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Surface energy of jellium metall'
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A variational calculation is performed of the surface energy of the jellium model of a metal surface.
Variational parameters are used which only affect the surface properties of the wave functions. The kinetic,
electrostatic, and exchange energies are evaluated using these wave functions. The minimization procedure
yields. results very similar to those obtained by Lang and Kohn, and quite different from the infinite-barrier
model.

I. INTRODUCTION

The surface energy of metals, in the jellium
model, has been the subject of many recent inves-
tigations. The early calculations did not include
the important contributions of correlation and ex-
change. '~ These were first included by Lang and
Kohn, who used the local density approximation. '4
A different type of calculation was performed by
Craig, ' and Schmit and Lucas, who independently
suggested that the total surface energy could be ex-
plained by the zero-point energy of the plasmon
modes. These two approaches are very different,
and some controversy arose over the validity of the
two methods. In the beginning, the main point of
discussion centered about the magnitude of the cor-
relation energy, since Lang and Kohn found it to be
quite small while the other approach found it to be
quite large. Later it was realized that this is in-
appropriate, and one should always, when compar-
ing two theories, compare the sum of exchange plus
correlation energy. A second point of disagree-
ment between the two theories was the result of
Lang and Kohn that the surface energy of jellium
went negative at high electron density. This did
not happen in the other theory. This negative en-
ergy largely arose from the kinetic-energy term.

A large number of theoretical calculations were
reported which attempted to explain these differ-
ences, in particular the exchange and correlation
part of the surface energy. ' '7 Most of these cal-
culations employed a theoretical model called the
infinite-barrier model. ' '4 The particles are as-
sumed confined to a box of width I. and infinite
walls, so that the z component of the wave function
is simply

@„(z)= (2/I )'~3 sin(nrem/1. )

The simplicity of these wave functions permits an
exact computation of the surface exchange energy.
This nonlocal computation is still quite difficult,
but the result was reported by Harris and Jones. '~

The correlation energy in the random-phase ap-
proximation (RPA) was reported by Wikborg and
Inglesfield. " These and related calculations seem
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FIG. 1. Energy terms contributing to the surface
energy of jellium metal. The dashed line is the result
of Lang and Kohn {Ref. 3) using the local-density ap-
proximation. The solid lines are the results of nonlocal
calculations using infinite-barrier wave functions. The
exchange energy is from Harris and Jones (Ref. 14) and
the correlation energy is from Wikborg and Inglesfield
(Ref. 13).

to show that the zero-point energy of the plasmons
makes only a small contribution to the surface en-
ergy. The local density calculation, which omits
this contribution, thereby is a good approximation
to the surface energy.

The surface energy is the sum of four terms:
kinetic, "electrostatic, exchange, and correlation.
Figure 1 shows these four energy contributions
compared: the Lang-Kohn results versus those
reported for the infinite-barrier model. Each the-
ory gives quite different results for each energy
term. The kinetic-energy term is quite signifi-
cant-notice the scale change of a factor of 4 be-
tween it and the other curves —since Lang-Kohn
report a large negative kinetic energy, while the
infinite-barrier model is large and positive. The
sum of the terms is dominated by the large kinetic-
energy term, and the totals are very different for
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II. VARIATIONAL CALCULATION

The electron wave functions used in the variation-
al calculation were those for a finite barrier at the
surface. With Z=O at the center of the slab, the
finite-barrier potential is

v(z) =o, jzi f. ,

v(z)=vo, )z~=~ .
The wave functions for this potential were given
by Huntington' and Stratton. Our variational pa-
rameter X is the ratio of V, to the free-electron
Fermi energy

A. = Vo/E~ (2. 1)

The permissible values of X range between one and

infinity

the two models.
The calculations reported here were undertaken

to understand the differences between these two
theories. We simply wished to know which theory
is more correct. Our results definitely suggest
thai the numbers reported by Lang-Kohn are better
than those reported using the infinite-barrier
model.

We did a variational calculation. A variational
parameter A. was introduced into the wave function

C„(z, X). This was chosen so that varying A. only
affected the surface part of the wave function. The
total energy for the N-particle system Er(A) de-
pends upon X, but only in the surface part

E,(~) =NE'+ mE'(~),
where E~ is the bulk energy per particle. The me-
tallic slab has two surfaces of area A. Hence
varying X only varies the surface energy, and a
minimization of the total energy with respect to X

only minimizes the surface energy.
The wave functions are chosen so that for one val-

ue of A. we ha, ve the infinite-barrier model, while
for another value we obtain results very similar
to those of Lang-Kohn. The variational procedure
clearly indicates a minimization at the values near
those reported by Lang-Kohn. Thus our nonlocal
calculation reproduces numerical results very sim-
ilar to those of the local-density approximation.
Ne only compute three of the energy terms: kinet-
ic, electrostatic, and exchange. The correlation
energy is not included, but we argue that its omis-
sion will not change our conclusion that the infinite-
barrier model is a poor description of a surface.

We note that previous variational calculations
have been reported on the surface properties of
metals. ' ' These have used the local-density ap-
proximation, while we are doing a nonlocal calcu-
lation.

+3(2- 5~)(~-1)'"], (2, 3)

although he did not give it explicity. Since h(~) =0,
the first term is the infinite-barrier result, while
h(X) gives the correction for the finite barrier. At
X=1 the value is

h(1)=-$ .
Thus varying X within its permissible range makes
the kinetic-energy term go from very positive to
very negative. The kinetic energy is the only term
with a strong A. dependence. The minimization of
the surface energy tends to occur where the kinetic-
energy contribution is lowest, which is near ~=1.
The result (2. 3) may be written in atomic units
[Ry/(Bohr radius)3] as

E:.=~(~)/~,',
A(A.) = 0.0540 [1+k(X)] .

(2.4)

The second term is the electrostatic energy.
The electron density near one edge is given by

n (z) = Se, f dx () —x') ( ( x, z },
0

y(x, ~) =x'exp[2y(~-x')'"]/~, y & O,

(j)(x, z) = sin~[xy + sin '(x/X'~~)], y & 0,
y =k,[z+d(~)],

(2.5)

where x = k/k~, and no is the bulk density. The
point Z =0 refers to the jellium edge and y =0 to
the step barrier edge. This density was calculated

The case ~=~ is the infinite-barrier model. The
value ~ =1 is a lower limit, since for values less
than this, the electrons leak out of the crystal.
All energy terms seem well behaved at the point
x =1.

Another parameter of the theory is the distance
d(A) in the Z direction between the jellium edge and
the finite-barrier potential. This distance is de-
termined by the charge neutrality of the surface
to be~

d(~) = (3/4k~) [~/2 —(2 —~) sin-'(X-"') —(~ -1)'»] .
(2. 2)

Thus this is a dependent variable, and A, is the only
free parameter of the theory.

It should be emphasized that we do not use the
potential V(Z) in our energy computations, nor as-
sume that it exists. We use it only to generate a
set of wave functions. Then we throw away the po-
tential, and use the wave functions.

The first term we calculate is the kinetic energy
of the surface. This is easily deduced from Hunt-
ington, '

E„', = (~'k'/1«vm) [1+h(~)],

h(~) =(1/2m) [(15&'—16K-8) sin '(A. ' ')
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numerically. Then the electrostatic energy of a
single surface is

Zz, =2me' t dz [n(z) -n, 8(z)] dz'
~0 ~Jaoo

x (z'- z) [n(z') -n, 8(z')] .
In atomic units, this may be written

z,', =B(~)/~,', (2.a)

2e d t d r '( z)pEx- 4 (2.7)

&(~, r') = 2 P @„,„,(~, ) +„,,„(~'),
~, kll

and extract from it a volume term and a surface
term

noEE +~EE
Zz„= —ae k~/4m, Q =2A[I. —d(X)]

where 0 is the volume of the jellium. After doing
the (x, y) integrals in (2.7) one obtains

27T8

k)1 ~ kI1
n, n'

1
G(q, n, n') =- (2. a)

x y„(z') y„,(z) y„.(z')

where Q„(z) are the Z part of the wave function for
the finite slab, and n is the discrete quantum num-
ber. The z integration in (2. 8) yields a very
lengthy result for (Gq, n, n), from which one can
extract the volume and surface terms. The sur-
face contribution to the exchange energy is numer-
ically integrated using the method of Harris and
Jones. The result may be written in atomic units
as

where the result for the infinite-barrier model is

B(-)= o. ool M .
The third term is the exchange energy. Our non-
local calculation used the numerical method de-
veloped by Harris and Jones' for the infinite-bar-
rier model. The method is to begin with the stan-
dard formula for the total exchange energy

proximation. " '~ This appears to be prohibitively
difficult with our wave functions which are more
complicated. We finally abandoned the idea, of
computing the correlation energy because of the
numerical difficulties. The omission of this term
severly limits the accuracy of our energy calcula-
tion. It is possible that the calculated correlation
energy might be small. This is based upon the
observation that Lang and Kohn found it to be small,
and of our other three energy terms come out to be
very similar to theirs. However, this is just a
speculation, and we do not know whether the sur-
face correlation energy is small.

III. NUMERICAL RESULTS

The electron density we calculate is shown in
Fig. 2 for ~=1 and X=~. These two results differ
little from each other. The most significant differ-
ence is the long tail for negative Z which charac-
terizes X=1. The triangular points are the Lang-
Kohn results for z, =4. These agree remarkably
well with our results for A, =1.

One of the standard justifications for the infinite-
barrier model is that it predicts a density profile
at the surface which is similar to those found by
Lang and Kohn. Figure 2 shows that this is indeed
the case. However, in Fig. 1 we showed that the
infinite-barrier model predicts all energy terms
to be quite different than those found by Lang and
Kohn. Thus slight differences in surface density
profile have a large effect upon the energy terms.

Figure a shows the X dependence of A(X), B(A),
and C(&), which are the coefficients of the kinetic,
electrostatic, and exchange energies. The two
Coulombenergies are hardly affected by A., and
only vary near A. =1. This variation is only on the
scale of a factor of 2. The kinetic energy, as re-
marked earlier, has a, steady and spectacular A.

~LK {rq = 4)

rL

z,'„=c(~)/~,',
c( )=o.ooaaa .

The correlation energy is defined as all other con-
tributions to the energy, beyond the three which
have been mentioned. In perturbation theory, this
is an infinite series of terms, which cannot be
evaluated exactly. Recent calculations using infi-
nite-barrier wave functions have solved the sur-
face correlation energy in the random-phase ap-

1.0
KFZ

2.0

FIG. 2. Electrondensityat the surface, compared for
the infinite-barrier model (~= ~) and the finite-barrier
model P, =1). The traingles give the Lang-Kohn profile
for ~~=4. The three curves are similar, although the
Lang-Kohn result is more like "A=1 result than &= ~.
The je1.1ium edge is at Z=0.
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change energies. The point A = ~ on the upper right is
the asymptotic limit of the kinetic energy.
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dependence, since it goes from very positive to
very negative,

For each value of density (x,) we vary a and find
the minimum of the total energy

z'(~) = [x(z)/~, +a(~) + c(~)]/~,' .
The energy curve for r, =5 is shown in Fig. 4. The
minimum occurs at &p =1 30. For ~ values higher
than this the kinetic energy increases, while for ~
values lower the Coulomb terms increase. Q de-
creases with decreasing r„and reaches ~0 =1 about
r, =3. For lower values of r, the minimization oc-
curs just at Q =l. For each value of x„ the three
energy terms are evaluated at X . These results
are shown in Fig. 5, which compares these results
to those of Lang and Kohn, and the infinite-barrier
mode]. .
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FIG. 5. Results for the variational procedure for the
finite barrier are compared with the other two theories.
The variationa1. theory O.ong dashed line) gives results
very similar to Lang and Eohn for the two largest terms:
kinetic and exchange.

The variational procedure produces results simi-
lar to those ox Lang and Kohn. The kinetic energy
is large and negative. The electrostatic term is
midway in value between the two models, but this
is a small term and less significant than the others.
The exchange energy is larger than the infinite bar-
rier model, and similar to that obtained by Lang
and Kohn.
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FIG. 4. Minimization curve for r =5.
The main results of this paper are two conclu-

sions. First, the infinite barrier model provides
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a poor description of a jeQium surface. This con-
clusion is relevant because much recent and pres-
ent theoretical work on surface properties of metals
employs this model. It appears to predict substan-
tially incorrect properties, and results from it are
not to be trusted. This point is also made in
Ref. 19.

Our second conclusion is that the local density
approximation is quite good. Our nonlocal calcu-
lations using wave functions predict results simi-
lar to those found in the local density approxima-
tion. . We suspect that this agreement could be im-
proved if, we were to improve our calculation:
either by including correlation or a better choice of
variational function.

The accuracy of our result suffers from the
omission of correlation energies. But we do not
think this omission affects either of the two con-
clusions above. The minimization procedure is
dominated by the large A. dependence of the kinetic-

energy term. This forces E (X) to minimize at a
g near one. We regard it as unlikely that the cor-
relation energy changes this. This hypothesis is
based largely on the fact that the correlation ener-
gy is a Coulomb term, and the other Coulomb terms
are insensitive to ~ except at very low values.

We also considered replacing the jellium back-
ground by a discrete lattice of finite ions. This
couM be done using a pseudopotential for the ion
potential, and treating the ion effects classically-
in the manner of Lang and Kohn. We decided
against doing it, since the answers would come out
similar to theirs. This is because the result de-
pends only upon charge density, and Fig. 2 shows
that our charge densities are almost identical to
theirs.
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