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We have accomplished a study of the low-temperature electrical resistivity for the noble metals silver and
copper. We have described the Fermi surface of the noble metals by the simple eight-cone model and have
taken into account two-orthogonalized-plane-wave corrections which are very important at the lowest
temperatures. The use of the standard trial function in the variational formula for the resistivity makes the
calculation more applicable to the temperature-dependent resistivity of impure samples. This interpretation is
supported by comparison with the available experimental data, Our results evidence the preponderance of the
"umklapp" contribution to the low-temperature resistivity over the normal one, Moreover, they show that the
resistivity as a function of temperature does not follow a well-defined power law, but, if one assumes the
validity of a simple relation p —T, the exponent n varies continuously ranging from a value of nearly 6 to a
value of nearly 4 in the region T = 1—15 K.

I. INTRODUCTION

Recent accurate measurements of the electrical re-
sistivity at low temperature have frequently shown sub-
stantial deviations from the Bloch-Gruneisen T
law, and have motivated more detailed calculations
of the electrical resistivity due to the electron-
phonon interaction. These calculations, on the
other hand, have evidenced the essential role of
the umklapp scattering contribution to the electrical
resistivity, in particular, when the Fermi surface
lies outside the first Brillouin zone or just touches
the zone boundary. Moreover these calculations
showed that to obtain a reliable result, one, in
general, must overcome several difficulties which
arise from the necessity of taking into account the
effective shape of the Fermi surface of the metal
(which seldon can be considered as nearly spheri-
cal), the phonon spectrum, and the matrix element
for the electron-phonon scattering. Although all
these are computational difficulties, only the first
represents a hard task to be taken into account,
as it is possible, at present, to evaluate the phonon
spectrum by standard, even if sophisticated, nu-
merical methods, and to take into account the elec-
tron-phonon matrix element in the framework of
the mell-established pseudopotential formalism.

As we well know, the first complete calculation
of the electrical resistivity of metals with dis-
torted Fermi surface was due to Pytte, ' who eval-
uated the aluminum electrical resistivity in the
temperature range from nearly l0 K to about 100
K. Along the same lines, one can consider the
recent work by Lawrence and Wilkins, who ac-
complished an enlightening and detailed study of
the effects of umklapp electron-phonon scattering
on the electrical resistivity of polyvalent metals.
The only, but not negligible, limit in the Lawrence
and Wilkins calculation is in the fact that, since
their work has been chiefly directed to showing that

the umklapp scattering is the major source of the
observed deviations from the T' Bloch-Gruneisen
law in the low-temperature range, it gives, on
the other hand, only the qualitative behavior of the
resistivity as a function of temperature. However
Lawrence and Wilkins were able to show that, be-
sides the importance of the umklapp processes, the
theoretical values of the resistivity are, at low
temperatures, very sensitive to the way in which
the dis tortions of the Fermi surface are taken into
account, and that two-orthogonalized-plane-waves
(OPW) corrections play a fundamental role in the
same temperature region. The predominant role
of the umklapp processes and the fact that the one-
OP% model did not give accurate results in the
low-temperature region were also discussed by
the present authors in their work on the resistivity
of hexagonal metals Be, Mg, Zn.

Once the previously discussed difficulties have
been taken into account, one is then faced with
another problem which has received particular
emphasis in recent works. The probelm is to
extract from the linearized Boltzmann equation the
form of the deviation (from equilibrium) function
@(k) of the electron Fermi distribution.

As it is quite impossible to solve the linearized
Boltzmann equation in the general case, most of
the calculations of the electrical resistivity have
been usually accomplished by inserting a standard-
deviation function +0(k) = v(k) E into the variational
(Kohler) expression-for the resistivity constructed
from the linearized Boltzmann equation. On the
other hand, several works 8 made evident that,
owing to the strong orientational dependence of the
electron-phonon umklapp interaction, the simple
+o form of the deviation function cannot produce
reliable results if the umklapp scattering predomi-
nates over the normal and impurity contributions
to the resistivity.

More recently, the complicated task of deter-
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mining a reliable expression for the trial function

+(k) has been attacked by Ekin and Bringerv and by
Black and Mills. Black and Mills start from con-
structing a trial function (for a simple fcc metal)
by expanding its angular dependence as a linear
combination of cubic harn-'onics; the appropriate
linear combination is then determined through the
use of the variational principle. They are able to
show that many terms in the expansion of the trial
function are generally necessary in order to obtain
convergence in the theoretical calculation of the
resistivity at low temperatures. Moreover Black
and Mills show that greater corrections, with re-
spect to the standard trial function, are necessary
when the Fermi surface lies outside the Brillouin
zone or just touches the zone boundary. The same
conclusions were essentially reached by Ekin and

Bringer, who used a number of different trial func-
tions to test the dependence of the results on the
particular form chosen for +. Ekin and Bringer'
specifically examine the potassium metal. In
this case, the Fermi surface is well inside the
first Brillouin zone so that comparable amounts
of normal and umklapp scattering are found. Owing
to the moderate importance of the umklapp con-
tributions, minor corrections are obtained, with
respect to the standard trial function, than in the
case of a Fermi surface which approaches or lies
outside the zone boundary. In conclusion, the
previous discussion shows that a reliable calcula-
tion of the low-temperature electrical resistivity
must take into account, in addition to a correct
evaluation of the phonon spectrum and electron-
phonon matrix element, the distortions of the
Fermi surface from sphericity, two-QP% correc-
tions when the Fermi surface approaches, or lies
outside, the zone boundary, and lastly, the aniso-
tropic relaxation of the electron distribution. This
being the situation, an acceptable description of
the electrical resistivity in a real metal would

bring up great computational difficulties. On the
other hand, if one limits himself to considering
only the low-temperature region, which has re-
ceived great attention in recent years in connec-
tion with the problem of the deviations from Mat-
thiessen's rule, it is possible to allow for a con-
siderable simplification of the calculations. In
fact, it has been shown by several authors ' '

that in the case where impurity scattering domi-
nates, such as in dilute alloys or at sufficiently
low temperatures, the deviation function &(k) may
be closely approximated by the standard form
4'o(k) =v(k) ~ E. In this case it is then possible to
overcome the difficulties arising from the anisot-
ropy of the electron-phonon interaction.

In this work we will then examine, using the
standard trial function +o, the low-temperature
behavior of the electrical resistivity of the noble

The general variational expression for the elec-
trical resistivity has been reported in several
places ' so that here we limit ourselves to sim-
ply give the final results

m &
~ ~dSp dS„",

6K 4F 5 „)v(k) ( [v(k') (

~Ivo) —v(k')I'pI (k k')I'f (
(eo, x)'

(2. 1)
In this expression the double integral is on the ef-
fective Fermi surface, v(k) is the electron group
velocity on the Fermi surface and g~(k, k') is the
matrix element for the scattering of an electron
from k to k' through the emission or absorption of
a phonon with wave vector q, polarization i;~, and
energy @co@,.

I g.(k, k')
I

' = (&/M~~;. ) I (~.(k, k')
I
', (2. 2)

where

~.(k, k') =&&~l.;,.r Vlk'& (2. 3)

is the reduced matrix element, N is the density of
unit cells, and M is the ionic mass. In Eg. (2. 1),
f,(h&o~. ,/ksT) is the statistical factor given by

f.(&)=&/[(e"-1)(1—s )). (2.4)

The denominator of (2. 1) is given, in general, by

metals Cu and Ag. Though our analysis is in many
respects related to the Lawrence and Wilkins ap-
proach, it is on the other hand more realistic. In-
deed our calculations are performed without ap-
proximations, apart from the use of a simple but
reliable model of the Fermi surface, the "eight-
cone" model, 9 which already in the past produced
results for the magnetic susceptibility and the
hyperfine properties'~ in close agreement with ex-
periments.

In our calculations electron-phonon matrix el,e-
ment have been considered within a pseudopotential
formalism, '3' and the phonon dispersion curves
have been take into account on the basis of the ex-
perimental results. Previous calculations of noble
metals resistivity have been performed by several
authors (see, e. g. , Refs. 14 and 15); however, no
one is able to produce reliable results at very-low
temperatures as plausible shape of the Fermi sur-
face and two-OPW corrections are not taken into
account.

In Sec. II we present the relevant expressions of
our calculations of the electrical resistivity of
noble metals. The results of the calculations are
given in Sec. III and compared with available ex-
perimental data. Summary and conclusions follow
in Sec. IV.

II. GENERAL FORMULATION
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(Se,X)=, JdSe~v(le)~ =ee/m. „, (2.5)

where there are n electrons per unit volume and

m„,. is the optical effective mass. In the expres-
sion (2. 1), we have used for the trial function the
standard form

@0(k)=v(k) .E. (2. 6)

We have previously remarked that, though this
form is strictly suited only to a spherical Fermi
surface, it may be considered valid also for dis-
torted Fermi surfaces when the contribution to the
electrical resistivity from impurity scattering is
greater than that from electron-phonon scattering.
In E(l. (2. 1), the contributions both from normal
and umklapp processes are to be included in a con-
venient way.

As it appears evident from Eq. (2. 1), a reliable
calculation of the electron-phonon resistivity re-
quires a detailed knowledge of the lattice dynamics,
for evaluating the eigenfrequencies co~ ~ and eigen-
vectors e;~, and a suitable pseudopotential for
evaluating electron-phonon matrix element g~ (k, k ').
In fact, in many calculations of the electrical
resistivity the authors have directed their
attention mainly toward the form of the phonon
spectrum and pseudopotential, completely disre-
garding the role of the distortions in the Fermi
surface and of two-OPW corrections. These cal-
culations have been seen to give reliable results
only at high temperatures, as a correct determina-
tion of the electrical resistivity re(luires that, in
the low-temperature region, the effective shape
of the Fermi surface and two-OPW corrections be
taken into account. On this basis, deferring the
discussion on the phonon spectrum and pseudopo-
tential to Sec. QI, here we will first consider in
some detail a plausible model for the Fermi sur-
face of the noble metals. As is well known, the
Fermi surface of the solid noble metals is so much
distorted from a spherical shape as to contact the
(111)faces of the Brillouin zone. For this reason
it is not possible, even allowing for some approxi-
mations in the results, to treat the Fermi surface
as a sphere when calculating the electrical resis-
tivity or other properties of the noble metals. On
the other hand, for the noble metals a simple eight-
cone model was proposed several years ago by
Ziman. ' In the eight-cone model the shape of the
energy surfaces is made dependent on a single pa-
rameter which can be interpreted as the pseudopo-
tential form factor, or one-half the s-P band gap
at L, the center of the nearest (111)zone face.
The first Brillouin zone is supposed to be made of
eight circular cones pointing into the center along
the diagonals of a cube. Each cone subtends the
solid angle 2ll, so that its vertex angle is cos ~(s).

1The axis of the cone is a vector p=yG, where G
is the vector of the reciprocal lattice corresponding
to the nearest hexagonal (111)zone face. The free
Fermi surface would have a radius k~= Q. 902P.

Taking the local ~ axis in the p direction and in-
troducing, as in Ziman's paper, dimensionless
variables x= k„/p, y = ks/p, z = ks/p, s =El-,/I p
and u= VG/(h G /4m) (where Vo is the Fourier
component of the lattice pseudopotential), the en-
ergy surfaces are conveniently written

'(x'+ -X ') +f(z), (2 't)

where

f(z) = ~2+ a (1 —z)' —[u'+ (1 —z)']'/' . (2. 8)

The Fermi surface cuts the side surface of the
cone at an ordinate s,. This same energy surface
meets the zone boundary at s2 ——l. By knowing the
pseudopotential form factor u, the values of z& and
e„(the Fermi energy) are obtained along the same
line as reported in Ref. 9.

Owing to the distortions of the Fermi surface of
noble metals, a. convenient way of describing the
electronic states near the Bragg planes is to use
two plane-wave electronic functions. In the frame-
work of the eight-cone model the electronic wave
function near the (111)zone face is then written

&
sls r C &((l7-G).r (2. 9)

C-= —,
' W2[i+ t/(1+ t')'"]"' (2. 10)

C(", o= —g W2[1 —t/(1+t )' ] (2. 11)

with

t=
I

z- 1 I/u.

As in the Lawrence and Wilkins calculations, 3

we will work in the extended-reduced zone scheme
and adopt the same convention to classify normal
and umklapp processes. Moreover, as we work at
very-low temperatures, so that we are concerned
with very-small phonon wave vectors, we may clas-
sify the polarization vectors as corresponding,
one, to longitudinal mode (e~~ (l=q) and, two, to
transverse modes (e~~ .ij = 0).

In the eight-cone model the relevant quantities
of E(I. (2. 1) are then expressed

v(k) =(0/m) p(xi+y j +(z —[1—t/(1+t')' '])0),
(2. 12)

Iv(k)-v(k') I'=(~'u'/m') [q'h '+~(~, ~')] (2. 13)

where
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F(z, z') =[z+ f/(I+ f')'/ -z'-P/(I+P')'/zy (z z~)z

im~(k k ) 2p p'(z)(([1+i/(I+f8)1/2][1+i /(1+F2)1/2]}1/2+([I f/(1+$2)1/2][I p/(I +pz)1/2]}1/2)

--'(~ - ~;. G) I (q- G) ([1+f/(I+ f')'/2) [1-f'/(I+ f")'/ z) 9"- -'(~+-.;.~ &) I (q+G)
& {[1—fl(1+ f')'") [1+f'/(I+ f")"']}"'

(2. 14)

p~m, (k, k )~'=![G'-(~„G)'](V(q-G) ([I+&/(I+&')"'][1—&'/(I+i")"']}'"—~(q+G) '

&(([I f/(I+i~)&/2][1+i'/(]+i'~) / ]}/ )2 (2. 16)

p = (7//68) (1/4msh)z (m z„,/e~nz) S,
where

(2. 16)

8 = 32m dz' dz
Zg Z] ~m«Z'&

M(z, z', q)
[(a'-e')(e&-e')]"' ' (2. 1V)

again referring to the Appendix for the significa-
tion of the symbols.

Now the calculation of the electrical resistivity by
means of the Eq. (2. 1) depends on the evaluation of
a double surface integral. This is accomplished in
the appendix to which we refer for the details.
The resulting expression for p is

treatment starts from considering an isotropic
trial function and then has a range of validity lim-
ited to very-low temperatures. Moreover we allow
the transverse frequencies ~;~ to differ from the
longitudinal one ~~I„, but take the two transverse
frequencies as equal to each other. The positions
(d;I. =vt.q and ~,»~=v~q are in close agreement with
the experimental dispersion curves for low q
values. """The v~ and v~ values have been ob-
tained by averaging over the various symmetry
directions of the Brillouin zone. We have obtained

vz, =4. 08&& 10' cm/sec
for silver,

v„= 1.96&& 10' cm/sec

III. RESISTIVITY OF SILVER AND COPPER

By using formulas (2. 16) and (2. 1V) a numerical
evaluation of the electrical resistivity for silver
and copper may be accomplished. In order to
complete the calculation the knowledge of an elec-
tron-ion pseudopotential form factor, which enters
in the calculation through Eqs. (2. 14) and (2. 15),
and of a reliable phonon spectrum is necessary.

As far as the pseudopotential form factor is
concerned, we have first used a semiempirical
model potential recently proposed by the present
authors, ' and which has already been used in
previous works giving good agreement with experi-
ments (see, e.g. , Refs. 1V-19). Then, in order
to determine how much changes in the potential
affect the temperature dependence and the magnitude
of the resistivity, the Harrison-Moriarty "first-
principles" pseudopotential" has also been used.

With regards to the phonon spectrum, in prin-
ciple, it would only be a matter of numerical com-
putations to obtain it through an accurate descrip-
tion of lattice dynamics. 20 However, a rigorous
treatment of the phonon spectrum would require a
great amount of further computational work so that,
in order to make more tractable the computational
difficulties, we have assumed a phonon frequency
proportional to its wave vector ~;„-q. This as-
sumption appears to be quite reasonable since our

m "t-1.45 m, mA~t=0. g7 m,

where m is the free-electron mass.
Using the previous entries the integration in Eq.

(2. 1V) was performed by means of the Gauss meth-
od with the help of a CII-10070 computer.

v~=4. 90&& 10' cm/sec
for copper.

v =2. 56' la' cm/sef. I
Finally, in order to complete the calculation it
is essential to have a knowledge of the Fermi-sur-
face parameters. In the eight-cone model the
Fermi surface is made dependent on the only param-
eter r/p, i.e. , the neck radius relative to the
axis of the cone. ~3 The simplicity of the model, on
the other hand, should hardly affect the reliability
of the resistivity calculations because, as we will
see, owing to the predominance of the umklapp
scattering, nearly the total contribution to the elec-
trical resistivity in the low-temperature range
arises from a very-small region near the necks.
In our calculations we have used for the r/P quan-
tities the values quoted by Zimane

r/P =0. 126 (Ag), r/P = 0. 180 (Cu).

To conclude we simply mention that for the values
of the optical mass we have adopted the experi-
mental results by Schulz~4
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TABLE I. Electron-phonon contributions to the electrical resistivity of
silver (0 m). ~

Temperature
(K)

1
2
3
4
5
6
7
8
9

10
ll
12
13
14
15

Umklapp
longitudinal

0.131x10"
0 657xlp '
0.596x 10-i~

0.271x 10-i4

0. 847 x 10-i4

0.210x 10-'3
O. 447x 1O-"
Q. 856 x 10-i3
0.151x10 i2

0.252 x 10"i2
o 40»10-"
O. 61Ox 1O-"
p. 896 x 10-i'
Q. 127x 10 ii

O. 176x 1O-"

Umklapp
transverse

O. 162x 10-"
0.771x 10"i~

0.641x 10-i4

0.271x 10-"
p. 802 x 10-i3

p. lgp x lp"&2

0.389x 10-i2

0.713x 10-"
p. 120x lp-i'
p. lgpx 10-"
0.285 x 10-i'
p. 408x 10"ii
0.564 x 10-"
0.755x 10" i

p. 982x 10-"

Normal

0.137x lo
p. 455 x 10-i8

O. 356x 10-i'
p. 146x 10-i6

0.422 x 10-"
O. 957 x 1O-'"

0.188x 10-"
0.339x 10-i'
0.578x 10" 5

p. g2g x 10"i5

O. 145x lo-"
p. 217x 10-«
O. 316x lO-i4

0.44gx 10- 4

0.621x 10- '

Total

0. 175x 10-~6

0. 837x 10-"
0.701x 10-i4

O. 298. »is
0. 887 x 10-"
0.21lx 1Q i2

0.433x 10-»
0.799x 10-"
O. 135x 1O-"
0.215x 10"ii
0.325x lo-ii
0 469x lp-i
p. 654x 10-«
0. 882x 10"ii
0.116x 10-io

These values are obtained by using the semiempirical pseudopotential
(Ref. 12).

In the calculation the normal and umklapp pro-
cesses have been evaluated separately. Further-
more, for the umklapp processes, the longitudinal-
and transverse-components contribution have been
considered apart. In Table I and II the results of
the calculations, obtained by using the semiempiri-
cal pseudopotential, '~ have been reported. The
calculations have been limited to the temperature
region between 1 and 15 K, as only in this region
the residual resistivity of the experimental sam-
ples ' overcomes the electron-phonon resistivity,
so that our starting hypothesis is justified.

As can be seen in Tables I and II, the umklapp
contribution exceeds the normal one by about three
orders of magnitude; moreover, with respect to
the umklapp scattering, the transverse contribution
dominates over the longitudinal one. Searching for
a simple power law in the temperature behavior of
the resistivity, we note that (if one assumes p- T")
the exponent n decreases continuously starting
from a value n = 5, 5 (Ag)-6 (Cu) for T = 1 K and
reaching a value n =4 (Ag)-4. 5 (Cu) for T = 15 K.

In particular, we observe for the resistivity of
silver a temperature decrease which is quicker

TABLE II. Electron-phonon contribution to the electrical resistivity of
copper (0 m).

Temperature
(K)

1

3

6
7
8
9

10
ll
12
13

15

Umklapp
longitudinal

0.196x 10 i8

Q. 116x 10-ie
0.120x 10 i5

0.6p6 x lp i5

Q. 207 x 1Q i4

p. 548 x lp"i4

O. 123x 1O-"
Q. 243 x 1Q-i3

0.441x 10-il
0.747x 10 i3

0.120x 10 i2

0.186x lp-i
O. 277 x 10-"
Q. 401x 10-i2

0.566 x 10-i2

Umklapp
transverse

0. 112x lp-iv

0.702x 10 i6

p, 715x 10
0.347x 10-i4

0.113 10 ie

0.289x 10"i3
p. 625 x 10-'3
0. 120x 10-i2

p. 212x lp-i'
p. 347x 10-"
0.541x 10-i2

O. 8O5x 10-i2

O. 115x 1O-"
0.160x lp-ii
0.216x 10-ii

p. 776x 10- 0

0.225x 10 i8

p. 185x lp-iv

O. 795.10-i~

0.237x 10-i6
0.576 x 10"
0.118x10" 5

0.214x 10" 5

0.359x 10"i~

0.567 x 1Q"i5

Q. 865x 10" 5

0.128x 10"i4

p. 182x 10-'4
0.255 x 10-i4

0.349x 10"i4

0. 132x 10-iv

p. 821x ].0-i6

0. 837x 10 i~

0.408x 10 "
0. 134x 1Q"i3

0.344 x 10-"
O. 749x 10"
O. 144x 10-i2

0.256x 10 i2

0.423x 10-»
0.662 x 10"i2

0.991x 10"i2

p. 143x 1Q

0.200 x 10"ii
0.272 x 10-ii

These values are obtained by using the semiempirical pseudopotential
(Ref. 12).
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than T' and slower than T in the temperature re-
gion T &3 K. For T &3 K, we obtain a tempera-
ture behavior which is between T' and T in close
agreement with the experimental data by Kos.

For copper, on the other hand, we observe
nearly the same behavior, but the two regions are
separated by a temperature value T= 7 K. How-
ever our theoretical results give no evidence of
the strong T3 dependence which is observed in the
Rumbo experimental data, for copper.

The same results, as far as the predominance
of the transverse umklapp scattering is concerned,
are obtained with the use of the Moriarty pseudo-
potentials, ~ which only affect the magnitude of the
resistivity, enhancing the values of the copper
resistivity by about a factor of 1.65 and lowering
the values of the silver resistivity by about a factor
of 1.4.

On the other hand, the temperature dependence
of the resistivity is practically unchanged as the
exponent n now ranges from

n = 5. 5 (Ag)-6 (Cu) (T = 1 K)

103

0.1

103

10

0 2 4 6 8 10 12 14 16

TEMPERATURE [ K]

FIG. 2. Electrical resistivity vs temperature for Ag.
Continuous and dot-dashed curves give the predictions of
the theory obtained by using, respectively, the semiem-
pirical pseudopotential (Ref. 12) and the first-principles
pseudopotential (Ref. 13). Experimental (pz —po) data of
impure samples U~ (white circles) and A.4 (black circles)
by Kos (Ref. 25) are also reported.

to

n=4. 05 (Ag)-4. 6 (Cu) (T =15 K).

0.1

0 2 4

t t I

6 8 10 12 14 16

TEMPERATURE [K]
FIG. 1. Electrical resistivity vs temperature for Ag.

Continuous and dot-dashed curves give the predictions of
the theory obtained by using, respectively, the semiem-
pirical pseudopotential (Ref. 12) and the first-principles
pseudopoteutial (Ref. 13). Extrapolated 'ideal resistivity'
by Kos (Ref. 25) (&) and the ultrapure experimental data
by Ehrlich and Schriempf (Ref. 28) (+) are also reported.

In Figs. 1 and 2 we compare our calculated val-
ues for the Ag resistivity, obtained with the use of
both the semiempirical and the "first-principles"
pseudopotentials, with the experimental data by
Kos ~ and by Ehrlich and Schriempf (ES). In the
Kos experimental work particularly relevant is the
attempt to obtain, by means of a linear extrapola-
tion to zero residual resistivity, the precise deter-
mination of the ideal resistivity and the deviation
from Matthiessen's rule (MR) ps, where

pv = pz —
pp

—pf', ~

Here p~ is the measured resistivity of a sample
with residual resistivity po and ideal resistivity p;
(defined as the resistivity of a specimen having no
imperfections and hence p, =p„=0). Really the Kos
experimental data do not permit the determination
of the ideal resistivity. In fact, it has to be taken
into account that the measurements by ES on a
ultrapure sample give values of the electrical re-
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sistivity which lie (in this range of temperatures)
well below the extrapolated "ideal resistivity" data
by Kos. Regarding this subject, it has recently
been claimed that it is impossible to estimate the
ideal resistivity of Ag from the available experi-
ments. ' Then the only definite conclusion, as far
as the idea]l. -resistivity values of Ag are concerned,
is that they must lie below the ultrapure experi-
mental data by ES.

In Fig. 1 it appears evident that the theoretical
values, obtained by the use of the semiempirical
potential, are of constantly higher magnitude than
both the extrapolated p; values by Kos and the
ultrapure experimental values by ES. The same
result can be a fortiori claimed for the effective
ideal resistivity. This fact however is not ex-
cessively striking as even in previous works a
similar behavior was observed. For this reason
it was suggested~' that, owing to the isotropization
of the umklapp scattering from the impurities con-
tent, the use of the standard trial function jI'0 makes
the calculation more applicable to the tempera-
ture-dependent resistivity (pr —po) of impure sam-
ples, where po» p; and remarkable deviations from
MR are present.

As a result, we have next considered in Fig. 2
a comparison of our theoretical values with the ex-
perimental (pr —p, ) data of impure samples U,

(po = 4. 714 && 10 ~ 0 cm) and A4 (po = 2. 2V3 && 10
cm) by Kos. Now both the quantitative and the qualita-
tive agreement between the calculation and experi-
ments is very good, particularly if one considers the

simplifying assumptions on the phonon. spectrum, the
use of a simple model for the Fermi surface, and that
we have not adjusted any parameter to fit the data.
From our analysis it appears clear that a substantial
part of the deviation from MR can be ascribed to
the isotropization of the umklapp scattering. How-

ever we must note that it is not possible to con-
sider the isotropization as the only cause of devia-
tions because this would imply a saturation of p„
for po &4. 714~ 10 ~ cm. Since this saturation is
not shown by the experimental data, it is necessary
to admit that there are other mechanisms which
contribute to the deviations from MR. Apart from
the isotropization of the umklapp scattering, many
mechanisms have been proposed which certainly
contribute to the deviations from MR. '3 Since
we do not take into account any of these mechanisms
we cannot consider our analysis as complete. On
the other hand, we think that atpresent no completely
reliable theory of the deviations from MR exists
since the proposed mechanisms either have been
shown to be incorrect, or give only qualitative ex-
planations, or at most can be adjusted to provide
an order-of-magnitude estimate of the deviations.
As far as the theoretical results obtained with the
use of the Moriarty pseudopotential are concerned,
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FIG. 3. Electrical resistivity vs temperature for Cu.
Continuous and dot-dashed curves give the predictions of
the theory obtained by using, respectively, the semiem-
pirical pseudopotential (Ref. 12) and the first-principles
pseudopotential (Ref. 13). Dashed line reports on the
(p~ —po) behavior as obtained by Rumbo (Ref. 26) from
his experimental data.

substantially the same conclusions can be reached
by inspection of Figs. I and 2.

Next, in Fig. 3 we compare our results for cop-
per with the very recent data from Rumbo. 6

Rumbo's measurements were made on copper of
high purity (p0=1. 131&&10 ~0 & cm) and show a
strong T dependence of the resistivity up to T
- 7-8 K. The quantitative agreement between the
theoretical values and the significant experimental
data is quite respectable, particularly when com-
paring with another recent calculation on copper-
metal resistivity which starts off considering a
spherical Fermi surface. In fact, our calculations
produce values of the electrical resistivity which,
in general, differ by no more than a factor of two
from the values measured experimentally. How-
ever at this point it is the qualitative agreement
which is completely lacking, as in our calculations
we have obtained a resistivity-vs- T behavior which
shows no trace of a T' variation of the resistivity



LOW- TEMPERATURE ELECTRICAL RE SIST IV IT Y OF NQB LE MET ALS

at low temperature. Indeed our model clearly
produces the same features both for Ag and Cu re-
sistivity, and this fact cannot be reconciled with
two so very different experimental behaviors. On
the other hand, the discrepancies between the Ag
and Cu measured values of the resistivity are some-
what surprising, especially if we consider that the
noble metals are generally similar in many re-
spects. Therefore our present work cannot shed
light on the mechanism which produce the experi-
mental. .behavior of copper resistivity as observed
by Rumbo. A simple empirical rule was proposed
several years ago to account for a T3 dependence
of the resistivity in the low-temperature region, 3~

but, as we are aware, all the theoretical mecha-
nisms which have been then proposed to explain the
T' term have been shown to be incorrect. " '

To conclude we have to discuss briefly two other
points:

(i) the first point is that, by averaging the phonon
velocities over the various symmetry directions,
we have completely disregarded the possibility that
phonons in certain directions are more important
than those in other directions. To test if this sim-
plification significantly affects the results we have
then subjected the transverse velocity vr (the trans-
verse umklapp scattering gives the predominant
contribution) to a~10'Fc variation. The subsequent
changes, on either the temperature dependence or
the magnitude of the resistivity, should represent
a useful, and probably pessimistic, estimate of
the changes which would be produced by using a
more realistic phonon spectrum in the calculations.
We do not observe substantial changes for that
concerns the temperature dependence of the re-
sistivity; e.g. , a+10% variation in the value of tr
gives values of the exponent n which ranges from

n = 5. 6 (Ag) —6 (Cu) for T = 1 K

to

n = 4. 1 (Ag)-4. 6 (Cu) for T = 15 K.

On the other hand, changes in the magnitude of the
resistivity are observed. These changes are of
the same amount as those produced from the un-
certainties in the pseudopotentials (i.e. , by a
factor of 1.5-1.7). It is reasonable to hope that
inserting a more realistic phonon spectrum in the
calculations should not change the conclusions of
the work in any essential way.

(ii) As several other measurements of the neck
radius, besides those quoted by Ziman, are avail-
able, 39 we have repeated our calculations of the
electrical. resistivity by using the new values

x/p=0. 130 (Ag), r/p=O. 17O (Cu),

which, among all the experimental neck-radius
values, differ the most from the previous reported

ones. This new calculation should represent a
useful test to see how sensitive the resistivity cal-
culations are with respect to the fine details of the
Fermi surface. Again no substantial variation in
the temperature dependence of the resistivity is
observed as the exponent n now ranges from n=5. 6
to n=4 (Ag) and from n=5. 95 to n=4. 45 (Cu). Also
the magnitude of the resistivity is slightly affected
by this variation of the neck radius as changes of
only a few percentage points (about 3%%uo for Ag and

6% for Cu) are observed.
From all these results we may deduce that the

temperature dependence of the resistivity is es-
sentially due to the qualitative shape of the Fermi
surface. On the other hand, reasonable variations
of the other quantities which enter into the calcula-
tion, i.e. , of the phonon frequencies, of the pseu-
dopotential form factor and, within the framework
of a well-defined shape, of the parameters of the
Fermi surface, significantly affect the magnitude
of the resistivity.

IV. SUMMARY AND CONCLUSIONS

In this paper we have evaluated the low-tem-
perature resistivity of the noble metals copper and

silver, taking into account the distortions of the
Fermi surface from the simple free-electron
sphere and using two OP% when calculating the
matrix elements. Our results evidence the pre-
ponderance of the umklapp contribution. to the elec-
trical resistivity over the normal one.

As nearly the total umklapp scattering arises
from a small region near the necks, this lends sup-
port to the reliability of the simple eight-cone model
for low-temperature resistivity calculations of the
noble metals. Moreover our results show that the
temperature dependence of the resistivity is, at
low temperatures, largely due to the qualitative
shape of the Fermi surface, while it is scarcely
sensitive to small changes in the Fermi-surface
parameters and to variations of the pseudopotential
form factor.

On the other hand, the choice of the pseudopo-
tential form factor significantly affects the magni-
tude of the resistivity, which is also slightly in-
Quenced by small changes in the Fermi-surface
parameters. In our calculations we have inserted
into the variational expression for p the standard
trial function +0, which is a good approach in the
case when the ideal electron-phonon resistivity p,
is less than the contribution po from impurity scat-
tering. This is confirmed by the fact that our cal-
culated values of p for Ag are in close agreement
with the resistivity experimental data of impure
samples. If on the other hand, our calculations
for Ag are compared with the extrapolated "ideal
resistivity" data by Kos or with the experimental
data by Ehrlich and Schriempf, which are obtained
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By using the equations (2. 1}and (2. 5), the ex-
pression for the electrical resistivity p results

2 nt2
Ou

l
f M(k, k'),' «4"~ n"' J iv-(k)]

) v(k') )

where M(k, k') is given by

M(k, k') =
l v(k) —v(k')

l pM&
X q}t

(A1)

x
I ~,(k, k')I'f, (a~;,/n, T). (A2)

on a ultrapure sample, the agreement appears not
to be completely satisfactory. It is clear in fact
that in this case the anisotropy of the electron-
phonon scattering must be taken into account in a
proper manner, and the strong angular distortions
of the electron distribution must be considered.
The difference between the resistivity of impure
samples and the ideal resistivity, or the deviations
from MR, can be then ascribed, at least partially,
to the dependence of the anisotropy on the impurity
concentration. However it is plausible that many
other causes of deviations from MR are to be con-
sidered for a complete explanation of the experi-
mental data.

Finally we remark that the calculated resistivity
does not follow, as a function of temperature, a
well-defined power law p- T~, but, if one assumes
the validity of a simple relation p- T", the exponent
n varies continuously ranging (in the region of T
= 1-15 K) from a value of nearly 5. 5 to a value of
nearly 4 for Ag and from a value of nearly 6 to a
value of nearly 4. 5 for Cu.

APPENDIX

p(z), 8, and s, we write

x= p(z) cos8, y = p(z) sin8, 0& 8- 2m

and

where

S= 8 d8 d8' dz dz'M k, k' (A6)

In Eq. (A6) the integrals are extended to the cone
surfaces given by Eqs. (A3) and (A4}, and the re-
sult is multiplied by, eight to get the total contribu-
tion to the electrical resistivity.

By means of the cylindrical coordinates we may
write

C '/f ' =p(s)'+ p(s')'+ (& -~')'

—2p(z) p(z') cos(8 —8'), (A7)

so that q is a function of ~, z' and p = 8 —O'. Now
we observe that, as it results from Eqs. (2. 13),
(2. 14), and (2. 15), M(k, k') is a function of q, z,
z' only. Then by using the new variables &, s', p
and 6l', after integrating on 0' we have from Eq.
(A6)

so that, after a simple calculation, we obtain

(A5)

An analogous result can be obtained for the primed
variables. By using Eq. (A5), Eq. (Al) then be-
comes

~mt2 2

p=
gn 4m'e n2e'

@le evaluate the contribution to the electrical re-
sistivity when k is on the eight-cone model surface
defined by

S = 16m dz dz' dy M k, k' (A8)

~~ = l-(~'+y')+f(~)). , (As)

where the local s axis is parallel to the reciprocal
vector 6 corresponding to the nearest (111)Bragg
plane. As we work at very-low temperatures so
that q is very small„we will consider only two

types of electron scattering processes: (a) the
scattering process in which k' lies on the same
eight-cone model surface as k; (b) the scattering
process in which k' lies on the eight-cone model
surface corresponding to the opposite (111)Bragg
plane. Moreover we neglect the contribution of the
electron scattering from a cone surface to an ad-
jacent cone surface. Then it may easily be seen
that, in the extended-reduced zone scheme, k'
ranges over the surface given by

e~ =[-'(~"+y") +f(s')1, zi& 8' & 2 —zg . (A4)

At this point, introducing the cylindrical coordinates

Bp 2q
[(~'-e'.)(~s-e')]"' ' (A9)

where

& =&fl.p( )+p( ')]'+( — ')']'"
4'. =PllP(s) —P(~')]'+ (& —&') ]"',

(A10)

(A11)

so that Eq. (A8) may be written

S=32m
p2~'g f ~ 1N

dz gg
gg ~1 ~~m

M(z, z', q)
[(~'-e')(e' -~')]'" ' (A12)

Finally, by allowing for the change of variables

y -0, we obtain after some algebraical calcula-
tions



LOVE - T EM P E RAT URE E LE CT RIC AI RE SIST IV IT Y QF NOB LE ME TALS 548$

*Work supported in part by the National Research Council.
~E. Pytte, J. Phys. Chem. Solids 28, 93 (1967).
2W. E. Lawrence and J. W. Wilkins, Phys. Rev. B 6,

4466 (1972).
3E. Borchi, S. DeGennaro, and P. L. Tasselli, Phys.

Status Solidi B 46, 489 (1971).
4M. P. Greene and W. Kohn, Phys. Rev. 137, 513 (1965).
5Y. U. Kagan and A. P. Zhernov, Zh. Eksp. Tear. Fiz.

60, 1832 (1971) [Sov. Phys. -JETP 8'3, 990 (1971)].
6A. C. Ehrlich, Phys. Rev. B 1, 4537 (1970).
7J. W. Ekin and A. Bringer, Phys. Rev. B 7, 4468 (1973).
J. Black and D. L. Mills, Phys. Rev. B 9, 1458 (1974).

~J. M. Ziman, Adv. Phys. 10, 1 (1961).
~ E. Borchi and S. De Gennaro, Phys. Rev. B 5, 4761

(19V2).
~~S. Abati, E. Borchi, P. G. Coppi, and S. De Gennaro,

Phys. Status Solidi B 63, 669 (1974).
E. Borchi and S. De Gennaro, Phys. Lett. A 32, 301
(19v0).
J. A. Moriarty, Phys. Rev. B 1, 1363 (1970).

~4S. K. Srivastava, Nuovo Cimento Lett. 6, 353 (1973).
~58. Pal, Can. J. Phys. 51, 2225 (1973).
J. M. Ziman, Electrons and Phonons (Ox«rd U. P. ,
Oxford, 1960).

78,. Dupree and C. J. Ford, Phys. Rev. B 8, 1780(1973).
~ W. Drexel, Z. Phys. 255, 281 (1972).

A. Meyer, W. H. Young, and T. M. Hayes, Philos.
Mag. 23, 9VV (19V0).
L. J. Haubenheimer and G. Gilat, Phys. Rev. 157,
586 (1e6v).
W. A. Kamitakahara and B. N. Brockhouse, Phys.

Lett. 29, A 639 (1969).
E. C. Svensson, B. N. Brockhouse, and M. J. Rowe,
Phys. Rev. 155, 619 (1967).
In the eight-cone model the value of the pseudopotential
form factor I, which appears in Eq. (2. 8), is easily ob-
tained from the knowledge of the neck radius y.

24L. G. Schulz, Adv. Phys. 6, 102 (1957).
25J. F. Kos, Can. J. Phys. 51, 1602 (1973).
6E. R. Rumbo, J. Phys. F 3, L 9 (1973).
~As the Moriarty pseudopotentials are available only in
the region 0 ~q ~2EJ;, we have assumed as constant the
values of the pseudopotentials in the small region2' —0 —2p,
A. C. Ehrlich and J. T. Schriempf, Solid State Com-
mun. 14, 469 (1974).

9A. J. Barber and A. D. Caplin, J. Phys. F 5, 679
(19V5).

3 J. Bass, Adv. Phys. 21, 431 (1972).
3~M. R. Cimberle, G. Bobel, and C. Rizzuto, Adv. Phys.

23, 639 (19v4).
I. A. Campbell, A. D. Caplin, and C. Rizzuto, Phys.
Rev. Lett. 26, 239 (1971).
D. L. Mills, Phys. Rev. Lett. 26, 242 (1971).

34L. Dworin, Phys. Rev. Lett. 26, 1244 (1971).
35D. A. Smith, J. Phys. C 4, I- 145 (1971).
36A. D. Caplin, F. Napoli, and D. Sherrington, J. Phys.

F3, I 93 (1ev3).
~ E. W. Fenton, J. Phys. F 3, I. 190 (1973).

F. W. Sheard, J. Phys. F 3, 1963 (1973).
39A. P. Cracknell, The Eermi Su+ace of Metals (Taylor

and Francis, London, 1971).


