542

—0.0800
O. 0185
0. 0427

—1.181
—0.2049

O. 0071
0.0621
0.0526

—0. 0184
0.1086
0. 0971

—0.0423
0.0243

.
—0.0144

0.0224

—1.585
0.0212
0, 0250
0.1499

—O. 0711
0.0339

—0.4570
—0.0610
—0.0344

0. 0063
—0. 0260

—0. 7858
—0.2004

0.0589

—0.1638
—0.0137

(3, 3, o)

—2. 039
—0. 0443
—0. 0613

0.0417
—0. 0118

0. 1154
0. 0194

-2. 144
—0.5512

0. 1186
0. 1806

—0. 0465
0.0808
0. 0452

—0. 0575
0. 0076
0. 0395

—0.950
—0. 1299

0.0458
0. 0724
0. 0513

—0.0207
0. 0456
0. 0492

—0. 0389
0.0171

-0.0125
0.0208

—l. 705
0.0246
O. 0233
0.1088

—O. 0526
0. 0502

—0.1309
—0.0274
—0. 0131

0. 0009
—0.0165
—0.5343
—0. 1362

0.0235

—0. 0425
—0. 0019

by the more general form

1 Q (k, &o)

s (k, ur) 1+ [1—G(k)]Q' '(k, to)

where Q '(k, &) is the polarizability of the free-
electron gas. The function G(k) takes into account
the exchange and correlation effects. [This is
equivalent to the form given by Eq. (1) using G(k)
to modify the electron-electron interaction. ] Hub-
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(0, 0, 0)

(4, 4, 4)

(0, 0, 0)
(4', 4', 4)
(4 4 4)
(8, 0, 0}
(4, 4, 4)
(4 4 4)
(8, 0, 0)

(4, 4, 4)
(4 4 4)
(8, 0, 0)
(4 4 4)
(4, 4, 4)
(s, 0, 0)

(1, 1, 1)

-2.464
0.0178

—0.0711
0.0011

—0.0658
—0.0197

0. 1151
—l. 890
—0.0943
—0.0365

0. 0581
0. 0937
0. 0058

(2, 2, 2)

-2, 340
—0.1730
—0. 0262
—0.1136
—0.0563
—0. 0354

0.0668

a
a

0.0348
0.0821
0. 0210

TABLE III. Independent values of Q&,tp) for p in [111t
direction.

and correlation effects [modifying the electron-
electron interaction 4re2/A(p+ K,}~ in Eq. (20} by
Eq. (2}], is now given by

q"'(p+ iY, }
l —G(p+R~}Q'0'(p+ R&}

(36a

TABLE IV. Diagonal terms Q&&(p) for all p+K& values
involved. Also shown are the values of &&&(p) in the RPA
and including exchange and correlation correction. (Toigo
and Woodruff factor). Last column gives the correspond-
ing value for the free-electron model (including Lindhard
factor and the TW correction). Units for p+K„ I p+K&l ~,

and Q&&{p) are ~/2a, (71/2a}, and Ry ~, respectively.

p+K, i p+Ji, ) Q«(P) rr FE

(4, 4, 4)

(s, o, o)

(4 4 4)

(4 4 4)

(8, 0, 0)

(4 4 4)
(4 4 g)
(8, 0, 0)
(0, 0, s)
(4
(4, 4, 4)
(4, 4, 4)
(8, 0, 0)
(0, 0, s)

(8, 0, 0)
(0, 8, 0)
(4 4 4)
(4 4 4)
(4 4 4)
(8, 0, 0)
(0, 8, 0)

(4 4 4)
(4 4 4)
(4 4 4)
(8, 0, 0)
(0, 0, 8)

(4 4 4)
(8, 0, 0)

(8, 0, 0)
(0, 8, 0)

—1.481
0.0170

—0.0361
0. 0473
0. 0285
0. 0953
0. 1406
0.0527

—0. 0357

—l.345
0.0345
0. 0443

—0.0264
0. 0392

—0.0806
0.0412

—l. 121
0.0294
0.1614

—0.0281
0, 0375

-0.814
—0. 0411

—0.4800
0. 0039

—1.450
0.0010

—0, 0203
—0. 0183

0.0152
0. 1202
0. 0859
0. 0385

—0. 0120

a

0.0121
0. 0217
0. 0115

—0.0246
0.0526

—0.724
0. 0527
0.0482

—0.0097
0.0185

—0. 1.893
—0.0201

—0. 1.410
—0. 0089

~Available from other terms by use of symmetry rela-
tions.

bard proposed the simple form

(35}

where k„ is the Fermi momentum. Singwi et al. 0

arrived at an expression similar to that in (34}by
an equation-of-motion method relating 6 (k},S(k}
(the static form factor}, and s(fc, ~} self-consistent-
ly. Of the many forms proposed5'2' 3 for G(k}, we

have decided to use the numerical values given by
Toigo and Woodruff.

The dielectric matrix, corrected for exchange

(]., o, o)
(]., ]., o)
(1, l. , 1)
(2, 0, 0)
(2, 2, 0)
(3, 0, 0)
(2, 2, 2)
(4, 0, 0)
(3, 3, o)

(I,I, 4)

(F, 2, 4)
(5, 0, 0)

(o, 4, 4)
(]., 4, 4)
(5, 3, 0)
(3, 3, 4)
(2 4 4)
(6, o, o)

(6, 2, o)

(3, 4, 4)
(3, 3, 5)
(2, Z, 6)
(7, o, o)
(5, 3, 4)
(7, 1, 0)
(7, ]., ].)
(6, 2, 4)
(5 44)
(5, 5, 3)

(1., 8, 0)

(5, 5, 4)
(1, 1, 8)

(7, 1., 4)
(2, 8, o)
(6 4 4)
(2, 2, 8)

(3, 8, 0)
(5, 5, 5)

(6, 6, 2)
(4, 8, 0)
(9, o, o)
(7, 4, 4)
(9, 1, 0)

(3, 3, 8)

(9, 1, ].)
(6, 6, 4)
(8, 4, 4)

(10, 0, 0)

(1.0, 2, 0)
(6, 6, 6)

(1O, 2, 2)
(7, 7, 4)

(11,0, 0)
(].]., 3, O)

(12, 0, 0)

1
2
3
4
8

1.2

16
1.8
18

24
25
27
32
33
34
34
36
36
40

41
43
44
49
50
50
51
56
57
59

65
66
66
66
68
68
72
73
75

76
80
81
81
82
82
83
88
96

1.00

104
108
].08
1].4
121
130
].44

2, 321.
—2. 384
—2. 464
—2.499
—2. 369
—2. 444
—2. 340
—2. 234
—2. 039
-2. 144

—1..959
—1.952
—1.890
—1.736
—1.698
—l. 705
—1.671
—1.646
—1.719
—l. 585

—1.472
—1..48].
—1..450
—l..457
—I..281
—l. 380
—l. .345
—].. 18].
—1.154
—l..121
—0.951
—0. 960
—0, 922
—0.950
—0, 866
—0.928
—0.7858
—0. 7620
—0. 8140

—0. 7240
—0.5711
—0.5294
—0, 6070
—0.5117
—0.5343
—0.4800
—0.4570
—0.2871
—0. 1907

—0. 1638
—0. 1.893
—0. 1410
—.0. 1.309
—0. 061.1.
—0.0425
—0, 0235

25. 77
13.72
9.77
7. 67
4. 16
3.90
3.08
2.49
2. 21.

2. 27

l. , 871
1, 833
l..747
1.579
'l. .549
1 535
1.525
1.488
1.5].0
1..423

1.383
1.368
1.352
1.31.7
1.273
1, 295
]..281
1.225
l.21.6
1~ 203

1.1.56
1.155
1..1.49

. l. 1.54
1.1.36
]..1.46
1.116
1.11.1.

l., ].16

1.102
1.076
1..070
]..080
1.067
l. , 070
1.062
1, 055
].032
1..020

1.017
1,019
l, 014
1..012
1.0054
1..0035
1., 00].7

33.76
18.83
]4.32
1.1..07
5.68
5 4p
4. 09
3, 15
2. 69
2. 81

2. 19
2. 14
2. 01.

l. 762
]..71.6
1.699
l. 681
l. 631
1..667
1.540

l.479
1.460
1.438
1.394
l.330
1.362
1,343
1.267
1.255
l. 238

l. 178
-1.177
1, 169
1.].75
l. ].52
] ]65
1.129
1, 1.22
l. 128

]..1.].1.

1.081
1.074
1.085
1.070
1..073
1.065
1..058
1., 033
1.021

]., 017
1.01.9
l. 014
1.012
] pp54
1.0035
1.001.7

41.90
22, 57
1.6.43
12.31
6.54
5 94
4. 63
3.61.
3.30
3.30

2. 63
2. 56
2.42
2. 14
2. 10
2 05
2 05
1.975
1.975
1.84].

1.81.2
1.757
1.732
1.6].8
] 599
1.599
]..580
1, 495
1,478
1~ 447

1,368
1,355
1,355
l. 355
1.330
1,330
1,285
l..273
1.250

1,238
1..191
l. ].83
1, 1.83
l. 176
l. 176
l. ].69
l. 1.42
l. 1].2
1.1.01.

l.091
1.083
l..083
l. 073
1.064
l. 054
1.043
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57.0—
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1

1
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\

i
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X
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PRESENT CWORK

FREE ELECTRON
MODEL

2.4 4.00.8

x(
2.0

Xl

X~~

I ~W)4R RR'ax~~-- ——- -l~ ~ ~
I

FIG. 2. Plot of «(p) vs
I p l (measured in units of

k& —l. 097 x 2&/a). Dashed
line is the corresponding
result for the free-elec-
tron model. Insert shows
the details when &Pp) ap-
proaches its asymptotic
value.

where

(p) = [s (p) — ] ~ xS
Qtg(p)

' (36b)

4n e'
Q"'(P+ K~) = —

fl (- g, a t2Q)&(p)]n(p+
(36c)

Equation (36c) includes an extra factor of 2 to ac-
count for both spins. Table IV shows the values of

e(p), for all the diagonal cases calculated here,
both with and without the exchange and correlation
correction. The last column in Table IV shows
the result for a free-electron (FE) model corrected
for the exchange and correlation effects, using the
Lindhard expression

q(0)( ) i

1 r I I r+'0
(3p)

Qq 2E ' 6k 2k„-

Figure 2 shows a plot of the diagonal terms in s(p)
(plotted against )p() for the actual aluminum band
structure and the free-electron model. The ap-
parent scatter in the data results from small di-
rectional variations of s(p). The results differ
from the free-electron case only slightly, confirm-
ing the view that aluminum is a nearly-free-elec-
tron metal.

Table V shows the complete matrix for p= (m/2a)

(1, 0, 0) evaluated from (36). In general the off-di-
agonal terms are small. However, elements in the
first row are not so small, owing to the large value
of the interaction potential, 1/(p+ K,), for p+ K,
= (v/2a)(1, 0, 0). This may cause a slow convergence
for some expressions using a-' and may require the
evaluation of s„(p) for K, going beyond the (2&/a)
(2, 0, 0) used here. A look at the other cases shows
that such a problem exists only for the small values
of p.
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APPENDIX

The band structure is obtained self-consistently
only for k values in the irreducible subzone (k„~ k~
~ k, ~ 0). However, to evaluate the dielectric ma-
trix [and the matrices m(p, q)] we need the wave
functions for all points in the FBZ. To obtain these
wave functions, we investiga, te the rotation proper-
ties of the quantities involved.

First we define a rotation matrix, S(P), for the
Gaussian orbitals by
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u,. (Pr) = QS,.&(P)u&(r) (A1)O
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This matrix S must be diagonal in block form,

0 Oi
n(p) e o o

»( ~ )
(A2)

where the three sections indicate the division of the
Gaussian orbitals in the three sets of d, s, and P
types, respectively.
Combining the transformation given by (Al) with the
Bloch theorem, we find

a„&(Pk) = e'~»'~ ga„,(k)&,&(P )

where e'o»~' is the phase factor (of value + 1). In
matrix form, we have

A,.(|)&)= " "'5 '(P')A(k)l, .

(A3)

(A4a)

and the corresponding form

A'„.(Ilk) = e-"«" '[A'(k)n~ y-')] (A4b}

Now let us consider the P matrix. From the defini-
tion

P,$, q) =pe-""» &u, (r-0,. )le" lu, (r)) (A5)

we can write

Z, $, tlq).= Pe-'"'"»(u,.(r —R, ) le 'lu, (r))

=pe-"'"v(u, .{I)(r —R„))le" ~' lu&(gr )),
where

P 'R»=k„and P-Lr= r

Now we use the transformation (Al) to give

P«)(p, tip) = Q e-+'"vSf«»(P)(u«»(r —R„)

x le
'

lu& (r })~&& y)
=[&'Q)&(f} p q)& (t}H;~

Thus we have the matrix transformation

&$, Pq) = &*(fl)&N 'p, q)&'(t)) (A6)

Finally the transformation for the matrix m is ob-
tained by

m«»»(p+ Ka» Pq) = Za j«q}pg(p+ Ks» Pq)a y(Qq p)z)
i4

= [A'@q)&$+K. R)A((flq- p}s))«.
-"e~"«"«o'»m(8-'$+ K ), q). (AV)
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y, (p+ K,) = p+ K,
Thus we need only those values of q that are dis-
tinct members of the star and not connected by an
operator y, c G(p+ K,), where G(%) is the group of
operators that leaves k unchanged. Similarly, when
a given p+ K, is connected by an operator to another
p+ K„we do not need to reevaluate the matrix ele-
ments. Consider the case

I', (p + K ~) = p + K, (A10}

Using (A7), we find the result

~~~(p+ K~i8q) ~rn(1'. '(p +K.)~Pq)

ego )(r~)-go„(r~)
(

'
K F 8 )

(All)
Since all independent vectors q have been used for
evaluating the p + K, case, all cases for p+ K, are
available from (All). This reduces the number of
p+K, values to be used for rn, „and as a bonus, we
find that the phase factors need not be evaluated.
We define a new set of matrix elements (m, „) that
are exactly the same as m, „except that we ignore
all phase factors that are not basically inherent in
its definition, i. e. , those due to the wave functions
in the 4'8 zone. Using the notation that q is a vector
in this restricted subzone and that all other q vec-

A substantial saving in the evaluation of the ma-
trix elements m, „can be achieved by the use of (A7)
in combination with Eq. (23). For a given value of

p+K„ it would seem that we need to evaluate m, „
for all q points in the Brillouin zone. However, a
first reduction is obvious in the fact that if an oper-
ator leaves q unchanged, m, „would not change. A
similar saving is achieved when the operator leaves
p+K, unchanged, i. e. ,

m, „(p+K„g)=m, „(p+ K„q) if Pq= q, (A8)

and

m, „(p+K„y,q) = e '~~'"~'"~~~"~'m, „(p+K„q), (A9)

where

tors will have a P-type operator attached to it, we
can write

m .(p+ K., q) = I&'(q)&(p+ K., q)A((q- p) )].
= [&'(q)&(p+ K., q)&'(8 -'}A(q )]&.s""~ '

'mI„(p+ K~, q), (A12)

where

(q-p)s =& q

and

,.(p K., q) = [~'(q)&(p K., q)~'@' ')A(q')], .
The expression in Eq. (23) involving the sum of the
product of matrix elements over the operators that
leave p unchanged [G(p) as distinguished from y,
EG(p+ K,), etc. ] can now be rewritten in various
other convenient forms:

S= gm, „(a 'y '(p+ K,), q)mf„(o, -'y-'(p+K, },q) .
(A13)

Using the definition of rn, „and the fact that the
phase factors are multiplicative for a product of
operators, we find

S = gm, „(p+K„y,ynq)~, „'(p+ K„y,ynq), (A14)

where y, and y, belong to the group of p+ R, and

p + K„respectively. Finally, another similar
expression, containing (A14) as a special case,
can be written:

S= gmI„(p +K„y,l,ynq)m«*(p'+K, ', y&I",yoq)

(A15)
where

I",(p + K,) = p + K,
~/ ~ f

I"g (p+ Kg) = p + Kg

and y, and y, belong to the group of p + K, and

p + K„respectively.
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