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The problem of electron transport at high temperatures has been attacked for a model divalent metal, using

principally a two-plane-wave approximation and taking into account the Fermi-surface distortion. The
electron mean free path is found as a function of position on the Fermi surface for phonon scattering only.
The limiting high-temperature form of phonon-scattering structure factor is used and the effective electron-
relaxation time is found by a somewhat novel iteration scheme that converges rapidly. %'ithout loss of
generality the electric field is chosen to act along a symmetry direction of the lattice. For the purpose of this

application the phonon dispersion and anisotropy are disregarded. Simple consideration of two sets of
Brillouin zones shows that their effects can be roughly superimposed for the usual nearly-free-electron metal.
For a reasonably chosen set of material parameters the calculated dependence of electron relaxation time as a
function of k is used to find the conductivity.

I. INTRODUCTION

The problem of electron-phonon interaction is
central to a large part of metal physics. It plays
a crucial role in the understanding of transport
processes and has been extensively treated in the
standard texts in this area. The treatment is
based on a linearized Boltzmann equation where
the collision terms are given by the transition
probabilities of time-dependent perturbation theory
and both the lattice potential and the dynamics of
the lattice elements are involved in the interaction.
In addition to the applications to the theory of
transport for electric charge and thermal energy,
the electron-phonon interaction determines the
strength of the pair binding for superconductivity
and alters the effective electron mass. ~

Although in the early stages of development there
was a tendency to pass over detailed consideration
of umklapp processes, careful work has shown
their influence to be large even for monovalent
metals3 and to dominate the normal processes for
polyvalent metals. 4 It greatly increases the mag-
nitude of the scattering and at low temperature can
alter the temperature dependence of the QrGneisen
prediction (T for resistivity) and enhance the de-
parture from Matthiessen's rule in situations in-
volving the breakdown of the relaxation-time ap-
proximation. ~

For the lattice potential as seen by the electrons
it has been customary to employ suitable pseudo-
potentials or, more directly, their transforms. e

The lattice dynamics are usually tr eated in the one-
phonon approximation, 7 although Baym has shown
that the complete complexity of the phonon influ-

ence, including multiphonon processes and the
Debye-Wailer factor, can be incorporated by work-
ing directly with the time-correlation transforms
of the scattering of slow neutrons. It appears that
the application of this sort of broader technique
has been limited so far to liquid metals.

Recently there have been several detailed cal-
culations of transport properties in polyvalent
metals. These include the work of Dynes and
Carbotte' on Na, K, Al, and Pb and of Borchi,
DeGennaro, and Taselli' on the hexagonal metals,
Be, Mg, and Zn averaged over crystal orientation,
i.e. , appropriate to polycrystals. Studies of the
anisotropy of resistivity for the hexagonal metals
have been carried on by Pecheur and Toussaint. "
The latter have also explored anisotropy of
thermal resistivity in these metals. In all these
cases the solution of the Boltzmann equation pro-
ceeded from the variational procedure, "which
gives presumably good upper limits to the re-
sistivities, but little information on the variation
of the relaxation time over the Fermi surface.
For the applications to specific metals the varia-
tions of the Fermi surface from a sphere were
generally disregarded as well as the coupling be-
tween orthogonalized-plane-wave (OPW) functions.

In this paper the emphasis is somewhat different
in that we have concentrated on the influence of
electron coupling through the pseudopotential com-
ponents and used in general a two-plane-wave ap-
proximation. Also because we were interested in
the variation of the relaxation time over the Fermi
surface, we have employed an iteration-type solu-
tion to the Boltzmann equation instead of the more
elegant variational procedure. This iteration pro-
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cedure is appreciably different from what has been
used in earlier treatments. '4 The direct investiga-
tion of the relaxation time should be useful in
evaluating other transport effects. In this respect
we are particularly concerned with electromigra-
tion or the mass transport in metal under the in-
fluence of high electric currents. Here the "elec-
tron wind" effect is important and depends directly
on the electron mean free path. The anisotropy of
this effect in noncubic metals" has been rather a
mystery and the knowledge of the anisotropy of the
electron relaxation time is an important clue to
its understanding.

To simplify the geometry the calculation has been
applied to a fictitious metal with a simple-cubic
structure and two electrons per atom. The re-
sulting zone structure gives rather well separated
zone interactions so that it is generally sufficient
as a first approximation to consider only one
coupling interaction as an reasonable approximation.
To simplify the surface integrations the form fac-
tor is expressed as a series in the square of the
scattering vector.

Section II of this paper displays the basic for-
malism of the approach. Section III applies the
method to the simplest of the umklapp processes.
In Sec. IV we consider the generalization to the
more complex electron coupling. In Sec. V we
show how to combine all contributions to the ob-
taining of the relaxation time and give a simple
example of the application. Section VI is the con-
cluding section.

II. BASIC FORMALISM-BOLTZMANN EQUATION

The investigation of the electron mean free path
Z(k), over the Fermi surface when limited by
phonon scattering, begins with the Boltzmann
equation for the conductor in the uniform electric
field E,

( -) v(k) eE = P —
~
M(k, k ', t), g)

~

n'

x 6(g„—e„.+ Pe(),~) J(N"~f (k}[1—f (k'}]
—N;,f(k') [1 -f(k )1 k

+ [analogous terms involving 6(e-„—ap —h(()~&)].

(2. 1)
The left-hand side is the usual drift term in the
momentum coordinates in a force field eE and on

the right-hand side are the scattering terms calcu-
lated according. to the standard equations of second-
order perturbation theory. The M quantity is the
interaction matrix element which induces a transi-
tion between electron states k and k' with the crea-
tion or annihilation of a phonon of wave vector q
and polarization j. The symbols for electron en-
ergy and velocity are & and v, respectively, and
co is the phonon frequency. The first term in the

curly brackets represents phonon annihilation and
the second term the phonon creation. The N, is
the initial phonon distribution and the N, is the dis-
tribution after the creation of the phonon. The f
is the electron distribution and f~ is the equilibrium
(Fermi-Dirac) distribution.

For the high-temperature region one can assume
phonon equilibrium so that

N =N' —& =N+ .e e q (2.2)

For the electron distributions we write f-f0 =g
so that one can linearize the Boltzmann equation by
setting

g(k) = ——eE ~ 7(k ),d6
(2. 3)

where X(k) is the electron mean free path between
scatterings.

Changing the summation to an integration one
can now rewrite the Boltzmann equation (2. 1) as

q.~(k) = Q g~, (k) (2. 7)

by an iteration scheme based on the assumption that
z is not a rapidly varying function of k. The lead-
ing term r&&(k) is determined on the basis that r
is sufficiently constant to be taken out from the
integral in Eq. (2. 4). (This starting approximation
has also been suggested by Ziman~~ and Taylor. '4)

We have

7~, (k) =v, (k)/A(k),

where

(2. 8)

v(k) =2, [X(k) —7(k')) W(k, k') dk' .
8))' „'

(2 4)
Here the W(k, k ') is the transition probability for
the electron to go from state k to k' with no
implicit dependence on the phonon density. The
factor of 2 arises from the small size of h& which
makes the two parts of Eq. (2. 1) equivalent.
Again from time-dependent perturbation one has

W(k, k') = (2&/a) ~(r
~

V,
~

a') ~'6(~(k) - ~(k') ),
(2. 6)

where V, is the potential responsible for electrons
scattering from state k to k'.

Qur variational approach starts by selecting a
particular direction, usually a symmetry axis,
along which the electric field acts. For each elec-
tron state there is defined a relaxation time

v~(k) = X,(k)/v~(k), (2.6)

where A~ and v~ are the components of A. and v in
the fixed direction p. It should be emphasized that
the tensor property of z is sacrificed in this defini-
tion, but this is not too inconvenient. We deter-
mine g~(k) from a series
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A(k) = 3 '~~ [v(k) —v(k')] W(k, k') dk' . (2. 9)4m' .'

Substitution of Eq. (2.8) into Eq. (2. 4) leads to

0 = [z~~(k ) —r~, (k')] v(k') W(k, k') dk'

(k) = ' [v~, (k') —7~, (k)]v(k')

&& W(k, k') dk'[A(k)]

and successively

(2. 11)

~~ „.,(k) = [T~„(k') —r,„(k)]v(k')

&& W(k, k') dk'[A(k)] ~ . (2. 12)

This iteration appears in general to converge
rapidly. The formal conditions for convergence

16will be considered in the succeeding paper.
For a pure metal, one can write the matrix ele-

ments of the scattering potential (k lV, l k) as the

pl 0roduct of a form factor F(k —k') which is the
transform of the pseudopotential of the lattice
atom and the structure factor of the lattice. In
the standard treatment of phonon scattering7 the
structure factor is expanded in terms of the phonon
waves. For single-phonon scattering the matrix
element is proportional to the phonon amplitude
and one obtains

+ Q [r~(k)v(k) —y~„(k')v(k')] W(k, k') dk' .
(2. 10)

The next approximation is

where e, is the longitudinal sound velocity. For
metals, however, not all the Fermi surface can
be spanned with normal processes and umklapp
is involved. Where it is, the shear waves are
important.

Because of our interest in the effect of the Bril-
louin-zone (BZ) intersections, we have chosen in
this investigation to deal with a fictitious metal
having a simple-cubic structure and two electrons
per atom, as mentioned in Sec. I. Choosing to
work in the extended zone scheme, we visualize a
nearly spherical Fermi surface intersected by
the three mutually perpendicular BZ's. Without
loss of generality, we take the electric field E
along the Z axis and put k in the upper hemisphere.
With k as an origin we construct a phonon space,
and as shown in Fig. 1(a) mark off the cell struc-
ture into which the phonon zone planes divide the
Fermi surface for integration over k' [Fig. 1(b)].

) &k) V, [k') )'=(2~)-' g )a..)'('e,.)')F(.)')',
(2. 13)

where a and e are the amplitude and polariza-w ere Qqp qa

tion, respectively, of the phonon with wave num-
ber q and polarization index cr. The initial factor
of & occurs in Eq. (2. 13) because only one scat-
tering process (phonon creation or annihilation)
is involved. The scattering vector is z =k- k'.
The conservation of crystal momentum requires
that z=q+Q, the (annihilated) phonon wave num-
ber where Q is 2v times a translational vector of
the reciprocal lattice. The umklapp processes are
characterized by Q WO. For our interests we can
replace

~
a(q) t by its high tempe-rature approxima-

tion, '

(b)
I

I

l

I

I

I
I

I

(2. 14)a, = kT/MuP, ,

where k is Boltzmann's constant, T is the absolute
temperature, M is the mass of the metal atom,
and +, is the angular frequency of the phonon wave.
For the normal processes (Q = 0) only longitudinal
waves are involved, VT= (q), and Eq. (2. 13) on the
right-hand side reduces to (kT/2Mc2) IF(q) l2,

FIG. 1. (a) Fermi surface intersected by various
phonon planes and (b) exploded view of resulting cell
structure.
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FEG. 2, Comparison of enclosed surfaces for the
spherical and cylindrical phonon cells, respectively, in
csn IIA as a function of k,/kz.

lattice, but introduced by Bragg diffraction rather
than by umklapp. To treat this complication the
electron zone structure must be specified in addi-
tion to the phonon structure.

In accord with the basic assumption of the nearly-
free-electron metal (NFEM) that the zone energy
gaps are small, we treat the Bragg coupling of the
various zones by superposition only, maintaining
that those regions where superposition might break
down (near edges and corners of the zone structure)
are relatively unimportant. Consequently, two-
plane-wave functions suffice quite generally for the
appropriate Bloch functions for the electrons
throughout most of the Fermi surface. They have
the standard form,

P&(~) = V ' "[a(u) s' "+ P(~) s*'"""], (2 16)

The nomenclature is to call the central cell in
which k appears I and the three cells that adjoin
I are called IIA, IIB, and IIC reserving II A for
the region to the —Z side of I. The next more dis-
tant ce1ls, each of which share an edge with I,
are called IIIB, IIIC, and IIID and there is even
a small cell IV with common corner with I.

Of course these BZ's are cubes, but since the
intersection of cube and sphere is complicated by
two orientation angles, we were constrained to ap-
proximate the zone first by a sphere and in later
considerations by a cylinder with altitude equal to
the cube edge. Both approximations have their
individual uses and the added symmetry allows
in each case that one variable in the surface in-
tegration in Eq. (2.4) be done analytically as in
Sec. III. We shall also see that boih approxima-
tions are quite mutually consistent. For example,
we see in Fig. 2 plots comparing the amount of
enclosed surface in cell IIA as a function of the
4 projection along the Z axis for both sphere and

cylinder models of the phonon cell; the consis-
tency is apparent.

For k on the BZ itself the possibility for Q = &

and q=0 exists, in which case l(k 1 V, lk') I [Eq.
(2. 13)] appears to go infinite —a situation frequently
referred as a "hot spot" on the Fermi surface.
Actually a more careful study will show that the
infinity does not really occur when one considers
the Bragg coupling for the electrons and the de-
formation of the Fermi surface (see Sec. III).

As long as only single-plane-wave functions are
used for the electrons, a particular choice for g
determines q and Q uniquely. However, once Bloch
wave functions are used, the possibility for Bragg
diffraction presents multiple choices for Q; this
is particularly important for those states near
the BZ. Then for a given g there may be three or
four values for a+ K that replace a in Eq. (2. 13)
giving rise to separate terms. Here K is like Q,
2g times a translational vector of the reciprocal

where A and P are given by

o'= ('(I+
) y V) [-(y- ij)'+ g'1-'"))'",

P=+(-'(I —~y- V ~
[(y- v)'+g'] '"])'".

(2. 16a)

(2. 16b)

u = (kkf p, /m*)[I —28r(k)] . (2. 18)

The choice of an analytic form for E(a) to be a
power series in g has the double advantage that
the fitting for small g is easy and that integra-
tion over one angular variable of the Fermi sur-
face can be done analytically. In this work we
have used a linear expression,

E(~) = E, [1—(1/2b)(a/k )'], (2. 19)

similar to that used by Feit and Huntington. ~ Here
I'o can, in general, be taken as a constant, —&&~,

Here the components of k parallel and perpendicu-
lar to K are written k„= p, kz and k~= pkz, respec-
tively, (kz is the radius of the undistorted Fermi
sphere) Let p. , = y=K/2k~ specify the location of
the BZ. The parameter g which determines the
band gap splitting is V(K)/2&~y, where &z is the
Fermi energy and V(K) is the Kth component of
the lattice potential. In this work we shall take
V(K) to result from a purely local potential and
to be equal to E(K), the atomic form factor.
Strictly this holds only at absolute zero and V(K)
should be multiplied by the square root of the
Debye-%aller factor for T&0. For the electron
energy near the Kth zone, we have

=(k/k )'+2yb- ~ [(y- ~)' ~']'").
(2. 17)

The plus sign in Eq. (2. 17) goes with p, & y. The
sign of P in Eq. (2. 16) is the same as E(K) for
p, &y and reverses for p, &y. For this model the
electron velocity appearing in Eq. (2. 1) is given
by v =5 'V~e =5k/m~ except near a BZ, where
the parallel component of v is altered. (m* is the
electron mass characteristic of the conduction
band far from a BZ. ) In general
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and b is a parameter which essentially determines
the zero for E(q). For some metals such an ex-
pression can be made to give a reasonably good
fit; for most a quadratic term would be prefer-
able to give good fitting in the region around g =2&~.

Before proceeding in Sec. III to the actual cal-
culations, with this model, it is worthwhile to list
briefly the shortcomings and assumptions of the
approach and comment whether each is basic to the
model, tractable by a more detailed procedure, or
simply trivial: (a) The most serious shortcoming
of the approach seems to be the neglect of the
multiple phonon processes, especially since there
seems no easy way to estimate their influence
particularly at high temperature. (b) The method
assumes that E(v+ K) is a function only of the
magnitude of its argument. This is satisfactory
for a local pseudopotential, but for a nonlocal
pseudopotential it holds only if &+ K connects
states of the same energy. For some K this may
not be even approximately true. (c) As will be-
come evident, the phonon spectrum will be treated
rather cavalierly since both dispersion and anisot-
ropy are neglected in this treatment. However,
the ef'ects of these omissions can be estimated,
and if need be, a more detailed treatment could
take them into account. o (d) As mentioned above,
a careful treatment for most metals will require
an expression for E quadratic in y rather than
linear as developed here. (e) Lastly, the use of
spherical or cylindrical phonon zones appears to
introduce relatively negligible error.

III. EVALUATION OF THE SCATTERING INTEGRALS FOR
CELLS I AND II

In this section we shall proceed to evaluate cer-
tain integrals that pertain to cells I and II and that
will be useful in constructing the complete A(k)
in Sec. IV. These integrals are

abbreviate the sum of any mc over the cells by

g~C x~t
(3.3)

2 -1~2 E 0 4 2b 125~
(3.4a)

„m, p ' E(q) o, , p 3 1 5

mo 2 „ggo E(0) 4 4 3b 96bo '

(S.4b)

(S.4c),m, /v=„m, /~,
are independent of angular coordinates. They are
here expressed in dimensionless form, where the
constant mo is

mo = (2wm~kz/k ) Eo(kT/pC t) ~ (S.6)

(Here p= MN/V is the metal density )Furt. her,
the contribution to A, (k) from this cell can also be
written

To distinguish those effects arising from phonon
umklapp, from those due to Bragg coupling Sec.
III A gives a treatment using only single wave func-
tions.

A. Single-plane-wave approximation

Under this limitation n = 1 and Pr =0, v be-
comes proportional to p. , and the distortion of the
Fermi surface is neglected.

For the cell I the range of the integratie-. .;, is
limited to the part of the Fermi surface enclosed
in the cell. With a spherical-cell approximation
the integration is simple using k as the polar axis.
Since the phonon cell and the volume enclosed by
the Fermi surface are equal for a divalent metal,
the area of integration subtends a solid angle of
7t at the k-space origin. With no umklapp the
phonon structure factor is unity. The expressions
fol om$ 1 JJm'f /p, , and, m, /v,

(k, f') S'/~
~c

(3. la) p, 1 1 1
Pt ovP$//JR$446$+32QQRzP (S.6)

p, '[1 —2P (k')] p(k, k') dS'/~ V~, e ~,
~C

(S.1b)

,mc = v' cosQ p(k, 8)dS'/
~
V~. t~ (3. 1c)

A(k) = u~ Q (p.[1—2P'(k)]o mc —„mb), (S.2)

where v~= 5k„/m~ is the velocity at the undis-
turbed Fermi surface. It will be convenient to

Here C is the cell index, vo= 1 —po, and Q is the
appropriate azimuthal angle measured from the
k —K plane. The function p(k, k') stands for
VI(k IV, Ik'}I /mk. The A(k) can be expressed in
terms of these quantities,

When k' lies in cell II umklapp is involved by a
vector Q= —2kzr along a coordinate axis. Again we
use the spherical-phonon-cell approximation. The
advantages are that practically every expression
can be integrated in closed form and that in studying
transport behavior as a function of T below the
Debye temperature, the cell radius can be directly
related to the largest available phonon wave num-
ber. The geometry is shown in Fig. 3. By inspec-
tion one can deduce the following nomenclature and
relations. The length of the vector k+Q is eke,
where we have

~e~ =(1—4ur+4r')'" . (S.7)

The angle that e makes with the Z axis is m- g;
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FIG. 3. Geometry for ceB-II scattering with spherical
phonon zone.

cos& = (2y- p)/e and sing= v/e.
The line of centers can be used as a polar axis

and the angles & and 4 are the spherical polar
angles which map out the position of k', the variable

of surface integration as seen from the 4-space
orlgln. From the end of ekF the analogous angles

The interrelationships are

cost = (e —cosg)k~/q,

sink= (kz sing)/q .
Of course, q, the phonon wave-number vector,
goes from k' to ekF. It is related to e by

q =(e +1 —2ecosg)k~.2

(3.8a)

(3.8b)

(3.9)

Preparatory to finding the m's we now express
the phonon structure factor and E(k) in terms of
variables 0 and p. The structure factor of the
phonons squared is fundamentally

kT
1 Q cosy 2 Q sing

+r2, (3.10)
g g

where r is e, /c, , the ratio of the velocity of
longitudinal acoustic phonons to that of the trans-
verse phonons. The angle g is between the di-
rection of q and Q; its value is determined by

—cosy = cos $ cosf+ sing sing cosp . (3.11)

Here the choice for Q =0 corresponds to P in the
same plane as e and k and lying between them. The
substitution of Eq. (3.11) in (3.10) gives

(3. 12)

(3. 13)

1 — cos $ coed+ — [r'+ (1 —r2)(cos2) cos2g+ sin2( sin2& cos2$)]

2Q 2 Qsin& sing cos(t) 1+ (r 2 —1) —cos & cos&

In a similar way the expression for E2( )
' E '2 19'xn q. ~ . g can be expanded to

~2 ~2 1 / 2
o

—
2bk2 (q —2Qqcos&cosk+ Q') +, sin)sin&cosy2Qq

F kFb

x —
2bk2 (q —2Qqcos )cosk+ Q ) + 2 singsinfcos(t) ~

Qq

F kF b )i

Substitution of these expressions into Eq. (3. 1a) by virtue of E . 2. 13e of Eq. (2. 3) gives the following expression,

2

smc= —
)

d(cos(') ( — cos(cos(s )[c +(( —c )(cos (c ( —'s(os oss(sos()]~
I

x ].— ——— —2
1 2

2 2 (q qQcos(cosk+ Q ) + — 1 ——cos/ cosf 6 2 Il 2 2 22 1 2Q
2 („g + [r +( —r )cos )cos f]

~~ ~ ~~x 2 sin)sing + —
2 (1 —r ) sin4$ sin4g ———sin )sin2$

x ) — (C —2qccos(cos(+q ) (+(c —)) —cos(cosL)) .
g

(3.14)

(3.15a)

Somewhat more complicated expressions evolve for
„m» and ~m». Here one must use the substitutions,

p.
' = —cos$ cose+ sin)sin8 cosp,

(3. 15b)p' =sing cos8+ cos(sin& cosg .
Although the integration over cos & can generally
be carried out, it proved to be a reasonable ap-
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FIG. 4. Plot of pm», (Jm&» and jm» for single-plane-
wave approximation with spherical phonon cell.

proximation to replace cos8 where it appears in
the numera, tor by its average value, 2+ &e. The
leading term in 82~ is (zg/q) and its integral gives
rise to a logarithmic singularity as 8-0 for p. =y,
where qa becomes 1-cos8. This is, of course,
the cause of the "hot spot" situation mentioned
earlier.

It is not easy to get much additional feeling for
the general behavior of the m's without resorting
to numerical evaluation. This we did, cross
checking direct computer integration of equations
such as (3.14) with evaluation of the expressions
resulting from analytic integration. We needed
constant values to assign to the constants y, z, b,
and g. For y we chose 0.80, very close to the
value that one would find for a perfect Fermi
sphere of a divalent metal in a simple cubic lat-
tice. For x we chose (2)~~3-certainly a reason-
able choice. For b the latitude for selection was

wideg, but it seemed clear that a great number of
pseudopotentials give form factors with zeros less
than 24~. We picked a value for b of 1.80 which
gave a crossing at k = 1.9k~. This choice fixed the
value of g (near T=0) at 0. 12 although a lower
value could have been equally reasonable in view
of the high-temperature applications in view. The
ensuing plots for Ore», „m», and ~m» are shown
in Fig. 4. One notes that all three have relatively
small values in the equatorial region (low y, ), in-
crease to a logarithmic singularity at the zone
plane, and in the cap region (I p, l & y) appear some-
what smaller, falling rather rapidly on approach-
ing the pole (p, =l).

The o~ zs naturally the largest»m appea, rs to
scale rather closely with Om, and „m is negative,
since cell II is mainly in the lower hemisphere.
From symmetry, ~m must vanish at the equator as
indicated by the solid line. The dotted line shows
the contribution from the lower hemisphere only.
One must include also k' in the upper cap region as
part of cell II when 4 is close to the equator. As
a, result the value of „m goes to zero at p. =0, its
slope is doubled, and there is a slope discontinuity
back at p. =0.14, which reflects the point at which
the dotted line meets the axis.

We are aware of the limited value of displaying
results for a particular choice of material con-
stants. In Sec. IIID we shall attempt some general
comments on how results may be expected to vary
with changes in y, x, b, and g.

B. Two-plane-wave Bloch functions

With the introduction of electron coupling through
the lattice-translational vectors K, the expres-
sion for the scattering matrix squared becomes
more complex. In place of Eq. (2. 13), we have

(3.16)

For two-plane-wave functions the summations over
K and K' include only two values, 0 and minus the
K value corresponding to the closest Brillouin
zone. (For the equatorial region symmetry may
require a three-plane-wave function since there
will be two BZ's about equally distant from k. ) In
terms of the quantities in Eq. (2. 15), oo = o. and
o, r = P. The equation for momentum conservation
is now q+ Q for the phonons equal to ((:+ K' —K.
Since each matrix elements will consist of four
terms, there will be 16 in all in Fq. (3.16), of
which ten are individually different, as compared
to what might have been considered a single term
for the one-plane-wave function treatment Sec.

IIIA,
Because of the direct p, dependence of the n's

and P's the spherical phonon cells offer no ad-
vantage at this stage. Accordingly, a cylindrical
cell is employed where the cylinder axis is parallel.
to the relevant K, and its length is equal to the
edge of the cube cell. The geometry is shown in
Fig. 5. The mutual consistency of the two treat-
ments is illustrated by Fig. 6, which shows the
om. and „m (one-plane-wave approximation) for
both sphere and cylinder as a function of p, paral-
lel to the cylinder axis. The natural coordinates
for the integration over the k' solid angle are p,

'
and Q, where P is now the azimuthal angle re-
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FIG. 7. Illustrative plot of P& in. radians as a function
of p for p=y.

FIG, 5. Geometry for calculation with cylindrical
phonon cell.

in S~ . The groups are thereby labeled 0, 1, or
2 and the corresponding parts of the nz's will be
indexed by a following superscript in parentheses.
For terms containing q ~ q one has

ferred to the cyiinde~ axis. Again the integrations
over (()) can all be carried out in closed form, but
the integrations over jL(,

' must be done numerically.
The integration limits on Q (a (t),) depend on iL' in
a complex way; see Fig. 7 where Q, is plotted
versus p,

' for p. = y. Those terms which contain
a q

"2 require that the deformation of the Fermi sur-
face in the neighborhood of the BZ be taken into
account, but the effect is not so serious for other
terms, particularly if either k or k' is far from
the BZ.

For the calculation of the m's there are several
ways the terms could be combined. We chose to
group terms according to the power of the lattice
vector (Q or K or combination thereof) appearing

(3. 17a)

(3. 17b)

where the roles of n' and P' are interchanged on
going from cell I to II. For the use of the cylin-
drical coordinates the form factors are written in
cell I as

+(e) = 1 —h (1 —p p,
' —p)2' cosg) = 1 —h

Eo 2k 2„

(3. 18a)

0.6-

0.5—

0.4-
0.3—

E~ 0.2

O OI

0
Z

-O. f

I

0.8

-0.4

FIG. 6. Comparison of Om and ~~m for cylindrical vs
spherical cells as a function of 1(L.

(3.18b)
and in cell II, where p.

' is for the most part nega-
tive, we have

+(v) [1+us —2(~ —r)(~ + r) v~ «»p], -
Eo

(3.19a)

&((f+ Q) =1 —b ~ +22(p. —p, ')((+()+2y (1+1)) .2

Eo 2k ~
(3.19b)

In the succeeding plots of the various functions
that were numerically determined as functions of
g the introduction of the distortion of the Fermi
surface made it necessary to distinguish between
the definition of p, as the projection of k in units
of k~ or as the cosine of the angle which k makes
with the Z axis. It was decided that the former is



12 TRANSPORT IN NEARLY- FREE- ELECTRON METALS. II. . . 5431

0.20—

0.IO—

0.05 ~—

-m'0'
0
-rn"'
0

0.20—

O. lo
O

E 005

0
0—

-O. IO '-
Qr

I

0.2 0.4 0.6 0
P

I.O
-rrl(l)
0 -0.05

0.2 0.6 0 l.0

0.20 —rn'~'
0

0.20

O. IO

0.05
r

0
-0.05—

I I

0.4 0.6 0.8
I

~rn&o
0

-rn'0'
0

O. IO

E
Cl

E 0

-O.lO

o.~ ~o.e
fTl

FIG, 8, Plots of omr and omrr as functions of ~:
omI, omI and omr ' +) omII ' OmII and omII ~

.(0) (2). h x (0) (i) (2) FIG, 10. Plots of mr and mrr as functions of P: {a}
mr, and, mr,. {b},mrr ~ imrr ~ «d ~mrr ~

(0 ) (i ) (0) (2)

o lO — 0) Cell l

0.05-

-005-
I

0.4
I

0.6 (0
I'

m(l)
0

I.O

0.05—

-0.05

b) Cell 3X

II
m"

ll
fTl

0.8
l.O

,
m+)

-o.Io

-O. l5—
Q m'o'

FIG. 9. Plots of „mr and „mII as afunctions of p: {a)
(0 ) (i ) d (2 ). h, q (0 ) (i ) (2 )

Ilmr j Ilmr j and llmr i ~~Ml~ ltmrr ~ llmlr 9 llmrr ~

the more, useful, since the projection is the natural
variable for surface integration when there is sym-
metry about an axis. With this choice the dis-

continuity at the zone occurs at p. = y without a break
in the abscissa and the point with polar symmetry
is indicated by a value of p, somewhat less than 1.

Plots of,mc' vs p, are shown in Figs. 8(a) and

8(b). The substantial contribution from cell I at
low p, is in large part from the free-electron term.
The discontinuities at p, = y arise from the several
c.P terms that develop on squaring Eqs. (3.1Va)
and (3.17b). The particular interest in this (0)
group comes from the fact that the phonon struc-
ture factor does not appear (8& is constant). With
a change of the appropriate multiplicative constant
these results then cover the case of impurity scat-
tering to all powers of P. This was the problem
treated by Feit and Huntington, ~ who solved the
Boltzmann equation self-consistently but to only
first order in the perturbation parameter.

The plots for „m~0' and, ~z~@) are shown in Figs.
9 and 10, respectively. The relative smaller size
here of „m~, compared to the situation in Fig. 4,
comes from the factor 1 —2 pa in Eq. (2. 16) which
did not appear in Sec. IIIA.

Proceeding on to group (1) we deal with the cross
terms in S& involving q. Q,

-'. [( "PP')F(~)n) 2
i" dQ'2q Q

7T

+ ~p'(e+ 9)+ ~'p&(q @I-
x [np'p(q+ 9)—~'pz(q- 9)], (3.20a)
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f

orner
——mo Eo((& a," dQ q Q, [(c(p + o' P)E(q)

47t q

+»'E(q+ Q)+ Pp'E(q Q-) 1

x [nc('E(q+ Q) —pp'E(q- Q)] . (3.20b)

The plots of these functions also appear in Figs.
8-10. One notes that these functions are small,
particularly at low p, , the result of considerable
internal cancellation. There is, however, a good
size discontinuity at p. = y wllich tends to cancel
in large measure the discontinuities in the mc '.

Many of the integrations over P at this stage
involve q

2 where the common geometry in such
integrations includes the arc of a circle (- Q, & Q
& Q,) and a symmetrically placed point P. Then

q is the variable distance from I' to any point on the
circular arc. Unless P lies in the plane of the
circle, the circle and I' determine a sphere on
whose surface they lie. (This sphere will be the
Fermi sphere only in cell I when distortion is
neglected. ) Figure 11 shows the geometry. From
a knowledge of the Fermi-surface distortion and
the p, 's one can determine the radius p of the arc,
the distance y of P from the plane of the arc, and
the distance x of P from the axis. In these terms
the radius of the sphere is

R =(pa+ [(x'+ y'- v)'/2y]']'i' .
With the use of this construction and a standard
integration formula' the integral becomes

1"~r
a 2, &yR tang,

tan

(3.21)
where d is the square of the distance from P to
the center of the arc (nearest point), or ya+ (v-x) .
If —a'v&p, &a, the integral can be roughly approxi-
mated by v/yR. The remaining integrations over
p,
' are then simple.
The plots for „mc' and, mc~' are shown in Figs.

9 and 10, respectively. The terms which involve

&y

Q ~ Q compose group (2). These are the ones
which give rise to the logarithmic singularities for
the single-plane-wave approximation in Sec. IIIA.
Here no singularity develops. It has been pointed
out in the literature~~ that this is the result of a
zero in the matrix element [Eq. (3. 16)], but this
is only part of the reason. The equations for 0mc~'

are given below,
I 2

,m, =m, Ea ——— [r —(r -1)cos y]
(a) -a did Q a a 2

4m q

x [~p'E(q+ Q) - ~'PE(q- Q)]', (3.22a)

omxx =moEo
~

—
i
[r' —(r' —1)cos'g]

«II 4~ q)
x [~~' E(q+ Q) —Pp'E(q -Q)]' . (3.»b)

The condition that formerly gave rise to a
singularity was for p,

' and p, both to approach y,
and for P to go to 0. This means q-0. The
magnitudes of n, n', P, and P' all approach ~ but
the sign of P and P' will be the same only if k and
k' belong to the same band, i.e. , 1 p, 1 and I p, '1
are both greater or both less than y. If so, then
the last terms in square brackets in both of the
Eqs. (3.22) will vanish at the former point of sin-
gularity. If k and k' are not in the same band,
then the last terms in square brackets do not
vanish but neither does q 0, because of the dis-
tortion of the Fermi surface-so again no singulari-
ty, although this situation does not appear to have
been particularly noted before.

The shapes for the curves of 0mc ', „mc ', and, mc '

appear in Figs. 8-10, respectively. In all cases
there is a large discontinuity at the zone so that the m's
are smaller in absolute value in the polar region.
Discontinuities for transport parameters at the
zone have been well studied, particularly for
impurity scattering, and we have seen them also
with the (0) and (1) terms. This situation is, how-

ever, somewhat different in that the sign of the
discontinuity does not depend on the sign of the
matrix element associated with the zone gap.

It remains now to combine the results of Figs.
ge 07Nc ~ i|sic ~ an &pic as s own ig

12(a)-12(c), respectively. These plots emphasize
that 0m and ~m have the same values but equal
slopes of opposite sign for cells I and II at the zone,
while the contributions to „m from cells I and II
are equal in magnitude and opposite in sign. Fig-
ure 13 shows the symmetry of the Fermi surface
about the zone plane which is the cause of these
relations. 5 Because of this symmetry total „m
vanishes at the zone. This zero matches the zero
of 5(i on the left- hand side of the Boltz mann equa-
tion and suggests that one replace Eq. (2. 8) by

FIG. %1. Construction for integration of q terms. r, (k) = v~/B(k), (2. 8')
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a structureless phonon space. The importance of
umklepp in augmenting the scattering is very ap-
parent. These cells I and IIA contribute the main

0,2 Oe ae I.O

where the quantity B(k}, defined by

A(~) ~ I n~c,p &gj
="it

I

o~e- p, pa~),

(2.8")
has neither a zero or a singularity at the zone.

What has been done so far suffices to give the
part of B arising from cells I and IIA, which we
shall call B„, where the subscript g denotes the
vertical part. Cell I lies above cell IIA, so that
mv=mz+rr~ ~ Figure 14 shows the respective
contributions of the two parts of B„in Eq. (2.8").
The horizontal line shows the analogous quantity
from the same form factor without umklapp or
Bragg scattering, i.e. , a free-electron metal with

Pc l+
I Brillouin

Z AB
P

PB
(/

a)

X Q+tql

~+
g-gib

Q+ Iql

c

b)

FIG. 13. Symmetry of the extended Fermi surface at
the zone plane.
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part of the phonon scattering. Before considering
the effect of the rest of the surface in Sec. IV,
we shall attempt to use analysis to get more in-
sight into what has been obtained numerically.

For k in the equatorial region it is reasonable to
take e = I and P = 0. The quantities appearing in
Eq. (3.16) within the large parentheses squared
then become for cell I

[~'q E(q)+ P'(Q+ q)E(q+ Q)l',
and for cell II

[o"(q+ Q)E(q+ Q)+ P'q E(q)]' .

(3.23a)

(3.23b)

The principal contributions can be identified
as arising from the (o.')3 terms for both cells.
Except for the factor (o.')~ they are the same
terms that appear in the single-plane-wave
treament previously discussed. For this re-
gion 0.' departs appreciably from unity only for
0' near the zone or q, near —2 Q. For this
part of the range of integration, however, the
other squared terms with ( P')2 have approximately

C. Analysis of cells I-II scattering

No general analytic approach appeared to be use-
ful over the whole range of p.. Instead, we propose
to break the range into three regions and use dif-
ferent approximations in each.

Equatorial region

the same argument and can be combined with the
first terms, effectively supplementing the deficit
of (n') from unity. There remains then only the
term

2n'P'q(Q+ q)E(q)E(q+Q) (3. 24)

in the integrand for both cells. The P' factor
causes considerable cancellation, the ultimate
sign being determined by the sign of P' in the
y&! p,

'
I region. Because this term is small there

is a close agreement between the om as calculated
by the one-plane-wave and two-plane-wave ap-
proximations for this region of small p, , as shown
in Fig. 12(d), which compares the results for O~n

and „w in these two approximations. This figure
also shows a marked decrease for, m in the low- p,

region with the introductions of the second plane
wave.

2. Zone region

To explore the zone region we put JJ, near y.
The m's have maxima here and also marked dis-
continuities at the zone itself. The appropriate
geometry is illustrated in Fig. 13(a) for 0 at the
zone. The point P, represents k when in the body
region. From the symmetry apparent for l p. l = y,
cell II is the mirror image of cell I in the reduced
scheme of Fig. 13(a). It will be useful to combine
together the symmetrically placed states for which
the magnitudes of q are the same, but the com-
ponents parallel to Q (q„) are equal and oppositely
directed. On this basis the integrals for cells I
and II can be coalesced (exactly only for k on the
zone) and the integrations limited to q„&0. For
example, the integrands in Fqs. (3.22) can be com-
bined to give (omitting the part containing cos~y)

(~e/4)'[(P')'E'(q+Q) 4~P~'P—'E(q Q)+E(q- Q)

+(o")'E'(q-Q)], (2 25)

which contributes the dominant term in this region.
As can be seen from Fig. 8, the Om' ' has a

down-drop discontinuity at the zone as does Own

(Fig. 14). From the form of Fq. (3.25) it is clear
that a change of sign of E(~ Q) which changes the
sign of P everywhere would not alter the sign of the
discontinuity in oping'~'. In the work on zinc, ~

were surprised to find that under some conditions
a change of sign for P can indeed reverse the sign
of the discontinuities of the overall m's at the
zone. Investigation showed that the m' ' and m"',
although relatively smaller at the zone, varied
sensitively in a very complicated way with other
parameters, particularly those terms which
changed sign with P. In this respect, phonon scat-
tering differs from impurity scattering, where the
discontinuities in the scattering integrals at the
zone are very simply related to the sign of P. ' '

The oversimplified form chosen for E(q) in Eq.
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(2. 19) gives too large magnitudes for the largest
values of the argument used, which are around
2.4k~ . At one time we were concerned that this
unphysical feature of the model might be giving
too large a value to Eq. (3.25), and hence too big
a discontinuity. A rough calculation showed, how-
ever, that an appropriate modification of E in the
large- argument region would reduce the contribu-
tion of this term and the discontinuity by only about
20%. The primary reason why this defect in E(q)

is not more serious is because E(q+Q), which in-
volves the large argument, is always coupled with

P ', which falls off in this region.
Inspe ction of Figs . 10 and 12 shows that the ~m

behavior is gene rally describable as a scaled down
version of the Om' s, the reduction being somewhat
larger at large p. . For the „rn's one again sees the
dominant contribution in group (2). The corre-
sponding integrand for („rn,' '+ „I,', ')/v„ is seen
from Eq. (3.22a) to be proportional to

I [(P')'E'(q+Q) —(o')'E'(q-Q)1- 2'
~
—[(P')E'(q+Q)

q o' —p' dq

-2~' p' E(q+Q) E(q-Q) .(~')'E'(q-Q)]. .
~

[(~)'- (p)']
~, g] y

(3.26)

whe re we have again neglected the te rm with cos2 y
and have used L'Hospital's rule since both the
numerator and denominator vanish for p, = y. The
second term inside the large parentheses repre-
sents the lack of complete cancellation in the in-
te grals, and n and P are here treated as constants
when q W 0 breaks the symmetry. The sign and
magnitude of the discontinuity in the quantity (3.26)
has been discussed in some detail elsewhere.

Of more interest here is the relative size of
B1/()z1 to((om; which in this application is generally

small. The ratio at the zone is about 1:7. 5 ac-
cording to Fig. 14 and can be taken as typical.
To gain some understanding of this quantity we
compare Eqs. (3.25) and (3.26) which present the
principal (2) terms in the integrands for the scat-
tering integrals, om and —„m/v„, respectively.
As in the case for the equator ((L( =0), one can
roughly combine the first and last terms in Eq.
(3.25) to obtain E~(q —Q). The integration over Q

brings q
~ to q '. The quantity —4o Po' P' E(q+Q)

&&E(q-Q) can be written +g(g'+ qs(() '~~E(q+Q)
x E(q- Q), where the minus sign applies for k and
f' on the same surface. On this basis we have for

(3.aS')

From Eq. (3.26) one sees that the corresponding
integrand for „m/v„contains in its first term the
same quantities as appear for Om in Eq. (3.25')
with the additional factors [(o.')2 —(P')2]2p, /y.
[The second te"m in Eq. (3.26) contributes pri-
marily to the discontinuity. ] These factors reduce
the inte grand to zero at the equator, give a "nar-
row" double zero at the zone, and account for the
smaller value of )(M/U(( compared to om. Because

E(q —Q) is large at the equator and decreases as
q decreases, the zero at the equator causes the
major reduction and one which is largely indepen-
dent of the m ate r ial parameters . However, the

inte grand for Om also increases again near the
zone because of the q

~ factor. This is more im-
portant for the part of the integration where k and
k' are on different parts of the reduced surface
when the sign for the second term in Eq. (3.25')
is positive . Cons eque ntly, the effect of the double
zero at the zone can also be important. This ef-
fect increases with g, the electron-lattice coupling
parameter. Since g is large in the example we
have chosen, one might expect the ratio of om to
„m/v„may, in general, be somewhat smaller than
found here. Far removed from the zone, however,
()m/v„can indeed become quite large. We have
found' in the case of large x and small g the can-
cellation between cells I and IIA is by no means as
complete as in the example chosen here.

Cap region

The principal feature of the scattering integrals
in the cap region is the rapid decrease which fre-
quently appe ars as I -1. While many elements
enter into the calculations, the only one which
varies rapidly in this region is E(q+ Q), which has
an accidental zero for the value of the di,- tance be-
tween the pole and the far zone (accidental in view
of the particular material parameters chosen).
However, much the same sort of behavior should
result from other specific form factors. of reason-
able shape .

More specifically in the case of the cell-I inte-
grals both Omz") [Eq. (3.20a)] and 0m~@) [Eq. (3.22a)]
show factors of nP' E(q+Q) — 'Po(qE—Q). At the
pole this quantity has a zero; at the zone, where
P' has a cusped maximum, E(q+ Q) has the above-
mentioned accidental zero; and ove r the body por-
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tion of cell I the two terms are opposite in sign
and nearly equal in magnitude. These considera-
tions explain why these quantities are so small at
the pole (particularly om,' ', which contains this
factor squared), and why the two-plane-wave ap-
proximation lies below the one-plane-wave ap-
proximation as shown in Fig. 12(d).

For cell II it is om~+,
' which decreases rapidly

in value. A glance at Eq. (3. 1Vb) shows that the
en' terms could be expected to dominate, but
again this is the term with E(q+Q), so that its de-
crease with p, -1 is to be expected. The same
general considerations apply also to the, m's and

the, gyes's in the cap region as can be seen in Figs.
9 and 11.

D. Parameter variation

What general conclusions can be drawn from the
specific numerical solutions as to how the scatter-
ing curves might be altered by changes in the ma-
terial parameters: y, x, g, and O'P

The parameter y primarily functions to mark
the position of the zone with its accompanying
maximum and discontinuity. Secondarily, it gives
the size of Q and so determines the dimensions of
the phonon cells. The inQuence of this aspect of
y is more difficult to assess.

The ratio y of the longitudinal to transverse
velocity of sound affects the relative influence of
the umklapp to normal interactions, since trans-
verse phonons are involved only in umklapp, where
they tend to dominate the longitudinal phonons. As
noted earlier, the low frequencies are particularly
effective in the umklapp process. Wtule discussing
the phonon spectrum here, it is appropriate to point
out that a refinement of the method to include the
effect of phonon dispersion would tend to put more
weight on the higher phonon modes, since disper-
sion considerations would lower their frequencies.
Conversely, a calculation of phonon scattering at
temperatures low enough to be in the region of e~
would necessarily eliminate the highest-frequency
phonons. Again it is not easy to see how this
consideration might alter the shapes of the various
tB culves.

In subsequent work' we have found that in-
creasing the size of y has one interesting effect
that had not been anticipated. In cell II, the trans-
verse phonons (which are favored by large y) are
dominant in scattering to that region of the Fermi
surface for which p. = p, —2y. Fol small p, this
region is missing, but the yn's increase rapidly as
p, increases and show negative curvature in the
0.4& tJ, &0.5 region when g is large instead of the
uniform upward concave behavior shown in our
example here where z is small, i.e. , 1.4.

The quantity 5 plays a crucial role in determin-
ing the shape of E(q), since it sets the zero for this

I~&n 1 " E (p)
0 ~ 2 i /2

2
+

$ 2 (3.2V)

Here the subscript 0 denotes averaging over all
solid angles. The final result has a minimum of
0. 111 at 5=1.50 and for b=1.8 it has the value
0. 125.

The quantity g is essentially the expansion
parameter of the nearly-free-electron-metal
(NFEM) approximation. Its upper value is con-
trolled by E(k), but it may be less owing to tem-
perature (Debye-Wailer factor) or other causes for
departure from crystalline regularity. Its effect
shows predominantly in the zone regions. The
magnitudes of the m's in these regions and of their
discontinuities are directly proportional to g—ex-
cept that right at the zone itself all the n~. ' ' have
a —lng term. As a result really small values of
g will generate thin spikes there. In the limit these
have negligible effect. Of course, the distortion
of the Fermi surface is directly proportional to g.

A good deal of work has been reported on trans-
port properties of polyvalent metals" '" in the
one-plane-wave approximation, essentially g = 0,
with on the whole quite satisfactory agreement
with observed conductivity. We find [see Fig.
12(d) j that the electron coupling makes relatively
little difference in the small- p, region and even over
most of the cap region the two-plane-wave result
is within 80gp of the one-plane-wave value in spite
of the large value of g chosen in this work.

function. The approximation of using an E(q) linear
in q2 is clearly unphysical at large arguments.
As was pointed out in Sec. IIIC, this shortcoming
turns out to be not too serious for a b as large as
1.8, but for an appreciably smaller b the need for
another term in the expansion of E may occur once
values of the argument larger than 2k~ are intro-
duced by the Bragg coupling. The inQuence of the
b parameter is easiest to assess for those terms
where umklapp and Bragg coupling are not involved
and closed-form expressions can be obtained, e. g. ,
the free-electron terms (3.3a) and (3.3b), which
dominate the m, in the low- p, region. Here a change
of b from 1.8 to 1.5 brings a change to all quanti-
ties of roughly + 10/z including the significant com-
bination Om, —„m, /p, . Quite a different story re-
sults if the integration is extended over the whole
surface instead of being confined to cell I. The
result so obtained is proportional to an inverse re-
laxation time in a situation where neither umklapp
nor Bragg coupling is operative, and therefore
supplies a useful number for over-all comparison
(see Sec. VI). One obtains
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IV. SCATTERING INTEGRALS FOR OTHER CELI.S

(A&) &
= (o'& o' &+ P& & &) [q&] (4.4a)

In the treatment of cells I and IIA in Sec. III,
the fact that K and Q were parallel to the direc-
tion of the electric field gave a sort of one-di-
mensional simplicity. In this section the scatter-
ing to other cells is considered. In the spirt of
the (NFEM) approximation, one would expect this
process might be simply additive. This is indeed
the result to first order from a procedure which
involves treating two Brillouin zones simultaneous-
ly with what amounts to a four-plane-wave ap-
proximation. Additional terms do appear, but
they are all small enough to be unimportant.

A sample wave function to involve the coupling
with K„and K, simultaneously might have the fol-
lowing form:

(rr) (~ e &&&xx
p e & (&x-kx&x)

X(~ e&zzz
p

e&&~z &z&z)e&Qx (4. I)

[q.] [q,).[q.)=-&TF(IqI)

[q.+Q.] [q.-Q.1 [q„]

=-(q+~„-~.)F(I q+Q. -Q. )

(4. Sa)

(4. Sb)

The indexing system for the phonon cells shown
in Fig. 1 is used and extended to cells other than
I and IIA. Cells IIB and IIC lie largely in the upper
hemisphere and cell IIID includes the area still
open in the upper hemisphere. If k' is in cell DB,
the first factor in Eq. (4. 2) becomes altered to

(~.~.'[q.+ Q.)+ P.P.'[q. Q!1+ (~—.P.'+ ~!e.)[q.)1.
(4. 2a)

The second z-marked factor would undergo a simi-
lar change if k' goes to cell GIB.

Next, in squaring the matrix elements we have
found it useful to keep together the x-marked fac-
tors and also the z-marked factors so that

I (0 I
v Ik') i - (A„+B„+c„)(A,+B,+ c,)~,

where the L, subscript denotes the cell containing
k'. The quantity A, &

contains terms with [q&], the
C; contains those terms quadratic in [q;+Q;], and
the B; contains the cross product terms in [q;][q;
+Q;]. For example, with I.=I,

for the wave function of a state in cell I. Couplings
involving other pairs are obtained by suitable inter-
changes. Leaving aside for the moment all com-
mon factors, we represent the matrix element
(0 i V I@') in semischematic fashion for cell I,

O~.~.'+ p.P.')[q.)+ ~.p.'[q. + Q.']+ ~.' p. [q.—Q.]}
xo~. ~, p. p, )[q,],~.p. [q,,Q;1

+ ~,'P. [q.-Q.']} [q,) . (4. 2)

Here the [ ] functionals obey the following product
relation:

(B),=2(o' P Pl)[q]
x fc,. p'&[q&+ Q', ]+ n',.&,.[q —Q&]},

(C,),=i, p,'[q, Q!] !P[q, -Q,)}'.
(4.4b)

(4. 4c)

[Of course the evaluation of the complete scattering
integrals involves multiplying all terms by (2v/I&)
x (lPdQ/4«&, e)(kT/M&d, ), summing over polariza-
tions, and integrating over solid angle. ]

In organizing the evaluation of these many terms
we have chosen to divide them into two groups.
The first group, which are the larger and are ex-
pressible in terms of quantities studied in Sec.
III, have been chosen to be

g [BxBz+ x Cz+ Bz Cx+ Cx Cz)r~, (4. 5b)

Each terms in Eqs. (4. 5) is the product of two
matrix elements and each matrix element is com-
posed of an x and a z part drawn, respectively,
from the two quantities designated by capital
letters. How this pairing is done is unimportant
where the symmetric quantities A, or C, are in-
volved. Ambiguity arises only when the B„B,
product is involved. Here two possible terms
evolve, one with [q+ Q„+ Q,][q] and the other with

[q+ Q.] [q+ Q ).
To return to Fq. (4. 5a) let us write A, .= N [&]q[q].

Then A„(A,+ B,+ C,), which we call the "vertical
term, " gives just l&I„om(p, ). In cells I and IIA,
N„& = (o.'„o.'„'+ P„&S„'), and it is usually close to unity
except when k„ is near + 2K„, where N„dips sharp-
ly. In the cells IIB and III B, I&t'„»= (o.'„p„'+ c&„'P„)

is much smaller everywhere except near the ver-
tical zone where it peaks sharply. A, + B,+ C, is
the same at the zone planes in both cells so that
one can roughly combine the two contributions to-
gether. Again N„,+ N„» supplement each other and
in this region give a sum of I +2 (u'„P„'), which
is near unity. The A factor is large in cell I and
one other adjacent cell (in this case cell IIA) and
negligible elsewhere on the Fermi surface except
where it has a cusped maximum, w'hich supple-
ments the cusped minimum mentioned above.

The principle of the development is the same for
A, (A„+ B„+C„), which we call the "horizontal
term. "

Looking at the A, A„, which must be subtracted
in Eq. (S.5a), we see again a quantity which is
large and nearly unity in cell I only. Certain
cusped minima that occur are again compensated
for the average by cusped maxima in other cells,

Q [A„(Az+ B,+ Cz)+A, (A„+ B„+C„)—A„Az]~ .
L

(4. 5a)

The group of the remaining terms consists of
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pm~ = ~ ~mZ + pmL —pre~~+ pm&,
M I L fh f
L

(4. 6)

where pmL, includes those terms in the integrations
over cell I which arise from the coupling with
cell I. In the following paper, ' the same purpose
is accomplished perhaps somewhat more ac-
curately by the procedure

f TT p~I
PING — PRVL+ PB2y Jg

L
(4. 7)

Both are workable procedures for treating the
scattering integrals in a multiple-zone situation
by a pairwise approximation.

The implementation of the application of Eq.
(4.6) to the case of the fictitious model metal is
shown in Fig. 15. As in prior figures, all quanti-
ties are plotted in units of mp, and as functions of
iz or k, /kz. The curve with short dashes (a) is
just the contribution to pm, from cells I and IIA,
or the", vertical term" almost as shown in Fig.
14. It is discontinuous only for IU, = p. The curve
with the long dashes is the so-called "horizontal
terms" and is composed of the two (equal) contri-
butions to the summation in Eq. (4.6) from L

which otherwise make negligible contributions.
As such this term reduces to pm~~, the scattering
integral for one plane wave over cell I, as in Eq.
(3.4a). The effect of this term is then simply to
prevent the double counting of A, A„ in cell I.

The many terms in Eq. (4. 5b) have been evaluated
roughly elsewhere~ and found to be small for the
most part. Attention is concentrated, therefore,
on the quantities in Eq. (4. 5a).

At this point some perspective is possible of how
the four-plane-wave approach can be used to handle
simultaneously two sets of Brillouin zones and
even to extend to situations of greater complexity.
The method should be generally applicable to metals
of more complex cell structure than that of the
fictitious model metal. In this calculation the
general procedure is embodied in the equation

equal to cells IIB and IIC. Because pre has cubic
symmetry, the values for these contributions are
directly obtainable by a 90 rotation from the cell-
IIA calculation. These results are then trans-
formed back to a coordinate system with polar axis
along the Z direction and averaged over constant p, .
This averaging over Q changes a dis continuity in value
at k„= yk~ to a discontinuity in slope at k, = (1 —P)z ~a

&k~. The curve with alternate dots and dashes
(c) shows the small contributions from the 0m~ for
L equal to cells IIIB, III C, and III D. (These
quantities are called C„C, in cells IDB and IIIC,
and C„C, in cell III 0, and are roughly evaluated
in Ref. 21. ) Because (8)z~ayk~&2k~, the corre-
sponding zones do not intersect the Fermi surface
and the Bragg coupling can be neglected. The solid
curve (d) gives om, , the sum of all contributions.

The treatment of the mcus/vc has not been as de-
tailed as that just used for pm, , first because the
presence of the additional p, factor in the integrands
introduced considerable complications associated
with the close cancellations involved, and second
because vy gmz/vg is sufficiently smaller for the
fictitious model metal than the pm, to allow a
cruder approximation in treating it. That such
terms are indeed smaller can be seen from the
comparison of om and v~„m/v„ in Fig. 14, where
the ratio of the first to the second quantity is
about V. 5 to 1 for the average values at p. near y.
In Sec. IIIC2, we have shown that the size of this
ratio depends only somewhat on the strength of the
zone coupling and that it is relatively independent
of the other material parameters, so that the ratio
will generally be large. (Although the om happens
to be much bigger than „m/v„ throughout the com-
p1.ete range of ILI, for the fictitious model metal,
we have found that this does not necessarily follow
in all cases for the low- p, range, particularly when
z is large. )

Because the term is small and difficult to evaluate
more precisely, we have chosen to estimate it ac-
cording to the following approximation:
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FIG. 15. Contributions to p~, : (a) "Vertical term";
(b) "'Horizontal term"; (c) cell-ID t;erma; and (d) pm&.

P(k, k ') dS'(v ')/
i
zz, &

i

where (v') is defined by

fz'. zz' P(k, k ')v ' dS'
Jz zz P(k k )dS

(4.8)

Here the integrations over cells I' and II' are to be
taken over the Fermi surface disregarding all but
the A,oxizontal phonon cell walls and Brillouin
zones. With this simplification one can obtain a
reasonably satisfactory average for z)„over the
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the result would have turned out to be 0.208 in
v ~/mo. The importance of the variation of q- with
position on the Fermi surface becomes more
marked when dealing with transport properties
which depend sensitively on position with re-
spect to the Brillouin zone, such as Hall coefficient,
thermoelectric power, and the wind force in electro-
migration drive.

VI. CONCLUSIONS

FIG. 16. Plots of pmt, IImf {v+jvII) y and 8 {p)/v& vs p.

The procedure indicated at the end of Sec. IV is
now carried out to obtain v'(k, ), the first correc-
tion to (,(k). First one inverts B(p,) to obtain
v, (k,) in units of (mo) as displayed in Fig. 17.
Next, one approximates the solution of Eq. (2. 11)
by replacing 7, (k') by its average value (r~(k')) so
that the first square bracket can be brought out-
side the integral to give

T'(k) [(~'~) r'( )] Jll(kk)W(k, k)dk/k(k)

= I-(~~& —~~(l")) )m~(l')v~/&(~) . (5. 1)

The r, (p), ~2(p, ),, and their sum v('(p) are also
shown in Fig. 17, all in units of (mo) '. Further
iterations are clearly unnecessary.

From a knowledge of 7'& application to numerous
transport problems is possible . For example, the
conductivity is calculated from the formula

whole surface. As can be expected, (v,', )/v~ turns
out to be small for the fictitious model metal be-
cause of extensive cancellation. In Fig. 16, the
net „m, vz/v)( is displayed along, with Om, from
Fig. 15 and their sum which is really the B(k) of
Eq. (2. 8'). (Note the resemblance to quantities
plotted in Fig. 14 for the "vertical" case. ) The
last quantity, B(p)/vz, combines all the scattering
integrals which limit the mean free time, since
the terms in Eq. (4. 5b) are omitted as small. In
fact, the 7, (k) for the electric field in the z direc-
tion is a constant times the reciprocal of B as
seen in Eq. (2.8'). It remains only to obtain the
subsequent correction to Y& by iteration.

V. RELAXATION TIME AND ITS APPLICATIONS

In summary this paper has dealt with the trans-
port problem in a somewhat more direct approach
than is currently customary. Most of the recent
papers in this area proceed by using the varia
tional technique to calculate upper limits to the
resistivity by varying a functional, which embodies
effectively the relaxation time. Satisfactory re-
sults for the resistivity do not require complete
knowledge of the relaxation-time behavior. The
method used here proceeds to develop the relaxa-
tion time directly from the Boltzmann equation for
single-phonon scattering in the high-temperature
limit for a model divalent metal. The effects of
both umklapp and Bragg scattering have been in-
cluded. The latter means working in the two-plane-
wave approximation and considering also distor-
tions of the Fermi surface. The phonon spectrum
has been simplified by omitting anisotropy and
dispersion. Although the method is somewhat
laborious, we feel it offers two advantages. It
affords some direct insight as to how the phonon
and electron parameters affect the metal transport
and it presents directly the details of the relaxa-
tion-time dependence on k for a situation where this
concept is valid.

In reviewing this calculation, we consider first
those results of some generality, next those
which seem to be more specific, depending on the
parameter values chosen. In this first category
is the behavior of the scattering integrals at the
Brillouin zone. Not only do they stay finite in the
two-plane-wave approximation —for different rea-
sons in the two cases of k and 0' on the same or
opposite side of the zone —but also what we have

2.0-

~E .vv ~ Edn, (5.2)
~o

where E is the unit vector in the direction of the
electric field (s axis). Numerical integration based
on the v of Fig. 17 and standard variation of v
gives 0.238 in v z/mo for the right-hand side of
Eq. (5.2). If this same quantity had been cal-
culated with a constant v, say, (v')=1.28 (mo) ',
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FIG, 17 Plots of T~ {p), T&, and their sum T .
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called f)sz goes to 0 at the zone from symmetry so
that „m/v„stays finite also in this region. As a
result the relaxation time stays finite, but does
exhibit a discontinuity at the zone. Of course, the
importance of the phonon umklapp is readily ap-
parent even in the one-plane-wave approximation.

Although there has been no attempt to develop
complete wave functions near two zones or at
points of symmetry, we did introduce a four-
plane-wave formalism to explore tentatively the
situation with two (perpendicular) sets of zones.
The result showed that simple superposition in the
sense of Eq. (4.6) of the effect of the respective
zones was the main effect but that there were
smaller "coupling terms" that were of the order
of 10%%up for this case, which involved an appreciable
coupling constant.

Lastly, an iteration technique was presented for

the calculation of i~(k) along particular symmetry
directions which appears to converge, in general,
very rapidly.

Of the results more specific to the particular
metal parameters chosen„ the most interesting
was the fact that the relaxation-time tensor was
nearly a scalar times the idem tensor at most k.
It seems to be generally true that the "nonscalar"
part is particularly small near the zone, but under
some circumstances may be appreciable near the
"equator. "

The pronounced maximum of z, at the cap region
seems to depend quite sensitively on the form of
the E(q), particularly around (1+p)k~. The re-
sults and experience gained in this exercise with
a fictitious metal have been applied in the next
paper' in an attack on a real polyvalent metal,
zinc.
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