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Self-consistent pseudopotential method for localized configurations: Molecules*

Marvin L. Cohen, M. Schliiter,’ James R. Chelikowsky, and Steven G. Louie?
Department of Physics, University of California, Berkeley, California 94720
and Inorganic Materials Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 14 July 1975)

A method is proposed using pseudopotentials in a self-consistent manner to describe localized configurations
such as molecules, surfaces, impurities, vacancies, finite chains of atoms, adsorbates, and solid interfaces.
Specific application is made to the Si, molecule. The Si, energy levels and charge densities are calculated with

reasonable accuracy using a plane-wave basis sct.

We have developed a method which extends the
pseudopotential scheme to localized configurations.
These calculations are done self-consistently and
the approach is applicable to problems such as
atomic and molecular states, solid surfaces, !
localized impurity and vacancy states, 2 finite chains
or layers, adsorbates,® and interfaces between
solids, * The scheme has many of the advantages
of the pseudopotential method in that it uses a
simple plane-wave expansion and the starting po-
tential can be obtained from experimental data.

It goes beyond the usual pseudopotential approach
through the requirement of self-consistency for
the valence electrons. Here we treat the case of
a silicon diatomic molecule both to illustrate the
method and to demonstrate the interesting results
which are possible for molecular calculations.
Hopefully this approach can become competitive
with other approximate one-electron schemes
based on methods such as multiple scattering Xa,
extended Hiickel, tight binding, etc.

For calculations of molecular states, the main
advantage of our method over many standard meth-
ods (essentially embodied in the pseudopotential
method) is that the properties of the core electrons
need not be computed. Consequently, calculations
for the heavier molecules are no more difficult
than for light ones, within the “frozen-core” ap-
proximation. For light molecules, standard meth-
ods are very successful, but because the computa-
tion time increases rapidly with the number of
electrons, there is a paucity of calculations for
molecules composed of atoms beyond the first
transition series. The simplicity of the proposed
pseudopotential scheme also allows calculations
for larger molecules. At first sight the plane-
wave basis set used appears to be retrogressive,
but there are in fact advantages to this approach.
Because of the plane-wave basis and the use of
statistical exchange (discussed later), there is no
a priovi bias as to the form of the wave function—
its form is determined self-consistently via the
potential. Also because we are using a pseudo-
potential approach, only the valence-electron

charge density is computed, and the basis set need
only be large enough to reproduce variations in
this fairly smooth pseudocharge distribution. Spe-
ifically, the charge variation away from the cores
is not large and hence the plane-wave basis set
and resulting matrix are easily handled by modern
computers. The properties and problems asso-
ciated with d electrons are not included here. How-
ever, there appears to be no fundamental restric-
tion in the model which rules out application to d
states. In particular, several empirical-pseudo-
potential methods involving d states have been
developed® and applied successfully to band-struc-
ture calculations for crystals. We will first dis-
cuss the method in general and then return to the
molecular calculation,

Pseudopotential methods have evolved consid-
erably since their introduction® in 1959. The use
of model potentials’ and the empirical-pseudopo-
tential method® (EPM) have yielded a great deal
of information about solid state properties such
as band structure, optical response functions and
electronic charge densities.® In all of these cases
the sytems considered were assumed infinite and
periodic; and possible extensions of the method
to local configurations in solids, e.g., localized
impurities or solids without long-range periodicity
were not obvious. An attempt® was made to use
the pseudopotential scheme to study amorphous
materials. Complex cells were repeated infinitely
and the effects of the complexity of the unit cells
on the calculated properties yielded information
about how the prominent features of the structure
(e.g., even and odd numbered rings of bonds) in-
fluenced the properties (e. g., electronic density
of states). A true amorphous system was not
generated, but information gained from studies of
increasingly complex cells was extremely useful.

The method discussed here is somewhat related
to the above scheme, and it is directly applicable
to the specific problem of interest. The method
is straighforward and initially involves putting the
local configuration of interest into the structure
factor. In the pseudopotential formulation, the
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crystalline pseudopotential form factors V(G)
are written in terms of atomic potential form fac-
tors V,(G) through the structure factor S(G),

V@)=Y s@v,©),
e (1)
S(G) =167, ,

where G is a reciprocal-lattice vector and 7, are
the basis vectors to the various atoms in a primi-
tive cell. The basic scheme is to include in S(G)
the essential features of the local configuration,

In the case of a molecule, the structure factor can
be constructed to create a cell with a molecule and
sufficient empty space around the molecule to pro-
vide isolation from the next molecule when the

cell is repeated. For a surface, usual periodicity
can be retained in two dimensions and a slab can
be inserted to provide a surface in the third dimen-
sion, The impurity or vacancy problem requires
a cluster of host atoms surrounding the site of in-
terest. Ultimately the cell chosen is repeated in-
definitely to allow the use of the pseudopotential
method, A similar approach specifically designed
for surfaces has been used by Alldredge and Klein-
man!® to calculate some properties of Al and Li
surfaces.

Self-consistency!! is essential in obtaining re-
alistic solutions since the calculations will start
with potentials derived for bulk calculations. It
is necessary to allow the valence electrons to
react to the boundary conditions imposed by the
local configuration and the resulting readjustment
and screening is a fundamental part of the problem.
Also, the self-consistent screening potential has
to be completely general and is not necessarily
a superposition of atomic potentials. Self-con-
sistency is restricted to the valence electron
since a fixed ion core pseudopotential is used.
Changes in the core electrons due to feedback from
valence electrons are neglected since they are
usually localized in a limited region around the
ion cores and not significant for determining the
valence-electron and bonding properties of the
system,

In the scheme described above, the configura-
tion of atoms and spaces can be complex, The
ultimate limitation on the number of atoms is the
amount of computer time necessary to generate
the eigenvalues and eigenfunctions through solu-
tion of the secular equation. The basis set is
formed by Bloch waves expanded in terms of free-
electron eigenfunctions.

The starting potential can be an ionic model
potential fit to atomic term values and screened
appropriately or a potential obtained from mea-
surements on bulk solid-state properties. In both
cases the results are the same once self-consis-

tency is reached. The problems with the method
come mainly via the artificial long-ranged sym-
metry imposed, but most of the consequences can
be dealt with, Some examples are: the interaction
between configurations; establishing a zero of
energy; the fact that the potential which should
depend continuously on wave vector ¢ is approxi-
mated by form factors at q’s equal to the G’ s of
the chosen lattice structure; and the symmetry of
the configuration to some extent suggests the choice
of lattices. Most of the above potential problems
are eliminated or reduced by taking large enough
cells and cells of the appropriate structure or
symmetry. In the diatomic molecule case which
has D., symmetry, the most convenient lattice
structure is hexagonal with Dy, symmetry, Thus
the « rotational symmetry of the wave function is
simulated by sets of sixfold “stars” of plane waves.
Test calculations on the Si, molecule in a trigonal
lattice with D;; symmetry show that the self-con-
sistent results are weakly dependent on the chosen
“crystal structure” provided convergence is
reached, i.e., enough plane waves are taken into
account,

The Si, molecule calculation was done in the
following way. The molecule was placed in a hex-
agonal lattice with a ¢/a ratio chosen such that the
distance between any two atoms not belonging to
the same molecule was larger than three bond
lengths., The molecule bond length was taken from
experiment to be 2. 25 A in the ground state'? which
differs: considerably from the 2, 34 A for the Si
crystal, The wave function was expanded in about
180 plane waves including 250 more plane waves
by a second-order perturbation scheme.® The
first step in the self-consistent calculation was
performed using the superposition of two atomic
potentials taken from empirical crystal calcula-
tions. A continuous curve® of the form

V(g) = a, (¢~ a,) Hexplas(q? - ay) ]+ 1} (2)

was fit to the few crystalline form factor values

to provide potential values at the new “molecule

G vectors.” The dispersion of the eigenvalues in
k space which is a measure of the interaction of
the different molecules with each other was of the
order of 0.8 eV at this stage; it decreased to about
0. 2 eV in the course of self-consistency. From
this starting calculation the total charge p(r) was
evaluated in terms of its Fourier components p(G)
and a Hartree-like screening potential

Vy(G) = 47e?p(G) /2, |G |2, (3)
defined by
AV, (T) = —4ne?p(T) (4)

as well as an exchange potential given by
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V, (@) = —a(3/2m) (31 3e?p(@)/3, (5)

with =0, 79 were computed. The use of a statis-
tical exchange of the above form for atoms, mole-
cules, and solids has been discussed widely in the
literature®® and been proven to yield satisfactory
results. The calculation of V,(r) requires knowl-
edge of the function [p(f) ]1’ 3. For this purpose
p(¥) was evaluated on a grid of points (~10000 per
unit cell), the cube root was taken at each grid
point and the result was transformed back into a
Fourier series resulting in V,(G). The sum of
these potentials was added to a bare ion pseudopo-
tential obtained from empirical atomic calculations’
The local “on the Fermi sphere” approximation

to this originally nonlocal potential was used and

a continuous curve of the form

Vion() '—'—Z‘% [cos(ayg) + aslewz" ®)

was fit to the results. Support for the use of this
atomic ionic potential in the molecular case is
also obtained from the fact that if this potential is
used in a self-consistent band-structure calcula-
tion for the crystal, excellent results are obtained.
The quality of these calculations can be further
improved if the ionic potentials are constrained to
give accurate atomic wave functions in addition to
accurate energy levels,

The computational procedure was then continued
until self-consistency was reached. The process
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FIG. 1. Molecular potentials plotted along a line con-
necting the two Si atoms. Also indicated are the mo-
lecular-orbital energies.
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FIG. 2. Charge-density contours for the four occupied
molecular orbitals. The values are given in 2¢/Q,,
where Q,=400 A3 is the unit-cell volume,

of reaching self-consistency can be speeded up by
interpolating appropriately between output and in-
put potentials for consecutive steps. We thus needed
five steps to reach self-consistency of the eigen-
values to within 0, 05 eV. The resulting potentials
Vi@, Vy({@), and V,(r) are plotted in Fig. 1 along
the line, connecting the two Si atoms. The total
self-consistent potential is also shown and com-
pared to the empirical input potential which gives
the best description of Si atoms in the crystalline
phase. The interesting results are that (a) the
Hartree screening potential is essentially feature-
less, (b) the exchange potential is comparable in
strength to the total self-consistent potential, and
(c) the total self-consistent potential is consider-
ably deeper at the bond than the empirical starting
potential. Also indicated in Fig. 1 are the occupied
molecular one-electron energy levels og at —1. 0
Ry, o% at —0.64 Ry, o, at ~0.39 Ry, and m, at

-0. 38 Ry.

In Fig. 2 we display charge density contours for
the four occupied molecular.levels. The charge
density values are given in 2¢/9,, where Q,=400
A3 is the unit-cell volume. It should be emphasized
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FIG. 3. Total charge density of the Si; molecule in
the ground state,

at this point that these textbooklike molecular den-
sities were calculated using a plane wave basis.
The lowest level oy contains mostly s-like charge
in a bondinglike configuration with its maximum
between the two atoms. The next higher level o
has antibonding s-like character. Some admixture
of p states quantized along the molecular axis is
present., Thewave functions of the third occupied
level are predominantly p-like at the two atoms
and overlap forming a o-type bonding state. The
fourth (occupied) and fifth (empty) level are “quasi-
degenerate.” The wave functions are mostly p-
like in character and form 7-type bonding states.
The of and 7¥ antibonding levels lie at higher en-
ergies and are unoccupied. Experimentally, !? the

ground state is found to be a Z triplet which is re-
produced in our model assuming triplet coupling of
the 7 electrons (Hund’s rule). The inclusion of spin-
dependent correlation potentials would be neces-
sary to a priori distinguish between singlet and
triplet states. The total charge density corre-
sponding to the four occupied levels is presented
in Fig, 3; the units of the indicated values are the
same as in Fig, 2. Comparison of the above or-
bital energies (after adjustments for the zero of
energy) with results'* using a Hartree-Fock basis
yields good agreement, The Hartree-Fock calcu-
lation gives the 7, state slightly lower than o, and
hence a singlet ground state, This probably re-
sults from the configuration choice.

To obtain an estimate for the amount of charge
in the bond we proceed as in Ref. 8 and integrate
the charge pile-up over a region defined by the
outermost closed contour. This is just an approx-
imate scheme to compute the charge in the band
which depends on the topology of the charge con-
figuration. For Si, a value of Zp =0. 138 (in units
of e) is obtained which is within computational ac-
curacy identical to the crystalline value of Z5=0,125.

Concluding, we have introduced a method which
is fairly simple to use and efficient; it offers a
new tool for molecular calculations and establishes
connections between a solid state method and molec-
ular problems, Si, was chosen as a test case be-
cause of the detailed knowledge available for the
Si pseudopotential. The results are satisfactory
and they illustrate the potential of the method and
the possible extensions. Hopefully our scheme
can be amplified to give accurate values of equilib-
rium configurations, force constants and informa-
tion about the geometry of molecular systems. At
present we have concentrated on special properties.
Force constants which are a more stringent test
of the quality of the wave functions can be com-
puted within the pseudopotential scheme, !*
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