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Calculation of the electronic structure and related physical properties of platinum*
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The electronic band structure, density of states, and Fermi surface of Pt metal have been calculated using the
relativistic-augmented-plane-wave method. The Fourier series representation of the a priori band structure has
been found to yield a Fermi surface in good agreement with the de Haas —van Alphen results. The subband
densities of states of platinum have been calculated with 0.25-mRy resolution using a tetrahedron scheme. The
temperature dependences of the spin susceptibility, the electrical resistivity, the nuclear spin-lattice relaxation
rate, and the electronic-specific-heat coefficient have been calculated in the constant-matrix-element
approximation and have been found to be in reasonable agreement with the experimental results.

I. INTRODUCTION

Interest in Pd and Pt metals and their alloys
remains high because of their remarkable and as
yet not well-understood electric and magnetic
properties. Their large exchange-enhancement
parameters' make them ideal candidates for ob-
serving paramagnons, or persistent spin fluctua-
tions, which were first postulated to explain the
absence of superconductivity at the end of the tran-
sition-metal series. Their low-temperature re-
sistivity follows a T' law, a behavior which has
been described in terms of spin fluctuations.

Recently, mounting evidence has led to a criti-
cal review' of the proposed existence of paramag-
nons in metals and to the conclusion that their ex-
istence, in fact, has not been established for the
nearly ferromagnetic metallic systems like Pd and
Pt. Very recently, the sharp structure found in
the ab initio calculations4'5 of the density of states
in Pd metal has led to theoretical calculations of
the temperature dependence of the resistivitys (and
also the spin susceptibility7'8) that are in very good
agreement with experiment above 20 K. These re-
sults were obtained entirely without invoking spin-
fluc tuation contributions.

Interest in Pt metal is high because of its close
relationship to its sister metal Pd. Many of their
electronic properties are very similar, as expected
from their similar band structure and Fermi sur-
face. A notable difference is the smaller value
of the exchange-enhancement factor found for Pt
(-4) compared with that of Pd (-8). We have stud-
ied the temperature dependence of a number of
properties of Pt in order to confirm the above-
mentioned results for Pd and to investigate pos-
sible differences arising from the greater im-
portance of relativistic effects (notably spin-orbit
splitting) on the band structure of Pt metal. In
this paper, we determine the temperature depen-

dence of the resistivity, the magnetic susceptibil-
ity, the electronic specific heat, and the spin-lat-
tice relaxation time due to effects of sharp struc-
ture in the electronic density of states as found
from a relativistic-augmented-plane-wave (RAPW)
calculation. The results are found to be in good
agreement with experiment and confirm the im-
portant role played by structure in the density
of states.

II. THEORETICAL DETERMINATION OF BAND
STRUCTURE FERMI SURFACE, AND DENSITY

OF STATES

The electronic s tructure of Pd and Pt metals
has been studied extensively both experimentally '
and theoretically. " The electronic band struc-
ture, Fermi surface, and density of states of Pt
metal have been determined previously by Ander-
son and collaborators. ' For Pt they used a muffin-
tin approximation to the potential derived from the
overlap of atomic Dirac-Fock charge densities
calculated from the atomic configuration 5d Gs'.
Detailed comparison with the Fermi-surface di-
mensions obtained from the de Haas-van Alphen

data of Ketterson et al. ' showed the agreement
to be very good. The shape of the Fermi surfaces
of Pd and Pt are found to be remarkably similar.
Each metal has a closed electron surface centered
about I' (the center of the Brillouin zone), a small-
volume closed-hole surface centered about X and a
large-volume open-hole surface (the "jungle gym")
also centered about the X point. The good agree-
ment between theory and experiment has given a
large measure of confidence to the validity of the
band calculations.

For our calculations, the energy eigenvalues
e„(k) were obtained using the relativistic-aug-
mented-plane-wave (RAPW) method'" applied to
a warped-muffin-tin (WMT) approximation" to
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the crystal potential. The crystal potential was
constructed from the standard overlapping atomic
charge density model using the Slater (n = 1) ex-
change approximation. ~2 The Pt atomic charge
density used in the overlapping procedure was
calculated using a Dirac-Slater code" for an as-
sumed 5d' 6s configuration as this corresponds
more closely to the almost full d-band structure
of the metal. The radial mesh was adjusted so
that the 321st mesh point occurred at the radius of
touching muffin-tin spheres for the lattice constant
used (a= 7.3983 a. u. vs 7.4137 of Andersen
ef al. ). In this manner, it was possible to max-
imize the volume of the muffin-tin spheres used
while maintaining the convenience of having the
radius of the muffin-tin sphere fall at a mesh
point. With the exception of the different atomic
configuration for the Dirac-Slater atomic charge
density calculations, radial mesh, and muffin-tin
radius, the crystal potential model is the same
as that used previously. '

RAPW energy eigenvalues were obtained on a
cubic mesh of lines. r dimension (m/6a) within 4~s

of the Brillouin zone (BZ). These eigenvalues
were then least-squares fit with a Fourier series
that included 60 stars of primitive translation
vectors. (The wave vectors used in a Fourier
series of a quantity such as the energy-band struc-
ture, with 1", symmetry in reciprocal space, are
the primitive translation vectors of the real space. )
The quality of the fits to the first six bands is
good; the rms error is about 2 mRy for the first
five bands and twice this value for the 6th band;
the maximum differences between the RAPW and
the fitted eigenvalues is about two times the rms
errors quoted. All further calculated results to
be presented here were performed using the Fou-
rier-series representation of the bands.

The density of states was calculated by subdivid-
ing the irreducible 4+8 of the BZ into 6144 tetra-
hedrons within which the dispersion relation was
assumed to be linear. The density of states is
then given by a sum on analytic expressions for
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each tetrahedron. '4 The resultant total density of
states near the Fermi energy (Ez =0.6215 Ry) is
shown in Fig. 1 along with its band by band de-
composition. The contribution of band 4 is not
shown as it is too small to be plotted on this scale.
As can be seen, al1. the structure near the Fermi
energy arises from band 5 since band 6 has a very
nearly constant density of states in this energy re-
gion.

Given the Fermi energy and a convenient repre-
sentation (Fourier series) for the band structure,
it is a simple matter to construct and check the
Fermi surface. This has been done and we find
very good agreement with the experimental data'
and with the previous calculation of Anderson and
Mackintosh. ' As an example, we show in Fig. 2
the Fermi radius plot for the F centered piece in
the (100) plane. We see that our results are in
somewhat better agreement with the experimental
results than are the values of Anderson and Mack-
intosh. What is rather surprising is the very close
agreement obtained for all our results with those
of Anderson and Mackintosh in view of the different
potentials used in the two sets of calculations . Par-
ticularly noteworthy, is the insensitivity of the re-
sults to warping and to the use of different con-
figurations for the atomic charge densities.
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FIG. 2. Radius vector of I' centered piece of the Fer-
mi surface of Pt in the (001) plane: the solid line denotes
the experimental data (Ref. 8); the triangles denote the
theoretical values of Andersen and Mackintosh (Ref. 5).

~24 III. TEMPERATURE DEPENDENCE OF PHYSICAL
PROPERTIES
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FIG. 1. Density of states of Pt: energy-scale resolution
equals 0.25 mRy; EJ;=0.6215 RP'.

In this section the temperature dependences of
a number of physical properties are calculated.
The energy-space representation is used. That
is, we calculate integrals over N(E) and f(E, p, T),
where f is the Fermi-Dirac distribution. This
procedure is only appropriate above about 20 K,
where the momentum selection rules should be
relatively unimportant, i.e. , the scattering of
electrons by phonons yields values of b,A of order
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kz. We, however, use a rigid N(e) so that we
are not taking into account thermal expansion of
the lattice. This will be an increasing source of
error as T increases beyond 8~ =230 K. Because
of the structure in N(e), we have calculated p(T)
by iteration so that the number of occupied states
is held constant to within five parts in 10'.

A. Electronic heat capacity

The temperature dependence of the bare elec-
tronic-specific-heat coefficient yo normalized by
the T=. O K value is shown in Fig. 3. The change
of yo(T) of -30/p at '700 K is somewhat smaller
than that used by Knapp and Jones" in the extrap-
olation of the high-temperature experimental yo

value to T= 0. Also shown in Fig. 3 is the shift
It(T) —p(0) in the chemical potential with tem-
perature. Although p.(T) is roughly parabolic,
deviations from parabolic behavior above 100 K
are apparent in yo(T). The calculated value of

yo(T= 0) = 24. 29 Ry ' or 1.786 eV ' can be combined
with the experimental enhanced electronic-specific-
beat coefficient y(T=O) =yo (T=0) (1+X) of 2. 83 eV '

to yield a value of & = 0. 59, in good agreement with

the ratio of low-to-high-temperature y values.
Since y(T & &a) =yo(T), the ratio yields" &=0.6
+0. 1.
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FIG. 4. Inverse magnetic susceptibility of Pt: solid
curve, experimental data of Budworth et al. (Ref. 17);
dashed curve, calculated value with (1 —n) '=3.62.

diagmagnetic susceptibility approximately sum

to zero. Thus, the measured susceptibility
should be equal to the Pauli susceptibility of the

d band. We use the molecular field treatment of
exchange enhancement for the susceptibility

B. Magnetic susceptibility

The analysis of Knight shift and susceptibility
of Pt by Clogston et al. ' shows that the sum of
tbe van Vleck second-order orbital susceptibility,
Pauli spin susceptibility of the s band, and the

where g is the unenhanced susceptibility and I is
treated as a temperature-independent exchange
constant. yo(T) is calculated from

(2)
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where p~ is the Bohr magneton and k~ is Boltz-
mann's constant. In Fig. 4 we plot X '=go '-I.
The theoretical calculation of X

' is quite sensitive
to the exact pla. cement of E~= IJ,(0). Movement
of E~ by as little as 100 K makes significant
changes in X '. However, a consistent feature of
the experimental results and the theoretical cal-
culations is the shoulder in X

' near 120 K. The
theoretical curve shown is for Ez = 980 79 K (0.. 621
By). The theoretical curve was forced to fit ex-
periment at 100 K by adjusting the Stoner factor
o. =Ig(0) =0.724. This results in a T=O ex-
change enhancement of S(0)=(1-o.) '=3.62. We
note that the upturn in the experimental suscepti-
bility'~ below about 20 K is undoubtedly associated
with magnetic impurities.

Electncal resistivity
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FIG. 3. Calculated temperature dependence of the
electronic-specific-heat coefficient po normalized to
the T=O value and calculated shift of the chemical po-
tential g(7.'}—p(0) with temperature.

ln Fig. 6 we plot the electrical resistivity of
p". and of Au. The electrical resistivity of a
transition metal has two major contributions;
the intraband scattering of the light mass s elec-
trons by the phonons p, , and the interband scat-
tering of the s electrons into d states near E„by



CA LCULATION OF THE E LECTRONIC STRUCTURE AND. . . 5573

D. Nuclear spin-lattice relaxation rate
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FIG. 5. Electrical resistivity of Pt and Au. The cal-
culated value of p, & has been adjusted to be equal to
ppg

—p~„at 280 K.

the phonons p, ~. As shown by Fradin6 for Pd,
the latter term p, „can have significant deviations
from the classical linear T dependence at high
temperatures due to structure in N(e) near Ez.
We estimate the contribution p, in Pt as equal
to the resistivity of Au. The difference pp, —p„„
is then compared to the calculated term p, „.Here
p, „ is calculated from the expression for phonon
absorption

I.05
I i I I

The nuclear spin-lattice relaxation rate of
"'Pt, T&', has been measured between 20 and
290 K by Butterworth. " The experimental values
of (T,T) ' normalized by the 20-K value are shown
in Fig. 6. Yafet and Jaccarino' have discussed
the various contributions to T, at T=O K. How-
ever, their estimates were based on the elec-
tronic-specific-heat coefficient measured at low
temperature y(T= 0). They did not correct for
the electron mass enhancement" X, i.e. , y(0)
=yo(0) (1+&). If we correct their estimates of
the contribution to T, ' from the d-spin core polar-
ization interaction and from the d-orbtial hyper-
fine interaction by (1+X) 3 and if we take account
of the exchange enhancement of the d-spin core
polarization contribution - «(n) S (0) = 0.52x13. 1
= 6. 8 for n = 0. 72, we find that the temperature-
dependent core-po], arization contribution is approx-
imately 50%%uo of the total relaxation rate at T = 0 K.
Here «(n, T) represents the reduction of exchange
effects on T, ' due to the qdependence of yo(q, 0, T).20

Jullien and Coqblin ' have shown for a parabolic
electron energy dispersion that «(u, T) = [(1/T, T)/
(1/T, T), 0] [2p, sN(0)/g(0, 0, T)] is independent of

That is «(o. , T) can be represented as «(n, T)
= C(n)«(0, T) for all n, where C is a temperature-
independent constant. Assuming this result is
more general, we write the core polarization con-

3~'d~
(

N( +e~)
i.oo &-

xf(s) [1-f(a+u))]

where po is a constant, n(cu) is the Bose function,
and N~(e) is the d fraction of the total density of
states (assumed to be equivalent to the 5th band
density of states of Fig. 1). To calculate the con-
tribution to p, , from phonon emission, n(&u) is
replaced by n(&)+1 and c+ & goes over to e-&.
We note that p, ~ is not nearly as sensitive as X,
with regards to the placement of E~, owing to the
additional integral over the phonon states, assumed
Debye-like. Because of the difficulty of estimating
umklapp contributions po is left as a free parameter
that has been fixed by setting p, „=pp& —p„„at
280 K. Although there is only modest agreement,
both experiment and theory have a similar concave
downwards appearance. In the calculation of p, „,
no attempt has been made to adjust the Debye
spectrum to account for anharmonicity due to
thermal expansion, etc.
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FIG. 6. Nuclear spin-lattice relaxation rate divided
by the absolute temperature and normalized by the 20 K
value. Circles denote the experimental values of But-
terworth IRef. 18) and the solid curve is the calculated
value.
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tribution to (T,T) ~ as

(TqT) ~ = z(n, 0) (TqT)~ o N(0) [l —Igo(T)j

x f(e) [1-f(e)] N(e)' A (4)

Taking the temperature-dependent core-polarization
contribution to (T,T) ' to be 50% of the total value
of (T,T) ' at 20 K, the variation of (T,T) ' normal-
ized by the 20-K value is shown in Fig. 6. There
is good agreement with the experimental results.
However, much better T, T data are necessary over
a wider temperature range in order to fully test
the calculation. Because of the lack of exchange
enhancement of the orbital contribution to T, ',
we have ignored the small temperature dependence
of this term.

IV. CONCLUSION

In summary, we have found that the BAPW meth-

od as applied to Pt metal yields structure in the
density of states arising from the 5th band that
results in temperature dependences of the spin
susceptibility, the electronic-specific-heat coef-
ficient, the electrical resistivity, and the nuclear
spin-lattice relaxation rate that are in good agree-
ment with experiment above 20 K. Spin fluctuation
contributions were not invoked. An essential ele-
ment in the calculations is the high accuracy and
resolution obtained by means of the analytic tetra-
hedron scheme as applied to the Fourier series
representation of the RAPW bands. The results
confirm the earlier work on Pd and lend greater
confidence to the thermal calculations of the physi-
cal properties. We suggest that the calculation of
the temperature dependence of the susceptibility,
etc. , is as severe a test of the band structure in
the vicinity of E~ as in the calculation of the Fermi
surface.
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