
PHYSICAL RE VIEW B VO LUME 12, NUMBER 12

Temperature dependence of the polaron~

15 DE C E MBE R 1975

George Whitfield
Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802

Meheryar Engineer
Tata Institute of Fundamental Research, Bombay, India

(Received 18 February 1975)

We point out that the existing literature is not even clear on which direction the polaron energy should

change with temperature. We analyze the existing simple calculations and show that they are most easily

understood in terms of phonon-frequency shifts, rather than a temperature-dependent polaron self-energy. We
show further that there are two different ways of defining a temperature-dependent polaron energy level, both

of which play a role in some calculations. We use a temperature-dependent form of the intermediate-coupling

theory which gives results that are qualitatively acceptable.

I. INTRODUCTION

The literature on the temperature dependence of
the polaron is in a state of confusion. Two contra-
dictory strains have existed for years with essen-
tially no interaction. There is a series of papers
that claim that as temperature increases the polar-
on loses its phonon clothing and becomes free-
electron-like. There is another series of papers
that claim, to the contrary, that as the tempera-

, ture increases the polaron becomes more deeply
bound and its effective mass increases.

Probably the earliest serious consideration of
the temperature dependence of the polaron energy
was the work of jL'okota, ~ who obtained for the op-
tical polaron the energy-momentum relation

—Q k2

(2n~+ I)' [I+a/6(2n'+ I)"'] '

We have chosen units so that 5= 2m = ~ = 1. The
coupling constant is n and

n = I/(q8 —1),
where p=(k~T) ~. The calculation is a tempera-
ture-dependent version of the T = 0 K intermediate-
coupling theory which was done by Yokota as well
as by Lee, Low, Pines and by Gurari. ' Figure 1
shows, qualitatively, how this energy varies with
temperature. At T = O'K we have the usual inter-
mediate-coupling theory. As T increases, the
self-energy disappears and the effective mass ap-
proaches that of a free electron (i. e. , no electron-
phonon interaction). This type of temperature de-
pendence, at first thought, seems quite reasonable.
The polaron, which is a sort of bound state, ion-
izes like any other bound system does as tempera-
ture increases. This same result has been ob-
tained from another version of the intermediate-
coupling theory by Porsch and, independently, by
the present authors. Osaka and Krivoglaz and

e(k) = —(nn+ I)@+0 [1 —+6(n~+ I) n]. (2)

Figure 2 shows how this energy varies with tem-
perature. Again we get the usual intermediate-
coupling theory at T = 0'K, but as T increases the
self-energy increases (i. e. , becomes more nega-
tive) and the effective mass increases. In short,
the polaron effects become larger, which is at
first thought surprising, for the same reason that
Eq. (1) seemed reasonable. Equation (2) is also
obtained both from simple perturbation theory (as
we will discuss below) and from the lowest-order
temperatur e-dependent Qreen' s -function approxi-
mations, either perturbation theory~ or Tamm-
Dancoff. i

In the cases where the electron interacts with
acoustic phonons the phonon frequency is wave-
vector dependent, and hence the phonon distribu-
tion function n can no longer be pulled out of the
integrals over wave vector. Nevertheless, the
same dichotomy exists between theories that give
increasing and decreasing temperature-dependent
energies. Riahan and Hopfield and Osaka' have
analyzed the piezoelectric polaron using perturba-
tion theory and Tamm-oancoff, respectively, and
have obtained results that vary like Eq. (2). In
analyzing the temperature dependence of the band

gap in semiconductors Fan~' and others ' have
again used perturbation theory to get a tempera-
ture dependence like Eq. (2). In both of these
works, which are concerned with acoustic phonons,
there is the additional point that n can become

Pekar have obtained the same qualitative result
from a different point of view using the Feynman
theory. The same qualitative conclusion has been
obtained for the piezoelectric polaron from two dif-
ferent approaches by Qkamoto and Porsch.

On the other hand, Fulton~ has used a different
extension of the intermediate-coupling theory to
T t 0 ' K and obtained instead of Eq. (1)
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FIG. 1. Temperature dependence of the polaron energy-
momentum relation according to Eq. (1). This is the
type of temperature dependence that we would expect.

large at reasonable temperatures. Hence, the tem-
perature-dependent part of the shift is much larger
than the temperature-independent part. For in-
stance between 4 and 400 K the experimentally
measured band gap of germanium shifts by about
10 3 eV, which is an order of magnitude larger than
the zero-temperature polaron self-energy. The
sign of this energy shift requires that the electron
be more deeply bound at higher temperatures.
However, it is difficult to see this effect as being
due to the polaron self-energy. On the other hand,
two other works on acoustic phononse' give just
the opposite temperature dependence.

The contradiction between the results of Fulton
and Yokota was recognized by Schultz~ and Osaka.
Both comment (as does Fulton) that Fulton's re-
sults are based on varying an excited state that is
not orthogonal to exact lower states, and hence his
results are of questionable validity. However they
do not resolve the situation completely, particular-
ly since the lowest-order perturbation theory gives
qualitatively the same results, and they are wide-
ly accepted.

Krivoglaz and Pekar have approached the prob-
lem in a different way. Instead of trying to define
temperature -dependent energy levels they calculate
the total partition function both in perturbation the-
ory and in the Feynman theory. From their re-
sults one cannot infer what temperature-dependent
energy level could or should be used. However a
perturbation approach to the temperature-depen-
dent energy levels can be used to get their pertur-
bation results. We are more interested in the tem-
perature-dependent energy levels because we hope
that they will be useful in interpreting a wide va-

riety of experimental results.
Since the simplest and most direct way of getting

results like Eq. (2) is by perturbation theory, we
will examine this approach in detail in Sec. II. We
will show that the results are easily understood if
we realize that they are caused by the phonon re-
normalization, not the electron self-energy. With
this realization in mind we can easily do an im-
proved calculation which completely reverses the
character of the results.

In Sec. II we start with the second-order pertur-
bation-theory energy levels and calculate the parti-
tion function without further approximation. We
can then see that two different temperature-depen-
dent energy levels both play a role. One we call a
temperature-dependent free energy level because
it gives the probability of the state being occupied.
The other we call a temperature-dependent internal
energy level because it gives the contribution that
the state makes to the internal energy. The inter-
nal energy level has a temperature dependence like
Eg. (l) and the free energy level has a temperature
dependence like Eq. (2). Hence both types have
some validity.

In Sec. III we do a calculation based on the inter-
mediate-coupling theory which permits an intrinsic
temperature dependence of the electron self-ener-
gy, as well as including the effects which dominate
the perturbation-theory discussion. The results
of this theory are quite different from the version
based on perturbation theory, and we feel that they
are at least qualitatively acceptable.
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FIG. 2. Temperature dependence of the polaron energy-
momentum relation according to Eq. (2), and perturba-
tion theory.
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II. PERTURBATION THEORY

A. Electron and phonon selfwnergy

First we will analyze the most straightforward,
naive (and also the most commonly used) way of ob-
taining the temperature dependence of the polaron.
We start with the usual Frohlich Hamiltonian, writ-
ten in dimensionless units,

H-Hg+Hi t,
a, =P'+g (a,'a, +-,') ~(q),

H„,=,
, q a, +a, e"' .

Table I shows the values of ())(q), Q(q) and the
units used for the different types of phonons in-
volved. In the table m, co, and s are the band ef-
fective mass of the carrier, the optical-phonon
frequency, and the speed of sound. The values of
these constants as also the values of n& ~4 depend
on the crystal. Henceforth we shall drop the sub-
scripts on the n's and refer to the dimensionless
coupling constant as n.

Let us use second-order perturbation theory to
calculate the shift in the energy of the state

which is an eigenstate of Ho with eigenvalue

z,. = k'+ Q [n(q) + —,
'

) u (q) .

For reasons that will become clear below, we wi1.1
break this expression into parts that are associated
with the electron and phonon energies, respective-
ly. We write

E(k, (n(q)})= k' —«(k) +g [n(q)+-,'] [(u(q) —6(d],

(3)
where

(k' —(k —q)' —~ (q)

1
0' —(k+ q)'+ ro (t)))

'

p 1
~&(q k)= —Q (q) ka (k )a ( )

1
a*-(0+q)'+~(q)) '

This sort of separation of the correction is common
in the theory of metals, "but not in insulators and
semiconductors. The usual procedure at this point
is to replace the phonon occupation numbers by
their thermal equilibrium expected values

n'(q)-=(e'"'" -1) ',
and hence obtain a temperature-dependent version
of the theory

E(k, {n(q)])-Z, (k, r) = k'- ~~(k)

+ Q (n'+-,')[~(q) -5(d] . (6)

The shifted energy is

E(1,(n(q)]) =E,.+g
fA i f

which becomes

E(+, {~(s)))= E;+Z a'(s) (2„-- s

n(q)
—2k (1 —q'+u)(q))~

'

Type of interaction

Polar, optical

Piezoelectric, acoustic q

Deformation potential
acoustic

Deformation potential
optical

Q(q)

47tni /~ 1
V q

1/2 1
V vq

4&+, '/2 X

(—")'"

Unit of
energy

2m'

2m+

Unit of
length

8
2m+

2ms

TABLE I. VaIues of cu(q), q(q) and units used for
different types of phonons.

This procedure can be justified by more careful
arguments which we will consider in detail Sec.
IIB, but first we would like to make several obser-
vations about the result:

(i) 5&(k) can be thought of as the electron self-
energy and 6~ as a shift in the phonon frequency
caused by the presence of the electron. 5&a()(: 1/V
and hence is smaller than 5&(k) and (d, by a factor
of the order of 10, but 5&(k) and g,—

2 5&v are of the
same order of magnitude.

(ii) Note that in E,(k, T) the temperature depen-
dence is caused entirely by the factor n, and that
both 66 and Dc' are temperature independent.
Hence in this simple theory there is no tendency
for the polaron to ionize as temperature increases.
The entire temperature dependence may be viewed
as due to the effect that interaction with the elec-
tron has on the phonon frequencies. The shift in
frequency can be either positive or negative depend-
ing on the values of k and q„but, the net shift in
the energy of all the phonons, given by -$,5(d, ,
is negative. As the temperature increases more
phonons appear, and the interacting system has an
increasingly lower energy than the noninteracting
system. This effect accounts for all of the temper-
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ature dependence which we found hard to under-
stand in Sec. I. We regard the fact that the polar-
on shows no tendency to ionize as a weakness of
this theory, a weakness which will be corrected in
Sec. III where we discuss the intermediate-coupling
theory.

(iii) However, even if we stay within the context
of theories with temperature-independent 6E and

6~, there is another serious weakness in the pro-
cedure that leads to E,(k, T). Once we recognize
that the temperature dependence that we are seeing
comes from a shift of the phonon frequencies rather
than the electron energy it is natural to suggest
that, instead of replacing n(q) by n (q), we should
replace it by

g e "&E(tc (n(C)) )

&, {~&a&)

(io)

= g e ~"' Q exp —g Q n(i7) ((a —5w)),
k n(q, ) =0

pendent energy levels E(k, ]n(q)]) given in Eq. (6)
and derive expressions for the partition function
and internal energy that involve temperature-de-
pendent energy levels. Since E(k, ((q)]) is so sim-
ple and 5rz/z so small this can be done essentially
without approximation [except, of course, the ap-
proximation involved in using E(k, (n(j)].)].

The partition function is given by

n(q) -=(e""""'—1) '

thus obtaining

E(k, (n(q)].)- E(k, T ) = k' &~(k)—

+Q [n(q)+-,'] ((u —&(o) .

(7)

(6)

where

e(k) = k —6c —P
After doing the sums on in(q)], we have

-ge(A) ' TT
1 —e ~" ~+1 —n (e '"—1)

'
We must not make the error of dropping the 6~ in
8 even though it is much smaller than &. Instead
let us expand F7 in powers of 6&v/~ and keep only the

.lowest term. We get

Remembering that 6&@/&u- 10 ~3 we can write

E3(k, T ) = Eq (k, T) +Q n (n + 1) (F86 (o .
The origins of the two temperature-dependent
terms in Eq. (9}are clear. The temperature de-
pendence of E,(k, T) comes from These equations can most easily be verified by tak-

ing the logarithms of both sides and expanding.
The partition function then becomes

But, if the phonon frequencies are lowered, the
yhonon occupation numbers will increase, giving
rise to the second positive term in Eg. (9). At

high temperature

+~0(n'+1)(oP6(u =+Qn'6(g,

The internal energy

8E = ——lnZ
8

(15)

and the leading temperature dependence in E~(k, T)
is just cancelled.

At low temperatures the positive term dominates
and the temperature dependence of E2(k, T) is just
opposite to that of E~(k, T). Hence, a more plausi-
ble form of the usual naive argument [Eq. (6)]
leads to the opposite kind of temperature depen-
dence (i. e. , the energy goes up with temperature).
We will show in Sec. II 8, that even though in-
tuition leads us to E~ rather than E&, when we are
more careful we find that E~ also plays a role.

B. Calculation of partition function and internal energy

In order to see clearly the role played by tem-
perature-dependent energy levels like Ez(k, T) and
E2(k, T) we will start from the temperature-inde-

can be written

E=g e "~&'"E,(kT) g 8 "~""+g n'
A c

(is)
We see that both E~ and E& play a role in deter-

mining E. The energy E~ which appears in the ex-
ponent determines the probability that the effective
state is occupied. Hence it should be thought of as
a "free energy level. " The energy E~ gives the
contribution to E that is made by that state if it is
occupied, and should be thought of as a tempera-
ture-dependent "internal energy level. " This dis-
tinction was realized years ago by James and
Elcock and Landsberg. But it was applied only
to temperature dependence of band gaps in semi-
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conductors, and it was not clear from this example
that the two types of temperature-dependent energy
levels moved in opposite directions as the tempera-
ture changed. Moreover the relevance of this ear-
ly work to the polaron problem has not been ap-
preciated.

Although the effects we have been describing are
quite real, this description has been based on the
lowest-order perturbation-theory energy levels.
This description does not permit any inherent tem-
perature dependence in the polaron self-energy or
the phonon frequency renormalization (i. e. , the
tendency for the polaron to ionize as temperature
increases has been entirely neglected). In what
follows we show how a more complete calculation
can remedy this defect.

III. INTERMEDIATE-COUPLING THEORY

In the intermediate-. coupling theory2~ the nonin-
teracting eigenstates are transformed to

~P, (n(q))) =e*&e"u '~exp ((x -g n(q)t( ~ r
c

(gt )n( ())

&C g/2 0 18)

8 &e 28 &=exp —,a, e"' —a, e ' '
is just a displaced oscillator transformation with
displacement centered on the electron. Since

']lo&= lo&,

we can write

where

S&= —s Z a, aq ~ r

and

s, = Qf,-(a, -g', ) .
The total momentum of the system is P. Note that

~.(.) &
X/2-

e']exp a p-Qn(q)q r II (a',)"'" IIIn(q)I l
0& . (19)

We now have a new set of complete, orthonormal
states which can be used to estimate the partition
function. We will use these in connection with the
variational principle of Peierls which asserts that

()H ~ P &"(-)& nl» ( n)

where I n) stands for any orthogonal set of states.
When In) are energy eigenstates the equality holds.

We vary the states given by Eq. (18) with re-
spect to the parameters f, to get the best partition
function (minimum free energy). For the energy
levels we obtain

~, (~ (n(q))) -=(~, {n(q))
~~

~~1 ~, (n(q))) =(v-g t]n(q)) + Q2(()q)f.+pf,' ((tdq)- 2~q+q')
q e

+ g qf,' +gn(q) (d(q)+2q Z q'f', +2+ f,'q'n(q)+g-'~(q) ~

0 0

We now follow Yokota' and calculate the partition function for the polaron by fixing its momentum to be
K. Then

z = E e""""""a x —Qt(n( )-K)
Q

and the total partition function is

2 I

Z»= Q exp —8 K +2+@,f, +Q f, [(u( ) —q2K ~ q+q ]+ Q qf, +Q-,'(d(q)+Q n(q)[(o(q)+ 2f, q ]
f~(q)J

Performing the sums on the 1n(q)]
2 1

Z» ——exp-p E + 2 QQ, f~+gf [(()(q) —2K q+q ]+ g qf~ +g — — II:(]~„(~)+2,2~f]
e e

Now we vary f, to maximize lnZ» which amounts to minimizing the free energy, obtaining

(21)
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f,=-q; ~(a)-aa l(q-E a'f'(a'))+a'(&+aa(a)),

P(q) (e8(&Aq)+2a f ) l) 1

(22)

As is usual in the intermediate-coupling theory we
define the polaron velocity by

K- gqf,'=-V(K)
'

a

and find that V(K) satisfies the transcendental equa-
tion

Z = 8X( ) ] [ (l 8-8~(a))-1

E(Z) =Z' (Z -V)'+—g q,f, + g (25)

The value of the partition function Z is then easily
written

-M(&) TT Iy -N~(e)+2m f~3i-1
Q

E(f1)=Z' —(V-K)'+2 g Q,f, +g (24)

+g f, ((d —2q ~ V+q ) .

Once again as in Sec. II the shift in phonon fre-
quency is small (- 10 2). But in contrast to the
second-order calculation the shift is positive for
all wave vectors and is inherently temperature de-
pendent. So, essentially without approximation, we
can set

«2
(

8(su(q)+2q2f -))-1 (l -8&v(a))-1 -8a~2q2f
9

and show that the polaron partition function Z„re-
duces to a product of a temperature-dependent po-
laron part and a free phonon part

Finally we calculate that the internal energy for
our partition function is

2 ge'*'"=:2(z}+Z fz+g q'(o(a) .BE(Z

E Bg a

(2s)

It is clear from the preceding development that
the LLP theory with renormalized phonons meets
the requirements for a qualitatively correct tem-
perature-dependent polaron theory. The polaron
clothing is naturally temperature dependent as is
the phonon frequency renormalization. The tem-
perature dependence is such that, in both cases,
the polaron reduces at high temperatures to a free
electron and unrenormalized phonons. The tem-
perature-dependent energies E(X) and (E+ p BE/8 p)
are the free energy and internal energy levels of
the polaron of momentum K.
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