
PH YS IC AL RE VIE W 8 VOLUME 12, NUMBER 12 15 DE CK MBE R 1975

Aluminum under high pressure. I. Equation of states
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A curve of applied pressure P versus lattice constant a is calculated for single-crystal aluminum. It results
from an application of the method of structural expansions for deriving the energies of simple metals, a
method known to give reasonable results for the elastic constants even at second order in the effective electron-
ion interaction. The latter (in the present calculation) is taken from Fermi-surface analysis and it is verified

(with this essentially experimental information) that the extant face-centered cubic structure remains the
preferred crystalline phase up to the. highest pressures considered. Arguments are given to suggest that the P
versus a curve should have reasonable a priori accuracy, and can admit of possible improvement if
experimental data in the intermediate-presssure region can be provided to refine the (in principle) energy-
dependent pseudopotential. At three megabars the lattice constant is reduced by only 22%; the ion cores at
this pressure are stiH very well separated.

I. INTRODUCTION

Among the simple metals, aluminum is in many
ways one of the simplest, being cubic close packed
under normal conditions and possessing ion cores
occupied by electrons in levels of s and P sym-
metry. It is mainly a consequence of the latter
that its nearly-free-electron band structure can be
interpolated so accurately by a spatially local
pseudopotential, a feature which distinguishes it
somewhat from the alkali metals. Although the
Fermi surfaces of the alkali metals are a good
deal simpler than that of aluminum, the apparent
complexity of its multiply-connected Fermi sur-
face can be used to advantage in a study of the
transport properties at high pressure. This will
be the content of a later work; for the present we
are concerned with the equation of state of Al, a
necessary preliminary in discussing the depen-
dence of transport properties on pressure. ' Ef-
fects of temperature (for normal conditions) are
quite small, and our aim here is therefore to ex-
press the equation of state in terms of pressure
versus lattice constant. Such a relation can only
be considered potentially useful if no crystalline
phase changes are likely to occur. ' We show by a
series of arguments that the common face-cen-
tered cubic phase of Al appears to remain the
stable phase for pressures exceeding SMbar. In
terms of the lattice constant (or equivalently the
r, electron spacing parameter) these colossal
pressures represent a rather modest change of
around 20'Pp. The electron density is increased,
but not greatly. It is not unreasonable to suppose,
therefore, that the method based on structural
expansions about the uniform interacting electron
gas will continue to function as it does for the sys-
tem taken at more reasonable pressures. The

method is summarized in Sec. II, and in the course
of discussing the standard second-order theory'
we comment on the importance of higher-order
corrections to the present calculations.
Section III describes the application of the for-

malism to the problem of deciding which of several
possible simple structures (including fcc) will
possess the lowest Qibbs energy. For the fcc
phase, a curve of pressure versus lattice con-
stant a is presented (Sec. IV); up to and above 3
Mbar, the changes in g are quite monotonic. Up
to about 800 kbar, our calcuations, based on the
method of structural expansions in a weak pseudo-
potential, can be compared directly with the re-
sults of Ross and Johnson' who obtain the equation
of state of aluminum from an a Priori calculation
of the band structure by the augmented-plane-wave
(APW) method.

We estimate that not until pressures of over 100
Mbar are reached will the ion cores of AI be sub-
stantially contiguous. This is a very different
situation from the one prevailing in ionic crystals
where the pressure scale is founded largely on
assumed short-range interactions. ' Although the
atomic number of Al is relatively low, it may
compete reasonably well in x-ray scattering power
with NaCl and may, therefore, be an alternative
candidate for calibration and use as a pressure
scale.

II. ENERGY OF SIMPLE METALS

On account of the compactness of its ion core
(and the absence of filled d-shell levels) the
pseudopotential in Al, although energy dependent
to a small degree' is remarkably local and pro-
vides an excellent interpolation to a Priori band
structures. Invoking an adiabatic approximation,
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we shall take it that an ion of the dynamic lattice
of Al carries with it a bare pseudopotential, v(k)
known (at the Fermi energy) from Fermi surface
analysis. It is a function which as is well-known
oscillates in sign as k increases, a fact which
reflects the finite size of the Al ion core. Since
we shall shortly need to consider the possibility
of corrections arising from dynamic lattice effects,
it is convenient to set down a Hamiltonian for the
elecI, on system that is written' for instantaneous
positions r(R) of the ions near equilibrium sites
R, i.e.,

EI=Heg+Ilz+He(

where for the present II,~ can be taken as the
standard Hamiltonian for the interacting electron
gas (uniform compensating positive background)
and the ionic Hamiltonian II„ leads to the
Madelung energy NE~ of point ions. In rydbergs
it can be written (for ZN electrons)

ZNE„= g „—,[S(k)-1],
A&0

where for the ions in a volume V the structure
factor for the ionic system is

(3)

with

ik r(R)e

and the average in (3) being taken over the states
of the crystal. The final term in (1), H„, is the
electron ion interaction in which it is convenient
to include the largely compensating zeroth Fourier
component of all the long-range interactions; that is,
a term Eo which although independent of structure
is always difficult to calculate from first princi-
ples. It can, however, be eliminated by exploiting
a fragment of experimental information such as,
for example, the equilibrium density. '

Accordingly we write

relation function [for example, S(k)] are then j)

functions on the reciprocal lattice they reduce the
resulting summations in the perturbation series
to lattice sums. Thus, in addition to the ground-
state energy' from H, ~ (and E„)we have, as the
first term of the structural expansion, a second-
order band-structure contribution E[)2s)of the form

E('~ =- ' v K 'X('& K e K.
[K3

[K] reciprocal-lattice set,

where e(k) is the dielectric function of the inter-
acting electron gas and Xj')(k) its (static) first-
order polarizability. At this level of approxima-
tion the internal energy is then

E = (E,g +Es+ Eo) +Ej ), (7)

1 ~ v(K) v(K') v(K —K') j,)
3 - -, e (K) e (K') ~ (K -K'}

where X
' is the second-order polarizability of the

and it is interesting, before proceeding further,
to examine their relative contributions to the pres-
sure at a given volume V, or what is equivalent, a
mean electron spacing y, [V/NZ =(r,go)'~~m]. Table
I shows" that as pressure increases the contri-
bution from E('~ becomes progressively a smaller
fraction of the total. Since we know' the ground-
state energy and compressibility of Al to be quite
well given near P =0 by (7) and its derivatives, we
may conclude that even at high pressures the high-
er-order band-structure contributions to E are
not likely to be an important factor in limiting the
accuracy of a calculation of P vs a. The most
significant of these corrections is the third-order
band-structure energy. If the electron gas is
treated, for example, within the random-phase ap-
proximation, this term can be written'"

He( =Eo+ Q PT&(k)P

where for the electrons the density operator is
written

-t7 r;8

(4)

TABLE I. The quantities &«, E&, and &0 are present
at any order of the calculation and are convenient to
group together in the comparison of the relative pressure
contributions. The first column gives an estimate of the
pressure (in Mbars) from &«+&z+Eo and the second
oojumn for Eg Energies are given in rydbergs.

%e turn first to the static lattice case for which
the contribution of E~ to the thermodynamic func-
tion is known, at least for most simple structures.
The problem of calculating the energy of a simple
metal then reduces to an expansion (relative to the
structureless electron gas system} in orders (be-
ginning at the second) of H„. Since the ionic cor-

2.07
1.9
1.8
1.7
1.6

& (&eg+&~+&o)

0.48 {-1.29)
1.39 (-1.24)
2.38 (-1.189)
3.95 (-1.110)
6.47 (-0.993)

& (&(2) )

-0.48 {-0.097)
-1.07 {-0.138)
-1.62 (-0.176)
-2.37 (-0.227)
-3.35 (-0.292)
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electron system. As remarked earlier, v(k) for Al
(and indeed any non-point-ion system) alternates in
sign as its argument increases and, as a conse-
quence, there is substantial self cancellation in
(8). Furthermore, relative to SF, the ~v(K)~ are
considerably less than -0.1 (for example, ~v», /8„~
=0.0209, and ~v20, /8), ~

=0.0657). It follows that
the higher-order band-structure energies are quite
small in comparison with E~~'s~. This has already
been noticedbyothers, "although we must recog-
nize that the derivatives of the higher-order terms
(in the elastic constants for example) need not al-
ways be unimportant.

As far as a calculation of the pressure is con-
cerned it seems a reasonable approximation to
neglect the higher-order band-structure energies.
The approximation would appear less justifiable in
the calculation of the ground-state energy for vari-
ous crystal structures. But in fact it remains
numerically valid. The concern is that differences
in Gibbs energy for different crystal structures
are quite small, about 4-6 mRy between hcp
and fcc per electron if calculated with a second-
order expression. And these can be less than
typical third-order energies. However, we need
not the absolute third-order energies, but their
differences for different structures; these are in
turn smaller by about an order of magnitude. We
shall see in a moment that inclusion of dynamic
effects are likely to reduce the third-order differ-

ences still further, so that a calculation of the
energy at second order is sufficient for the pres-
ent purposes.

Relaxing the static lattice assumption requires
(a) the inclusion of phonon energy term, if indeed
the excitations are to be described by phonons, and
(b) the reintroduction in (6) and (7) of the corre-
sponding ionic correlation functions, for example,
S(k) [Eq. (3)]. If u(R) is the displacement of an
ion from site R, then

S(k~) ~ k% (R-R')( f1& ~ u(R) -IX ~ u(R'))

and if the u(R) may be developed as a linear syn-
thesis of phonon operators, it follows that"

S(k) =- g e'~ &'-') e~-'[( [k u(R)]'
N~

—[k u(R')]'

+ [k u(R)][k u(R')])),

(10)

and this replaces the sequence of 5 functions which
led to the lattice sum in the second-order term
(6). The correlation function corresponding to
(9) and appearing in the third-order expression
is easily seen to be of the form

RR'P'

e'"'"e" e 'q'"' exp(- a([k'u(R)]'+[q u(R')]'+[(q+k) u(R")]'

+2[k u(R)q u(R')] —2[q u(R')(k+q) u(R")]

—2[k u(R)(k+q) u(R")])],

E = (E,~+ Eo+E~) +E~~'~~ +E~", (12)

which is straightforward to generalize to higher
orders.

For metals with substantial Debye temperatures
(in which category we may place Al) one method of
handling (10) and (11) is to proceed by a multi-
phonon expansion. The zero-phonon term leads
immediately back to (6) and (8). The one-phonon
term leads, when combined with the kinetic energy
of the phonon system, "to the internal energy of
the phonons. The remaining multiphonon terms,
as is known from the analysis of thermal diffuse
x-ray scattering are quite small. Thus we may,
with a sufficient accuracy, treat the phonons in-
dependently of the electron system and calculate
the Gibbs energy of the latter assuming a rigid
lattice. The internal energy can then be written

where E" is the internal energy of the phonon sys-
tem.

III. STRUCTURAL CONSIDERATIONS

From the known Fermi surface of Al (and the
assumption of a static lattice) the values of v(K), K
—=(1, 1, 1,),(2, 0, 0) can be extracted and these can be
interpolated and extended by an empty-core pseu-
dopotential [v(k) = (-8))'Z/k') cos&r,]. The range
of validity (in k) of such a simple form is quite
sufficient to assure convergence of the sums in
(6), and hence of the band-structure energy. Since
v(k) is a property of the ion we may repeat the
procedure at any chosen volume or density. As-
suming for the moment that this is fixed we must
examine the structure-dependent terms in (12) as
the ions are rearranged in a variety of possible
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R =na+pb+qc.

We take the basis vectors

fcc

pa "a

C)

Q2

(a)

b

b cc

aT
"a

,0

sc

I

2

I

,
2 w&1

w=1

() I

C/2 fP', C

&vT/S

hcp

crystal structures.
To begin with we consider the electronic terms

(and Madelung energy) and allow ourselves at this
point the freedom of a structure with a two atom
basis. The task is to ascertain which of the struc-
tures (at least, which of the simple structures) is
preferred for Al: to this end we will select care-
fully a system of primitive and basis vectors
which will allow us continually to deform between
different structures by means of a smooth vari-
ation of parameters. " Refer now to Fig. 1(a}. We
take a, b, and c as primitive vectors which are
written in the form

a=a(s, 0, 0), 1=a(v', $, 0), c=a(0, 0, q). (13)

Direct lattice vectors are then written

b, =0, b2= T = &a(2s —1, (2s —1)g, 7)).

In (13) and (14) the parameters v', g, q, and $ are
chosen in the following way:

v' = (2s —1)v,

$ =u -v(2u —v 3)+(1 —s)[1 —2u+2v(2u —VS)],

r) =w+2vw(P, —1)+2(1-s)[1-ur —2vm(P , -1)],-
2v (u —1/v 3 ), (15)

with s, u, v, w taken as independent parameters.
Transformation (15) is only one of many ways of
continually deforming the standard simple crystal
structures. We have selected it because it permits
us to examine single-cubic (sc), face-centered
cubic (fcc}, body-centered cubic (bcc), and hexa-
gonal closed packed (hcp) with variable (c/g} ra-
tio. As an example, note that when s= & we have
(whatever finite values u, v, w may assume} a
simple-cubic structure. On the other hand, if
s = 1, v = 0, and w = 1, the structure is fcc for
u=/2, and bcc with u= 1. Further, if s=1, v=-„
and w =1, we have hcp with ideal ratio. These are
summarized on Figs. 1(b) and 1(c). Although it
cannot be deduced simply from the results we shall
give, it is interesting to note that the transfor-
mation we have chosen moves the atoms in a very
natural way, keeping them well apart, and pro-
ceeding as directly as possible from one structure
to another. In a sense we are moving the atoms
along valleys in the energy-structure space.

The lattice reciprocal to (13) is spanned by
primitive vectors

A=(2m/a)(1/s, -v'/s(, 0),

B = (2m/a)(0, 1/$, 0), (16)

and the reciprocal-lattice vectors are

K = hA+/8+m C,

which we use to define in Al (Z =3)

x = (2k~) 'R,
S U

arbitrary

bcc
fcc I f2

arbitraryhcp
hcp ~ arbitrary

arbitrary arbitrary

0 I

0
I

2
I/2

/ —hv's '
(17)

With the choice of basis given in (13) the structure
factor, per ion, is

(c)

FIG. 1. (a) General structure defined. (b) Some
particular cases and representations of continuous one-
parameter transformations of them into each other. (c)
Values of the parameters for these particular cases.
The parameters are defined by Eqs. (13)-(15).

P = K T = m[h(2s —1)/s

+ (I - h v'/s) (2 s —1)(/( +m ]. (18}

Accordingly, the band-structure energy (in Ry/elec-
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(3s~&/8m) '/3a

Q2 2

E's'= g ( - 1)
'*, Iv(x)l'n(1+cos3). [19)

X&0

In (19), e(x) (the dielectric function of the inter-
acting electron gas) can be written

e (x) = 1+ (X'/x') f (x)g(x); X' = I/(ma, kr ),

with

~
1-x' 1 xf (x) =-', + ln,

X !
—Xi

and g(x, r, ) a correction for exchange and corre-
lation. "',~e have not found the latter to make any
important correction in the matter of deciding
betw'een relative structures at second order.

Using Ewald's method we can determine the
Madelung energy in the standard form (again in

Ry /electron)

E„=C„Z"/r, . (20)

To find C„, we normalize the direct lattice vectors
by the Wigner -Seitz radius

i.e., we define

p =R/rws

where

p = (8v/3 s&q)'i'[(n s+pv')'+p'&'+q'q']'i'

Similarly, put

7= Tjr„„
where

!p+t!=(8vr/3sgrl)'i J„[ns+pv '+ ,'(2s —-1)]'

+IP(+-'( 2s—I)n)]'+(q+l)'q']"
Finally, put

0 =xwsK

with

G =2(9vZ/4)'i x,

then

3 3 ~ s " i~ P erfc(—',Pt) erfc( —,Pp) erfc(2P!p +t!)

K&0 pWQ

(21)

where P(&0) is Ewald's dimensionless parameter
and erfc denotes the complementary error func-
tion. Then at second order, we evaluate (12) by
using (6) for E'~'sl [with v(K) there replaced by
~(1+e ' )v(K)) and (20) and (21) for the Madelung
energy. For a given structural choice (corre-
s!ponding to a particular selection of s, u, v, w) we
determine Eo by the zero-pressure condition
(BE/Br,)„=0. Expressed as an energy per elec-
tron, F., always has the form

e/(~4mr, '),

where o. is a property of the ion alone and is as-
sumed not to alter under reasonable variations of
density. Since the total energy near zero pressure
contains small contributions from the omitted
higher-order band-structure terms, the imposi-
tion of the zero-pressure condition forces their
inclusion in a crude way through the choice of e.
To the extent that these terms are not seriously
density dependent the subsequent use of this n
will therefore continue to incorporate such terms.
If one takes the Nozieres-Pines form for the cor-
relation energy, " it is easy to see that

0 916+Z2i3C +0 031m

+y,'0 —4.42'„,

where for the fcc structure observed for Al in its
ground state rso = 2.0647. %hat is required in
(22) is E~B',i(r, ), and this can be calculated by a
combination of a direct numerical summation
(out to a chosen reciprocal-lattice shell) augmented
by integration for the remainder. This remainder,
designated by S(x„r,) (where x, is the radius of
the shell) is independent of structure and depends"
very weakly on r, . Its contribution is in any event,
quite small. At x, =x„and for x, =2.5 w'e find
8 =0.005 Ry/electron, which amounts to 5% of Ei~'sl

and 0.49o of E.

IV. ENERGIES AND PHASES: RESULTS AND DISCUSSIONS

In Fig. 2 we show a selection of the results we
obtain for the Helmoltz free energy E as the crys-
tal structure is continuously deformed from fcc to
hcp (c/a =v-, ). In this example fcc is lower in
energy at all densities considered. This result
remains true for other structures, the two that
are always closest in energy (at least of the simple
structures we consider) being fcc and hcp. It is a
straightforward matter to compute the PV term
and, hence, in the ground state the Gibbs energy
for different phases. We find fcc Al (with an as-
sumed static lattice) to have the lowest Gibbs
energy and to be the preferred structure, even up
to theoretical pressures in excess of 3 Mbar.
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Contributions to the thermodynamic functions
from the ionic degrees of freedom can be estimated
from the Debye model; in particular, the zero-
point energy is of order skseo per electron (about
0.001 Ry}and &or temperatures leis than the Debye
temperature will remain of this order. Changes in
this energy accompanying changes in crystal struc.;
ture will be much less than 0.001 Ry. The contri-
bution of the phonons to the pressure is readily
shown to be (-9y)nkse, where n =N/V is the ionic
density and y is the GrQneisen constant. Even for
changes of 50% in the equilibrium value of n, the
phonons change the pressure calculation above by
at most a few kilobars. Figures 3 and 4 give the
Gibbs energy as a function of pressure for fcc and
hcp, and (for comparative purposes) as a function
of x, for sc, fcc, bcc, and hcp. In Fig. 5 we plot
the pressure on a single crystal of Al (under pure
hydrostatic strain) as a function of its lattice con-
stant a (rather than r, ) at a nominal temperature
of 300 'K. The equation of state given there may
also be appropriate to polycrystalline samples
under less than pure hydrostatic conditions. It is
worth remarking that at 3 Mbar, where a=3.14 A,
and the nearest-neighbor separation is (1/v 2)a
= 2.22A, the distance between ion cores (taking them
to have a radius of 0.59 A) is still 1.04 A. For the
pressure range in Fig. 5 the energy (and the corre-
spondingpressure) is dominated by the terms aris-

0.0 1.6
o.Oop

-0.80-

1.7
I

r
I.B 1.9

I I

2.0 2.1

I I

0647

-0.90—

—1.00-

e [Ry]

—
I . IO-

—1.20-

-I 30-

-1.40-
hcP 0=

—I, 50

FIG. 3. Gibbs free energy as a function of rs for
several common structures. Compare with Fig. 4
where 6 is plotted against the natural variable pressure.
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I I I I I I

I I

I
I

I
I

-1.00

CC

-l.30- —I. I 0
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I
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I
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FIG. 2. Helmholtz free energy as a function of r,
and &; the other parameters fixed at their fcc values;
varying v here takes the structure from fcc to hcp.

—l.40
FIG. 4. Gibbs free energy as a function of pressure

for the fcc and hcp structures; these have the lowest
Gibbs free energy for any fixed pressure I'.
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ing from electron gas, Madelung energy, and to a
much lesser extent, band structure. Energies
arising from the direct overlap of ion cores (so
called core-core exchange, or Born-Mayer terms)
are evidently not important, although it is con-
ceivable that at very much higher pressures (we
estimate they will be in excess of 100 Mbar) they
could be. This kind of term is difficult to calcu-
late with confidence from first principles, and is
normally parameterized in an exponential form
(or even as a power law) in expressions giving its
contribution to the internal energy. In pressure
scales based on these forms, the concern (aside
from the implicit pair force approximation) is that
the low-pressure determined parameters may not
remain valid in a region of substantial ion-core
wave-function overlap. At 3 Mbar we have only a
22% reduction in lattice constant, and core-core
overlap is still a small effect; its neglect leads to
errors which will be far less important than those
arising from the neglect of, for example, the
higher-order band-structure contributions to the

I I I I I I I I I I I I I

P[Mbar]

Q~c I I I I I I I I

0.0 3.0 3.5
a [A]

ao=4.0525 [A]

I I

4.0

FIG. 5. Pressure as a function of lattice constant for
the fcc structure, and experimental points obtained from
reduced shock-wave data for two dilute alloys (0 2024 Al,
Q 921-T Al; see Hef. 22) assuming their zero-pressure
lattice constant is equal to that of pure Al.

energy.
As far as the use of Al in high-pressure devices

is concerned it suffers from the disadvantage that
its atomic number is quite low. It should, how-
ever, be visible tox rays inadiamond cell, and the
curve presented in Fig. 5 is therefore amenable
to experimental test, provided, of course, that
sufficiently hydrostatic conditions can be arranged.

If a test of this kind were found to establish as
numerically sound the basic curve up to, say, 0.5
Mbar (corresponding to a = 3.61 A), then according
to the arguments we have given about it would then
appear reasonable to accept the balance of the
curve leading to the ultra-pressure region. " An
independent determination of the pressure can also
be used to refine, for example, the form of the
pseudopotential used in the high-density regime.
It is worthwhile mentioning that the equation of
state obtained here agrees within experimental
error with the results in the range from 0 to 0.2
Mbar obtained by Roy and Steward. " It also agrees
very well with shock-wave results for 2024 alumi-
num and 921-T aluminum up to 1.2 Mbar. " As-
suming these dilute alloys behave as pure alumi-
num (with the same lattice constant at zero pre-
sure), we get from the reduced shock data the
points plotted in Fig. 5. Small changes in the
actual lattice constant are to be expected, and in
addition we must expect minor effects from the
different pseudopotentials and valences of the
impurities. But in homogeneous dilute alloys these
can only displace the experimental points slightly
from those plotted in Fig. 5. Finally, our curve is
almost parallel to the corresponding one extracted
from Ross and Sohnson's paper, 4 but is shifted to
the left by b(V/V, ) about -0.06. Although some of
this difference may be due to numerical inaccuracy
(e.g. , the APW calculations take only a few points
in the fundamental symmetry element of the
Brillouin zone) and some due to questions sur-
rounding the correct choice of local exchange po-
tential, probably the bulk of the discrepancy can
be traced to the different methods of handling of
the zero-pressure condition. In the method of
structural expansions, ' the contribution to the
total energy of the zeroth Fourier component of all
the interactions is eliminated with the zero-pres-
sure condition at the corresponding experimentally
known x, : the a priori calculations (such as those
in Ref. 4) seek to obtain every term in the ground-
state energy from first principles.

The reasons for choosing Al (the paradigm of
small-core, close-packed-cubic nearly-free-
electron metals) do not exclude other metals dis-
playing similar features, and it may well be that
the principles leading to the choice of a metal
rather than an ionic crystal for the measurement
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of pressure, can be applied to metals such as In,
or Pb, providing, of course, that closer attention
is paid to problems arising from spin-orbit cou-
pling, nonlocal effects, and the nature of neighbor-
ing levels above the Fermi energy.
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