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Trial functions in pseudopotential theory
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It is shown that the use of variational trial functions with non-Hermitian pseudopotentials can lead to energies
which do not represent accurate upper bounds to the true energy. Such difficulties can be resolved in principle

by choosing a trial function which satisfies the same criterion used to define the pseudopotential. Accurate
results can be obtained more simply by direct use of the Phillips-Kleinman pseudopotential, which minimizes

the difference between the trial function and the exact pseudo wave function.

I. INTRODUCTION

The pseudopotential theory' provides a valuable
technique for studying and interpreting the proper-
ties of valence electrons in atoms, molecules, and

crystals. This method takes full advantage of one' s
knowledge of the core states g, to simplify the
search for valence eigenfunctions g and energies
E satisfying the wave equation

(T+ V)P=EP.

By defining a function Q = (+g, a,g„where the pa-
rameters a, = (P„P) are arbitrary constants, one
obtains the Phillips-Kleinman (PK) equation

Tp+ v&f&+ Q (E —E,)(g„p)(,=EQ.

~e assume here that the functions g, and p form an
orthonormal set, and that the original Hamiltonian
H= T+ V is Hermitian. The second and third terms
of Eq. (2) are taken together to form the pseudo-
potential V~.

The cancellation between the attractive and re-
pulsive contributions to the pseudopotential is cited
to justify various simple models for atomic and
solid-state systems. This cancellation was ex-
amined in detail by Cohen and Heine (CH), who

noted that since the coefficients a, are arbitrary
one is allowed to impose further constraints on P,
such as the requirement that P be a smooth func-
tion. We can write such constraints in the form

(& —&.) (p., 0) = (&., 0),
where I', is chosen to suit the conditions imposed.
Then Eq. (2) becomes

(4)

A further simplification is achieved if Q is smooth
enough to be regarded as constant over the core
region, and hence can be taken out of integrals
whose intergrands are negligible outside the core.

The pseudopotential theory was originally de-
veloped in the context of the orthogonalized plane

wave (OPW) method of Herring, 6 and has since
been used to further simplify energy-band calcula-
tions. 7 It has also been applied successfully to
problems (e. g. , defect-center ealeulations8 '0) for
which plane waves are not appropriate to represent
the pseudo wave function P. The variational meth-
od with adroitly chosen trial functions provides a
convenient alternative approach to the solution of
Eq. (4). However, some difficulties arise in this
method due to the possibly non-Hermitian nature
of the pseudopotential. In Sec. II we examine the
accuracy of the variationally determined energy
and obtain a general expression for the energy cor-
rection in terms of the difference 4 between the
trial function Q, and the true pseudo wave function.
This result is applied in Sec. III to the specific
cases of the CH and Austin pseudopotentials, where
it is found that the energy correction is generally
of first order in ~. In Sec. IV we show that better
energies can be obtained by direct use of the PK
pseudopotential, which adjusts itself to accomodate
the trial function in such a way as to minimize the
function &. Section V is reserved for concluding
remarks.

II. ENERGY CORRECTION

In applying the variational method we first select
a trial function P, which we suppose will yield a
reasonable approximation to the true pseudo wave
function P. The trial function is then used to eval-
uate an approximate energy

where H~ is the pseudo Hamiltonian of Eq. (4).
In practice, the trial function never has the exact

form of the true pseudo wave function, so that $,
will always differ from P by some presumably
small amount. " We define this quantity as

For a Hermitian Hamiltonian it is easily shown'
that the variationally determined energy E, differs
from the true energy by a positive amount of sec-
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ond order in 4. However, this does not hold for
the generally non-Hermitian pseudo Hamiltonian
H~. For this case we wish to calculate the energy
correction E, —E in terms of the difference &. For
simplicity in what follows we will regard all quan-
tities as real. This does not affect our conclusions,
but it shortens the equations considerably. We
will also assume that the pseudo wave function Q
is normalized to unity.

To obtain an expression for the energy correc-
tion we first note that the function E, can depend
on (t) and define the difference function

where F,' is evaluated with respect to the trial func-
tion. Then using the definition (6) in Eq. (6) and
noting that the original Hamiltonian II is Hermitian,
we arrive at an equation for E, valid to first order
in &:

ficulties in practice. Concrete examples are dis-
cussed in Sec. III.

III. CH AND AUSTIN PSEUDOPOTENTIAI. S

The CH pseudopotential is derived by requiring
that Q be the smoothest possible pseudo wave func-
tion according to the criterion that J IV&f& I dr/(P, Q)
be a minimum. The pseudopotential is then de-
fined by

s', = (v, —v)y„
where V~= (P, V~/)/(P, (t)).

In this case E, depends on Q through V~, so that
&I', =b, V~(, is of first order. Then the energy cor-
rection from Eq. (7) can be written

E~-E=- P I.(P., «)(4, P.) (P., V-4)(&, g.)]

+2 +&+ + +cy ~ c
C

This expression can be greatly simplified by noting
that

2(n. , ay)+2 + (z„y)(~, y, ) =2E(~, y).

Then collecting terms of like order gives us the
final result for the energy correction,

& —E= p [(&, &)(4, (t,)- (&., 4)(&, (i,)]

This quantity is generally nonzero, and there is
no clear method for determining its sign. The
existence of a first-order energy discrepancy
stems from the fact that the trial function does not
in general satisfy the criteria used to derive the
pseudopotential. We can remedy this situation by
choosing &f&, such that

(Eg —&,) (g., 4g) = (&,', 4g)

In this case we can show that the first-order cor-
rection vanishes by subtracting this equation from
Eq. (8) and substituting the resulting first-order
expression into Eq. (7). Although this choice of
(I), is simple in principle, it can lead to some dif-

If Q and 4 are smooth enough to be assumed con-
stant over the core region, the first sum in Eq.
(9) vanishes, but the second remains. Hence, for
the CH pseudopotential the energy correction is of
first order in &. Furthermore, this correction is
not necessarily a positive quantity, so that the vari-
ationally determined E, does not assure an upper
bound on the true energy.

As mentioned in Sec. II, the first-order contri-
bution to E, —E can be made to vanish if we use a
trial function which satisfies the same criterion
applied in deriving the pseudopotential. %e can
accomplish this by calculating a new trial function
)(.', = p, +g, b,p„where the b, are adjusted so that
p, satisfies the CH smoothness criterion. Requir-
ing that f I&)(', l dr/(X, „y,) be a minimum leads to
a set of nonlinear equations in the parameters b,
which can usually be solved by an iterative process.
The resulting y, satisfies Eq. (8), and the varia-
tional energy E, evaluated with respect to X, then
differs from the true energy by terms of second
order in 4. Although this procedure is straight-
forward in application, the increased numerical
difficulties involved tend to limit its usefulness. '

The Austin pseudopotential3 is also obtained by
a smoothness condition on (t). In this case one re-
quires that f 1 VQ l2 dr be a minimum, and the re-
sulting pseudopotential is defined by F, = —VP, .
Then ~I",=0, and E, —E is given by the first sum
in Eq. (9). Again the energy correction is of first
order in b, , but if the assumption of constant Q and
~ is valid, then E, —E becomes of second order.
It can also be shown that if the trial function is
smoother than the exact pseudo wave function in
the sense that lE(g„g,) I & l((„TQ,) I, then E,&E.
Thus, to the extent that P, and b, are smooth func-
tions, the variational method may give an accurate
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upper bound to the energy E. However, the Austin
pseudopotential does not lead to the smoothest pos-
sible &f&, and the assumption that 4 is constant over
the core region is not necessarily justifiable.

As in the previous case, it is again possible to
obtain second-order accuracy by calculating a new

trial function which satisfies the Austin smooth-
ness criterion. This criterion is somewhat easier
to apply since the resulting equations are linear
in the coefficients b, . Again, however, some dif-
ficulty is encountered in evaluating the energy with
respect to such a trial function.

IV. PK PSEUDOPOTENTIAL

Both the CH and Austin pseudopotentials are ob-
tained by requiring that the pseudo wave function
be in some sense smooth. Hence the variational
energy E, approximates the true energy only to the
extent that P, approximates the unique &f& which
satisfies Eq. (4). Instead of specifying Q by a
smoothness condition, it would appear more ad-
vantageous in this instance to define the pseudo-
potential by requiring that &f& be that unique pseudo
wave function which most closely approximates the
trial function. That is, we seek to minimize the
difference function 4 by requiring that

Solving this equation gives us a set of uniquely de-
fined parameters a, given by

ties we can reasonably justify. For example, if it
is certain that a smooth P exists and we wish to
approximate P by a. constant in the core region, we
need only choose a reasonably flexible, smooth Q,
to ensure that the corresponding P is smooth.
Other simplifying properties besides smoothness
might also be assigned to P, if we can show that
an exact ,P should exist which has those properties.
However, if such approximations are to be used in
a variational calculation, care must be taken to
ensure that in minimizing the energy we are not in
fact maximizing the error in the approximations.

We can write the pseudo-Hamiltonian of Eq. (12)
in the form of a linear homogeneous operator by
making explicit our assumptions concerning the
norms of P and P, . In order to display homogeneity
we allow the norm of P to vary by letting P = a„P„
+g, a,g„where a„ is arbitrary. We then write the
trial function as g, =NQ, „, where P,„ is the function
we actually choose and it has whatever norm we
assign to it—unity, for our purposes. Adjusting
N to satisfy the criterion (10) then gives N= (4'&„, 4&),

and Eq. (12) becomes

The solution Q is then unique within a multiplicative
constant, and it is that solution which minimizes
6 according to Eq. (10) when the norms are prop-
erly chosen.

V. CONCLUSIONS

This apparently trivial result has an important
interpretation. The PK pseudopotential, when used
with a variational trial function, adjusts itself to
accomodate the trial function in such a way that the
exact solution P is that unique &f& which most closely
approximates the trial function. We can clarify
this point somewhat by rewriting the PK equation
with the parameters a, defined as above:

(12)

This equation has the same form as Eq. (2), but
it has a different meaning in that the quantities
(P„P,) are now uniquely defined. Although Q, is
not an exact solution to Eq. (12), the pseudopoten-
tial used is nevertheless a valid one, and the true
solution is that unique &f& which satisfies the cri-
terion (10). Also, it is easily shown that the dif-
ference E, —E is of second order in 4, and that
E,& E (assuming the core states are accurately
known), so that the variational energy gives an up-
per bound to the true energy.

The ability of the pseudopotential to adjust to the
trial function may also allow us to simplify the cal-
culations by giving Q, whatever desirable proper-

Due to the non-Hermiticity of the general pseudo-
potential of Eq. (4), variationally determined en-
ergies generally differ from the true energy by an
amount of first order in 4 and of indeterminate
sign. Second-order accuracy can be obtained by
requiring the trial function to satisfy the same cri-
teria (3) that hold for the true pseudo wave function.
However, this increases considerably the numeri-
cal difficulties involved in evaluating the energy.

The indeterminacy of the PK pseudopotential is
a problem in principle only. If a trial function is
used to approximate the pseudo wave function, then
the pseudopotential is uniquely defined by the trial
function. Direct use of the PK pseudopotential
then has two important advantages over the more
restricted pseudopotentials:

(i) The variational energy is greater than the
true energy be a positive amount of second order
in the minimized quantity &; and

(ii) the pseudo wave function &f& which P, must
approximate is that unique P which most closely
reproduces P, .

Added to this is the fact that the PK equation is
generally easier to solve because it avoids matrix
elements of the type (P„VQ).

If the core states are not accurately known, an
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upper bound on the energy can still be obtained by
a method suggested by Brown. 4 In this approach
the orthogonality conditions (g„, g,) = Q are omitted
and the parameters a, are determined variationally.
The resulting secular determinant will yield not
only a true upper bound to the energy E but im-
proved core states as well.

The self-adjusting property of the PK pseudo-
potential can also be used to explain the success
of OP% calculations from a pseudopotential point
of view. In this case the pseudo wave function is

expanded in terms of a few plane waves of low
wave number and good results are obtained in spite
of the fact that no smoothness condition is invoked
to define the pseudopotential. In the light of the
discussion of Sec. IV, we see that the act of select-
ing the plane waves in itself defines the pseudopo-
tential in the most advantageous way possible.
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