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Quantum scattering from a sinusoidal hard wall: Atomic diffraction from solid surfaces
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An exact quantum formalism for atom scattering from a sinusoidal hard-wall surface is presented. The
Lippmann-Schwinger equation is solved for a scattering kernel consistent with the hard-wall boundary
conditions on the Schrodinger equation. It results in an infinite-dimensional matrix equation for the Fourier
coefficients of the scattering kernel which can be solved in a finite-dimensional limit to convergence. The
results show either rainbow or specular patterns depending on the surface roughness and incident k vector, as
predicted by semiclassical and coupled-channel calculations. Bragg-like structure is present with the
periodicity of the amplitude of the sinusoidal hard wall and the effects of multiple scattering are evidenced at
large surface amplitudes.

INTRODUCTION

The diffractive scattering of atoms from solid
surfaces' played an important role in establishing
the validity of quantum theory for massive parti-
cles. The use of atom scattering as a tool for the
study of surface structure has developed much
more slowly, however, than the use of electron
scattering, i.e. , low-energy-electron diffraction
(LEED) and high-energy-electron diffraction
(HEED). Only recently has diffractive scattering
of atoms been observed for surfaces other than the
alkali halides. 3'3 It appears as though the atomic
scattering' samples a repulsive potential at radii
as large or larger than the interatomic spacing in
solids. Thus the amplitude of the surface period-
icity for many solid surfaces [e.g. , the (111)
planes of fcc metals] is not large enough to yield
detectable diffraction intensities except for the
specular beam. 4

The early theory of Lennard-Jones and Devon-
shire has been extended only recently to include
the strong-scattering limit. Among other modern
approaches are those of Beeby, who uses a Green's-
function formulation which can be solved exactly
in the inelastic limit for a flat surface with a "hard
wall" potential. 7 It has been solved only approxi-
mately, however, for a structured surface. In
an approach similar in spirit to that of Goodman
et al. , which appears to be the equivalent of a
single scattering limit, Tshuda and %olken' in-
tegrate the coupled-channel equations for scatter-
ing potentials based on the Morse interaction' and
the Lennard- Jones potential, a procedure which
includes multiple scattering. Levi et al. ' have
used an eikonal approximation, while Masel et al.
and Doll'3 have used the semiclassical approach
which has been singularly successful in describing
the gas-gas scattering of massive particles. '

In order to assess the effects of the several ap-
proximations which have been made in the modern
formulation of the theory of atom scattering from
solid surfaces, it would be helpful to compare the
results of each method with exact multiple scatter-
ing calculations from a suitably simple scattering
potential. In this paper such a calculation is pre-
sented for atomic scattering from a sinusoidal
hard wall. The Liypmann-Schwinger equation' is
solved for boundary conditions given by the Schro-
dinger equation for the hard-wall potential. For
this model the formalism is exact. The only ap-
proximations are those introduced in terminating
an infinite matrix whose inversion gives the coef-
ficients needed to calculate the scattering matrix.
In the results presented here the dimensionality of
the "infinite" matrix is increased until numerical
convergence of the scattering intensities is
achieved.

The formulation is similar to Beebyv' except
that the wave function g is forced to be zero under-
neath the surface as well as within the surface
contour. A sample case is also worked in order
to show that setting g equal to zero along the sur-
face is not sufficient.

For a completely flat surface, the model pre-
dicts purely specular scattering, but as soon as
the amplitude of the surface periodicity is appre-
ciable nonspecular diffraction peaks appear. In-
creasing the amplitude slightly results in a so-
called rainbow pattern, where the intensity of the
diffraction peaks increases slowly, moving away
from specular angle until critical angles, called
the rainbow angles, are reached, after which the
intensity of the diffraction peaks drops off rapidly.
At very large amplitudes the rainbow angles co-
alesce to the specular, and then appear to recede
as the roughness increases. Thus, similar inten-
sity patterns can result from two surfaces with
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very different scales of periodic roughness. Qual-
itatively, this solution does a fairly good job of
representing the main features of typical experi-
mental scattering data. Similar features are evi-
dent in the complete coupled-channel calcula-
tions ' and the semiclassical formulation" '3 but
are absent from the "single scattering" theorye
and the calculations of Beeby for structured sur-
faces.

THEORY

q(x, z) =e,(x, z)+ dx' dz'

x G,(x, z; x, z ) V(x, z )y(x, z ),
where C)z(x, z) is the incident wave and Gp is the
free-particle Green's function with the usual out-
going boundary conditions. Defining E(x, z) by

E(x, z) =- V(x, z)y(x, z),
one notes that E(x, z) = 0 above the surface, z&D(x),
since V(x, z) =—0 in this region. Below the surface,
the wave function is identically zero, so that the
Schrodinger equation

—(I /2P, )Vail)+ Vg =Eg

The scattering surface is assumed to be a sinu-
soidal hard wall. The potential is

V(x, z)=0, z&D(x),

V(x, z) =, z D(x),

where V is the potential, z is the distance above
the surface, x the distance along the surface, and
D(x) is the surface contour.

The Lipymann-Sehwinger'5 integral equation is ai

useful starting point since it contains all scatter-
ing boundary conditions explicitly. The scattering
wave function g(x, z) is then determined by

where D(x) is the surface contour and f(x) an unde-
termined function of x. The combination of Eqs.
(2), (3), and (5) results in

()(x, x)= X,{x, x)+f dx'f dx'

x G;(x, z; x', z') f(x') 6(z' —D(x') },
i(x, x) =- X,(x, x) +f dx'

~ G',(x, z; x', D(x'))f(x') .

(6)

Before proceeding further it is useful to exam-
ine the one-dimensional analog of this equation,

i(x) = Xx(x) f dx'G;(x, x')fX(x —a) .
«OO

This equation can be solved exactly, and gives

q(z) e-(ka (D i-))le-8 I (6)

The wave function vanishes identically for z (D,
and is an incoming plus an outgoing scattered wave
for z&D. Thus E(l. (6) behaves correctly in this
simple one-dimensional case.

If the incident wave is a plane wave of the form

+Ha„a g&
0 0

(9)I
then E(l. (6) becomes

q(X Z) exi(@&xi. al

+ dx'6 x, z, x', D x' x', 10

where, for convenience, D(x') has been replaced
by DP(x'). For the results to be exact

D'(x') -=D(x), (11)
but other approximations are possible.

For a periodic lattice the integral in (10) can be
collapsed to an integral over the unit cell times a
phase factor for the position of each unit cell:

a/2

g( )
xi ())„xx()xzl d g

-g/3

V(x, z)(t(x, z) =E(x, z)

= Eg(x, z) + (I'/2il)V'(t)(x, z) (4)

x P G,'(x, z, x' ~, D'(x—')) e-'" "'f(x'),
n=-~

(12)
implies that E(x, z}= 0 also for z (D(x). More pre-
cisely, since g(x, z}=0 below (and on) the surface,
and (()(x, z) w 0 above the surface, the second deriv-
ative of P must behave like a Dirac 5 function at
the surface, and E(l. (4) therefore implies that
E(x, z) is of the form

where a is the unit-cell dimension. It is now con-
venient to define a modified Green's function by

G, (x, z, x', z')

Gp(x, z, x' —na, z') 8 "~"' .-aa0no

E(x, z) =f(x)6(z —D(x)), (6)
Using the integral form of the free-particle Green's
function

exp(a[a, (z-z')+a, (x-x')])
Gp(x) z i x ~ z ) —lllll

@2 kg dkg ypa ppz i)p gpss6 0+ «OO «OO . x+ 8+&~ ~ x+
(14)
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and defining k by

k =ko +ko (15)

yields

6, =Iim . , dk, dk„,, '
+ . ", „, g exp[i(k„—k„')na] ~

expfz[k, (e e')+ k„(x —x')]] .
"

6» 0+ k„o + ko +i& —k„+k~ «oo

The sum is a 5 function which gives the diffraction conditions:

exp(i[a, (a -z') ~ a,(x-x')]] ~ (a„-k,')a
()+ k' ' " k'+ ze —(k'+ k')

(16)

Performing the integrations

Gq ———4&oMz exP[i([(2zz/a)l+k„](x-x')+ Ie -e' I/O —[(2zz/a)l+k„] P )]
ak' (k'- [(2~/a)l+k'„]')' '

defining 8, by

k„'+ 2zzl/a
8, = arcsin

(18)

and noting that 8, is the angle for lth-order diffraction peak, gives the following result for the modified
Green's function:

4zz Mi g exp(ik[sin8, (x —x')+cos8, Ie —e'I])
aM', . cos8)

Substituting this expression for the modified Green's function into (12) gives(,.(„~o,„o,) 4z]'Mi g
'~' f(x') exp (ik[ sin8, (x -x') + cos8, I z -D'(x') I ])

akim cos8,

One now expands f(x') in a Fourier series,

kk~r gs ~ r i E(2' /a)n+yo)x'
X ~

4mMi g=-

Combining (21) and (22) gives
+ + g i k sin&~x I/2

((x, e) =e' @"""'—g g " d(x'/a) exp(i[2zz(n —l)(x'/a)+kcos8 ~e —D (x') ~]] .
cos8,

D(x) is now chosen to be sinusoidal

D (x) =D(x) = ka sin(2kx/a),

(20)

(22)

(23)

(24)

and the coefficients fC„) that define the function f(x) in Eq. (22) are determined by requiring that P(x, e) =—0
for e & —ka; from Eq. (23) one sees that this condition implies

0 = e' ~""&"—g " ' ' d(x'/a) exp(i[2zz(n —l)(x'/a) + Izka cos8 sin(2zzx'/a)]] .;(oo„„o,& C„exp[ik(x sin8, —e cos8,)]
cos8, -1/2

(25)

The integral in Eq. (25) is a Bessel function, so
the equation for the (C„]becomes

i(0~x+ggg)
tli(k &+04') ~ ~n e
cose,

where

k„'=—k sin8, ,

k,'= k cose, .

Z„,(kka cos8,), (26)

Taking Fourier components of Eq. (26), and noting

that k'='= k'

(cos8, )5, o
e"&

"I]' = Q C„Z„,(kka cos8, ) . (27)

Since 8, =0 and k,'= =+ k„ the set of linear equa-
tions which determine the coefficients (C„$ is

cos8z5, o= QC„J„,(kkacos8, ) . (26)

With the coefficients (C„$ determined by Eq. (28),
the wave function is now completely determined
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via Eq. (23), and one only needs to look in the
asymptotic region to find the scattering amplitude.
Above the surface, z& ha, the wave function of Eq.
(23) becomes

i&k~~+k~~& ~&2

(t)(x, g) = C, —Q " — (f(x'/a)
n, i cos8 r -&/2

&& exp {i[2m(n —f)(x'/a)

(27) shows that the wave function is given by

i(k x+k~z)

q( )
((k„zokzz) ~ n e

cos8„

with the coefficients determined by

~ C„J„,(ahh cosg„)-J, hk

(37)

(36)

—hha cos8, sin(2''/a)]) .

i kr cos(8 i-8 )
tl

cos8,
J', „(hhacosg, ) .

(30)
In the limit y- it is not hard to show that

Iim eikr cos(8)W) eikr(2v/ h )(/86(8 g )f ado

= e'k'(2))/ih) )"'cos8,6(sing —sine, ),
(31)

so that in the asymptotic region the wave function
in Eq. (30) becomes

q(+ g) @ (eikr/+1/8) y(8)

where the scattering amplitude f(8) is
y/p co

f(8) = —e "~ — g 3, 6(sing —sing, ), (33)

with the 8-matrix elements given by

The integral is again a Bessel function, and since
x = x sin8 and z = y cos8, this becomes

q(x, z) -=y(r, 8)

RESULTS AND DISCUSSION

The scattering from this sinusoidal hard wall
may be calculated by first solving Eq. (28) for the
coefficients C„, and then inserting them into Eq.
(29). Equation (26) is infinite dimensional, and a
finite-dimensional approximation must be used.

I.Q
h=O

Diffraction Order, g,

-2 -I 0 I 2

1.0

O, OI

0.02

—0

The solutions of Eqs. (37) and (36) should be
compared to the solution of Eqs. (28) and (29).
Unless the surface is flat (i.e. , h = 0) the solutions
are different even at distances far above the sur-
face. This means that P =0 on the surface is a
necessary but not a sufficient condition for the
exact solution.

8) ——g C„J'i „(hhacosgi) .
n=-&

(34) 0.03
I.O

-0.5

Note that the S-matrix elements have been defined
so that the normalization conditions is

cos8, (36}

In summary, the coefficients (C„Jare deter-
mined by solving the set of linear equations Eq.
(26), and the scattering amplitude is then given by
Eqs. (33) and (34).

Beeby' has used a different procedure to calcu-
late the scattering pattern from a sinusoidal hard
wall. An equation similar to Eq. (6) is used, ex-
cept that the contour D (x) is assumed to be some-
where beneath the surface, and it is assumed to
be sufficient to satisfy the boundary condition, g = 0,
along the surface. It would be interesting to see
how the results of this procedure compare with
Eqs. (26) and (27). To do so, a sinusoidal hard
wall will again be assumed, and D (x) will be taken
to be
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D (x) —= y- where y is below the surface. (36)

A procedure similar to those used to derive Eq.

FIG. 1. Scattering intensity as a function of angle for
a wave at normal incidence, with kg=40 and 0, as indi-
cated on the figure.
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FIG. 2. Magnified comparison of the superficially
similar cases in Fig. 1., ha=40, 8~=0, and k is as indi-
cated in the figure.

N= ha/2m + 3+ hah . (40)

In the calculations N was always taken to be larger
than this to verify convergence. All of the calcula-
tions presented here are for normal incidence.
There are two net parameters in the model; rough-
ness k and dimensionless incident k vector ka.

Figure 1 shows scattering patterns calculated
for a typical value of the dimensionless k vector
ha and various values of the roughness h. Quali-
tatively, they are similar to the coupled channeled
calculations of Tschuda and %olken, ' and the
semiclassical calculations of Levi, "Masel, '
and Doll, 3 as well as the scattering data, but do
not agree even qualitatively with the single scatter-
ing calculations of Goodman and the structured
surface calculations of Beeby.

The scattering patterns in the top part of the
figure (h&0. 04) are for relatively smooth surfaces.
They are specularly dominated. The intensity is
largest at the specular peak, and decreases sub-
stantially as one moves to the higher-order dif-
fraction features. Even so, if 0 is not zero, all
of the diffraction features will have a nonzero in-
tensity. Increasing the roughhess causes the in-
tensity of all of these diffraction features to in-
crease at the expense of the specular. Eventually
the specular peak will have a smaller intensity
than some of the diffraction features and a "rain-
bowlike" pattern such as those shown in the middle

It was decided to consider only those coefficients
C„whose index n was less than a predetermined
number N in absolute value. N was then increased
until the intensity I„given by

(39)

converged to four significant figures for all of the
allowed beams (i.e. , all those with 12wl/hal& 1).
Empirically, the required value of N can be esti-
mated from

0.50

~ 0.25-

0

~ 0.50-

Ch
o 025—

I

ka =20
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I I, I & I, I I. &
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Scattering Angle, 8
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FIG. 3. Effect of incident k vector on the scattering
patterns with 5, =0.04 and 8&=0.

part of Fig. 1 (0.03&h&0. 13) is formed. A "rain-
bow" pattern is one with maxima in the intensity
as a function of diffraction order, which are dis-
persed away from the specular beam. The "rain-
bow angles" are defined to coincide with the in-
tensity maxima. Between the rainbow angles the
intensity is decreased and seems, in these hard-
wall cases, to have a doubly periodic structure,
similar to that predicted by Levi et al. The ef-
fect of increased roughness is to move the rain-
bow angles out and increase the double periodicity
between the rainbow angles.

At very high roughness, such as those seen in
the bottom of Fig. 1 (h& 0. 13), just the opposite
begins to happen. Increased roughness makes the
rainbow angles appear to move in again, and wipes
out the double periodicity. Superficially, some of
the scattering patterns from very rough surfaces
look much the same as those from very smooth
ones.

A closer comparison (Fig. 2) shows that the
scattering patterns are different. On the smooth
surfaces the higher-order features are strongly
attenuated, but on the rough surfaces they are
clearly evident. They form a weak rainbow pat-
tern, which is superimposed on the strong rain-
bow or specularly dominated pattern of the lower-
order features. This is highly suggestive of mul-
tiple scattering and indeed, in a semiclassical ap-
proximation, multiple scattering occurs when

h —0. 13.
Figure 3 shows scattering patterns calculated

for an intermediate roughness and various k vec-
tors. These scattering patterns are fairly similar.
All of the patterns show a rainbowlike structure,
and the rainbow angles are all at about the same
place. A doubly periodic intensity profile for
those peaks between the rainbow angles is seen in
all of the patterns. The only difference between
the various patterns seems to be that with a higher
k vector the total intensity must be spread over a
greater number of peaks, and so each peak has a
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rapidly with energy as the beam emerges from the
surface and sweeps past the rainbow angle. With
a lower roughness, the rainbow angles are farther
away from 90', and so the intensity increases
more gently. Still, as more and more allowed
beams emerge, there is a general decrease in the
magnitude of the allowed beams throughout the in-
tensity prof ile.

Using a semiclassical model, ' it is easy to
show that for large k vectors the intensities of the
various peaks at normal incidence follow'6

FIG. 4. Effect of incident k vector on the scattering
patterns with k=0.02 and 8&=0.

I, =J,(2hka) .
One would expect peaks whenever

2hua = [n+-,' +-,'(—1)(l+1)]n,

(42)

lower intensity. Note that this effect occurs nat-
urally from Eqs. (28) and (29), and it was not nec-
essary to scale the coefficients to force normaliza-
tion. Indeed the normalization condition

I, 1~ (cos8,) (cos8z) '

(41)

was satisfied to less than 0. I%%uo for all of the cases
studied.

Figure 4 shows scattering patterns calculated
for various k vectors and a relatively smooth sur-
face. The scattering pattern for the lowest 0 vec-
tor are specularly dominated just like those in Fig.
1, but the higher-energy patterns are rainbows
like those in Fig. 2. The rainbow angles are all
at about the same place independent of the k vector.
One should note that for the smallest k vector
there is no allowed peak in the region where the
rainbow is seen at the other energies. Empiri-
cally, no matter how rough the surface may be, if
there are no allowed peaks in the neighborhood of
the rainbow angle, the scattering pattern is spec-
ularly dominated in a manner similar to those in
the top part of Fig. 1.

Figure 5 is a plot of the intensities of the spec-
ular and first- and second-order diffraction beams
as a function of the incident k vector with a rough-
ness of 0.10. In the region where

only the specular beam can propagate and so the
specular intensity is unity, and all of the other
beams have near zero intensity. At higher 0 vec-

C

tors, other beams are seen.
Once a beam begins to appear, it increases

rapidly in intensity, slowly decays, and then shows
an oscillatory behavior at higher values of k. The
rapid increase occurs only for very rough surfaces.
With this particular roughness, the rainbow angles
are about+ 70, and so the intensity increases

and valleys in between. This general trend is re-
produced by these calculations, but at present a
more detailed comparison with the semiclassical
formulation has not been completed.

O. I 5

C/l

cn

O. lo

0.05—

I

IO

I

I

I

I

0 1

30 45
k Vector, ka

60 75

FIG. 5. Intensity of the specular (solid line) and the
first (dashed line) and second (dotted line) order diffrac-
tion features as a function of incident k vector with h
=0.10 and 01=0.

CONCLUSIONS

Equations (28) and (29) are an exact quantum
description of the scattering pattern from a. sinu-
soidal hard wall. The condition that the wave func-
tion g goes to zero everywhere below the surface
is satisfied and the solution is unique. The "bound-
ary condi'. ion" that g goes to zero only on the sur-
face does not, by itself, produce the correct solu-
tion.

Equation (28), though, is an infinite-dimensional
matrix equation in the coefficients C„, and must be
solved in a finite-dimensional limit. This approx-
irnation, however, seems to introduce little error
if N is taken to be equal to or larger than the val-
ue given in Eq. (40). In all cases the normaliza-
tion condition, Eq. (41), is satisfied to less than
0. I%%uo.

The results of the calculations show either rain-
bow or specular patterns according to the incident
0 vector and surface roughness in qualitative
agreement with semiclassical calculations of
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Masel, '3 Doll, ' and Levi, ' and the coupled-chan-
nel expansions of Wolken' and Tschuda. The cal-
culations of Goodman and Beeby do not show
these qualitative trends.

and

S, =g C„H(I —n, ka cos8,), (34a)
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Note added in proof. E(luations (26) and (34)
were derived for a sinusoidal hard wall. For a
more general periodic hard wall of the form D(x'/
a), the equations corresponding to (28) and (34) are

cos8, &, o =g C„H(n —I, ka cos8, )
n-~

with

1/2 ( I

H(~ y) d~
e((RI'(~)(x'/a)+rD(x'/c))

-i]a

Scattering from periodic arrays is important in
optical, acoustic, and wave guide theory. Much of
this work has been based on the separable plane-
wave representation first used by Hayleigh. '7 It is
now known that the Hayleigh solution is not correct
for large values of the surface amplitude, h. "'
The solution presented here appears to extend ex-
act calculations to larger surface amplitudes and
to be more convenient to apply than the most re-
cent results. ' ' The work cited here" ' con-
firms our finding that the complete solution is not
separable in x and y within the region of the scat-
tering surface.
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