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The phonon frequencies of nickel are investigated using a unified approach of lattice dynamics. The inversion
of the dielectric matrix is carried out using the Ansatz due to Sinha et al. and is evaluated in the
noninteracting band scheme. The bare ion potential is replaced by the Harrison simple-metal pseudopotential
and Animalu s transition-metal model potential. The calculated phonon frequencies are found in reasonably
good agreement with the experimental values for the paramagnetic and the ferromagnetic phases.

I. INTRODUCTION

The problem of lattice dynamics of transition
metals is interesting but characteristically diffi-
cult. In these metals the distinction between the
core and the conduction electrons is not clear. The
outermost d shell is not completely filled, and the
electronic band-structure calculations show that the
wave functions of the conduction. electrons have
s character as well as d character. ' The d elec-
trons are neither tightly bound to the core nor total-
)y free. Harrison analyzed this problem by gener-
alizing the pseudopotential theory which was ex-
tended and used by Moriarty for the calculation of
phonon frequencies and cohesive energies of noble
and alkaline-earth metals. Panitz, Cutler, and
King have also applied this formalism to calculate
the phonon spectra of zinc. However, an explicit
calculation for a partially filled d-band metal is
not yet carried out using this approach. Sinha and
Golibersuche have also studied the electron-phonon
i.nteraction in transition metals using the augmented-
plane-wave method.

Earlier Prakash and Joshi suggested a noninter-
acting band scheme and calculated the phonon fre-
quencies of nickel and copper. The scheme was
further extended by Singh and Prakash to calculate
the phonon frequencies and cohesive energies of all
the noble metals. In these calculations only the
diagonal part of the dielectric matrix was included.
Hanke extended the calculations for paramagnetic
nickel and included the diagonal and nondiagonal
parts for the d-d intraband transitions which give
rise to the dipolar model of lattice dynamics of
transition metals. However, Hanke neglected the
diagonal and nondiagonal parts of the dielectric ma-
trix for d-s and g-d interband transitions. The
contribution of these transitions was found to be
small for paramagnetic nickel, but this may be a
leading term in other transition metals such as
chromium. ' Recently the authors have explicitly
calculated the diagonal and nondiagonal parts of the
dielectric matrix in the noninteracting-spin band
scheme for ferromagnetic and paramagnetic phases
of nickel. ' (hereafter this paper will be referred to

as I). In the present paper we have made an at-
tempt to include the complete dielectric matrix in
the calculation of phonon frequencies of transition
metals. The inversion of the dielectric matrix is
carried out using the factorization Ansatz due to
Sinha et al. Harrison's 3 model potential and
Animalu's transition-metal pseudopotential' are
used for the bare ion potential.

The plan of the paper is as follows. The inver-
sion of the dielectric matrix and the evaluation of
the dynamical matrix are presented in Sec. II. The
results and calculations are given in Sec. III, and
these are discussed in Sec. IV.

II. THEORY

A. Inversion of dielectric matrix

In the noninteracting band scheme the dielectric
matrix is written '

c(q+6, q+G') =Q ([I—c'„(q+6,q+6')] Boo

—
egg (q + G ~ q + G )

—t~8(q+6, q+ 6 ) —K~(q+ 6, q+ 6 )),
(Ia)

e(q+6, q+G ) = ep(q+G)5o~ —&~~(q+G, q+G )

—e„(q+G,q+6') —&~(q+6, q+G') .
(lb)

Here q is the phonon wave vector, 6 and 6 are the
reciprocal-lattice vectors, co(q+G) is the free-
electron part of the dielectric function and is a sca-
lar, q«arises due to intra- and inter-d-subbands, .

transitions, and &d, and E,„ariseowing to inter-
band transitions from d subbands to the s band and
from the s band to partially filled d'-subbands, re-
spectively. g, represents the sum for both the
majority- and minority-spin bands. Explicity,
&«(q+G, q+G') is given as~'

&,„(q+C,q. C') = v(q+G)Qgg

xb~ ~ .(q+G)f'(q)L~* ~ (q+G ) .
(2)

In the evaluation of Eq. (2), the overlap between
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the d orbitals on different lattice sites which in-
volves the multicentral integrals is assumed to be
negligible and only the overlap between the d orbit-
als on the same site is explicitly included. v(q+G)
is the Fourier transform of the effective electron-
electron potential, m and m are magnetic quantum
numbers. The analytical expressions for &~„~„
x (q+ G) are the same as given in I and

fa( ) g +irma(k) num'a(E„,(k) —E~ ~ (k )

n„„,(k) is the Fermi occupation probability function
and E~„,(k) is the energy eigenvalue for the Bloch
state k. k =k+q and lies in the first Brillouin zone.
It is evident from Eq. (2) that e«(q+6, q+6 ) is
in the separable form.

Since we have used the same radial wave functions
for up- and down-spin electrons in I, the overlap
integrals &„'

~
.(q+G) reduce to be the same for

both spins. If we give equal weightage to all the
five d subbands, we get &~ „(q+G)=A(q+6),
where

A(q+G) = jo(lq+Gl r)R~(r) r'dr,
where Ro, (r) is the radial wave function for Sd
atomic orbitals and jo(lq+6 I r) is the spherical
Bessel function of zero order. A similar averaging
has also been done by Hanke and Brown. ' There-
fore, we write the intraband part of c«(q+ G, q+G )
as

e,'„'"'(q+G,q+G ) = v(q+G)A(q+G) f(q)A*(q+6 ) .
(5)

The nz dependence is left only in the band-structure
part f(q) which is explicitly given as

NAOf(q)=- ~,gP m...a„,„.
e m

2 2

1 +
4 %dms '0

ln ~Elms

pgmfy& 2k''gmfr q

Here m„,and k~„,are the effective mass and
Fermi momentum for the electron in the mth d sub-
band of spin 0. N is the number of atoms in the
crystal and Qo is the atomic volume.

The expressions for c~,(q+G, q+G') and c~(q+6,
q+G ) evaluated in paper I are very lengthy and are
not presented again here. Because of the nonorthog-
onality of s and d wave functions the interband con-

I

tributions &~, and &~ are not in the separable form
while the interband part of e«(@+6, q+ G ) is in the
separable form. We follow the factorization Ansat~
due to Sinha et gl. and give the sum of the interband
parts of &«, &„„and&~ in a separable form as

e,',""+&„+&~ = v(q+ G)B(q+ G) F(q)B*(q+ G'),
(7)

where the functions B(q+ G) and F(q) wi. ll be deter-
mined with the help of detailed calculations of the
total interband part of the dielectric function.

Substituting (5) and (7) in (1b), we can write the
dielectric matrix

c(q+G, .q+6') = co(q+G)5o~

—v(q+G)A(q+6) f(q)A*(q+6 )

—v(q+G)B(q+ G)F(q) B*(q+G') .

Using the orthogonality condition for c(q+6, q+G )
and making some mathematical manipulations which
are lengthy but straightforward, we obtain the i.n-
verse of the dielectric matrix:

e '(q+ G, q+ G') = eo'(q+ 6')fhoo + v(q+ 6)
x ao (q+G) [A(q+6) T(q)A*(q+G )

—A(q+ c)r, (q) B*(q+c')
—B(q+ a)s.(q)A*(q+ c ')

+ B(q+ c)s(q)B*{q+c')]], (9)

where

L(q) = —E(q)X'(q) T(q),

r(q) = [c-'(q) —x(q)E(q)x (q)]

s(q) =[E '(q) -x'(q)c(q)x(q)] ',
V(q) =+ B*(q+G) — —B(q+6),

eo(q+ G)

U(q) =g A*(q+G) - - A(q+G),
eo q+G

x(q) =g A+(q+c) q B(q+c) .
G fo q+

(IO)

(11)

(12)

Here the sum runs over all the reciprocal-lattice vec-
tors of the lattice. E(q) and C(q) are the inverse
of the scalar functions [F '(q) —V(q)] and [f '(q)
—U(q)], respectively.

With the help of Eq. (9), we can easily write down
the density response function

y(q+G q+G ) = —v (q+G)[5&& —e (q+G q+G )1

= —v '(q+C) [1 —~o'(q+ C)] 5oo

A(q+6) A*(q+G ) A(q+6) g B*(q+G )

~o(q+ &) q
~o(q+ &') ~o(q+ &) q ~o(q+ &')

B(q+G) ~ A*(q+G ) B(q+G) B*(q+G )

co(q+G) eo(q+G') &o(q+5) &o(q+5')
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Here the electron-density response function splits
into two parts —a purely diagonal part analogous
to that of the free-electron gas except that the free-
electron dielectric function is replaced by ep(q+G),
and a part which corresponds to a set of dipole and
monopole distributions centered at the ion sites and
characterized by the screened form factors
B(q+ G)/(. p(q+ G) and A(q+ 6)/&p(q+ G), respectively.
V and U given by Eqs. (13) and (14) can be regarded
as the coupling coefficients between dipolar and
monopolar distributions which interact via a
screened effective electron-electron interaction
v(q+G)/{'.p(q+6). Therefore, cp(q+6) acts as a
screening function for the rest of the interactions.
Here what has been termed as the purely diagonal
part ep(q+ G), is not the only total diagonal contri-
bution to &(q+6, q+6), because the diagonal part
is also included in d-d intraband and d-d, d-s, and
s-d interband parts.

The physical meanings of the functions & '(q+G,
q+G ) and y(q+G, q+G ) can only become trans-
parent in certain limiting cases. For instance, if
we neglect A(q+G) and B(q+G), the dielectric
function becomes the free-electron dielectric func-
tion and conventional screening theory is retrived.
If we put B(q+G) =0, the formulation due to Hankep

is obtained. Substituting ep(q+G) =1 and A(q+G)

=0, the dipolar model for insulators is obtained.
The physical model that results from Eq. (8), con-
sisting of both the dipolar and monopolar distribu-
tions associated with d electrons, is similar to that
of the breathing-shell model for insulators.

detll D p(q) —~{pq(q)6~ II = o, (17)

where D~(q) are the elements of the dynamical ma-
trix, o., P are the Cartesian components, and M is
the mass of the ion. We can write

D (q)=D.,(q)-D.,(0), (18)

where

4mZ'e' ~ (q+G) (q+G ),

(19)
Z is the ionicity, and e is the electronic charge.
Substituting Eq. (9) in (19), we have

B. Lattice dynamics

Assuming that the rigid-ion-core and adiabatic
approximations are valid, the phonon frequencies
{p;(q) for the jth mode can be obtained for a mono-
atomic lattice in the harmonic approximation by
solving the determinantal equation,

(g
4vZ e

,NI'Z
I G

+Nl Zt'

G

—N Ii+
G

P (q+G) (q+G) 4wZ e p (q+G) (q+G)
tfq+Cl' Qp o Iq+Cl

~ I
W(q+G) - ~ „--, W(q+G )(q+G)+(q+G) -

& T(q) Z A*(q+G ) - ~ (q+G )p
Ep q+ g B ep q+

(q+G). B{rj+G) — p S(rj) PB"(q+G') — p, (q+G'))
6p q+ g I ep q+

~l
(q+G), B(q+G) - — L'(q) gB (+rjG ) "- p, (q+G ),)6p q+G fp q+

(q+G), B{q+G) — p L(q) gB"(q ~ G ) — p tq+G ),) .
ep q+ g I &p q+

(20)

Here W(q+6) is the Fourier transform of bare ion
potential. The first term of Eq. (20) represents
the contribution from the direct ion-ion Coulomb in-
teraction, which can be evaluated by Ewald's 8-func-
tion transformation. The second term in Eq. (20)
is the simple metal ion-electron-ion interaction
term. The third and fourth terms arise due to .

monopole-monopole and dipole-dipole interactions,
respectively. The last two terms are due to inter-
actions between dipoles and monopoles.

III. CALCULATIONS AND RESULTS

A. Paramagnetic nickel

The diagonal and the nondiagonal parts of the di-
electric matrix are calculated for paramagnetic

I

nickel using the formalism of paper I, where the
spin index o is removed and the expressions are
multiplied by a factor of 2 for spin degeneracy.
The total interband part of the dielectric function
is expressed by Eq. (7). The functions B(q+6) and

F(q) are obtained by the method of least-squares
fit and are given as

I

'0»»
I q+ G

I
em(89 254 lq+ G

I

—302.441lq+G I') « lq+GI &o. 2,
1.872II q+G I exp(- o 84» lq+G I)

I- lq+G I&o. 2,
(»)

and
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v(q) = (4me'/NQoq') [1-f„,(q)] . (24)

For s electrons we use the Singwi et gl. ' Gaussian
functional form

f„,(q) =A'(1 —exp[- B'(q ~k~~) ]}, (25)

where the parameters A and B are chosen from
cons iderat ion of inter electronic distances of s
electrons. Equation (25) is obtained for free elec-
trons and, therefore, hardly justified for d elec-
trons because of their tight-binding nature. More-

, over an explicit functional form for exchange and
correlation corrections for d electrons is not yet
established. Moriarty in his f irst-principles cal-
culations of phonon frequencies and bindi. ng energies
of noble metals used the free-electron exchange ap-

F(q) = —N/q .
All the parameters used in the calculation of the di-
electric matrix for paramagnetic nickel are the
same as given in the paper of Prakash and Joshi
for the configuration 3d' 4s 6.

In view of the difficulties discussed in Ref. 7 we
replace the bare ion potential by the Harrison model
potential, which is given as

U,(q) = —4vZe'/q'+ P, [1+(qy, )'] ' .

The first term represents the Coulomb potential due
to the ionic charge Ze while the second term repre-
sents the repulsive part of the potential. P, is the
strength of this repulsion and the parameter y, is
introduced to bring the desired decay of U, (q) for
large q. The parameters P, and y, are adjusted to
achieve the rapid convergence in the sum over re-
ciprocal-lattice vectors and to force an agreement
between the calculated and experimental phonon
frequencies. This model potential is a good ap-
proximation for s-like electrons. Hanke pointed
out that the potential seen by d electrons should be
purely Coulombic because of the tight-binding wave
functions used for d electrons. However, in prin-
ciple, the d electrons are not completely localized,
and the potential seen by d electrons deviates from
central field, which is explicitly pointed out by
Animalu' in his calculations based on a transition-
metal model potential (TMMP). Noncentral forces
for d electrons are again an essential feature of the
Harr ison transition- metal ps eudopotentia1, and
this gives rise to the hybridization term distinguish-
ing the simple metals and d-band transition metals.
However, the noncentral potentials for s and d
electrons may be of different nature, but in view
of the computational difficulties and parametrized
nature of the model potential, we use the same po-
tential for s and d electrons in the calculation of
phonon frequencies.

The effective electron- electron interaction includ-
ing exchange and correlation corrections is written

proximation for core-conduction exchange for d
electrons in a manner suggested by Lindgren' and
concluded that the core-conduction exchange cor-
rection for d electrons is very important, as its
inclusion removes the hump in the form factors in
the low-q region. A similar approximation for
core-conduction exchange is also used by Panitz,
King, and Cutler in the calculation of phonon fre-
quencies of zinc. However, in view of the parametrized
nature of the model potential, we treat the d elec-
trons in the Hartree approximation and neglect the
core- conduction exchange and exchange- correlation
corrections for d electrons. The core- conduction
exchange for s electrons is also assumed to be very
small as in free-electron metals. '

The phonon frequencies for paramagnetic ni. ckel
are calculated using the parameters P, =16.0 and

y, =0. 3 which were used by Prakash and Joshi.
These results are shown in Fig. 1 by dash-double-
dot lines. %e find that agreement with experimental
values" is improved for the transverse branches
while the results for longitudinal branches are
larger than the experimental values. However, the
parameters in the paper of Prakash and Joshi were
obtained by a forced fit with the experimental values
where only the intraband diagonal part of the di-
electric function was included. In the present
scheme, we are including the nondiagonal intraband
and diagonal and nondiagonal interband parts of the
dielectric matrix which give rise to local field cor-
rections and also include the exchange and correla-
tion corrections for s electrons. In view of.the fact
that the present scheme includes an improved di-
electric function, we again readjust the parameters
P, and y, by fitting the phonon frequencies at q = (2m/

a) (0.2, 0. 0, 0. 0) and at q=(2w/n) (0.1, 0. 1, 0. 1) in
the longitudinal branches in the [100] and [ill] di-
rections, respectively, which is equivalent to ob-
taining a good fit for the elastic constants as done
by Hanke. The values of the parameters P, and

y, are 3.2 and 0. 3, respectively. The calculations
are repeated for all the branches in all the three
principal symmetry directions. These results are
also shown in the Fig. 1 by solid lines.

Very recently, Animalu has suggested the tran-
sition-metal model (TMMP) which includes s-d
hybridization, while this hybridization was not ex-
plicitly included in the Harrison model potential.
Animalu calculated the phonon frequencies of para-
magnetic nickel, neglecting the ion-ion overlap
contribution and using the free-electron dielectric
function. However, the TMMP parameters tabu-
lated by Animalu are not the absolute parameters.
These have been obtained by fitting the phonon fre-
quencies at the X point in the longitudinal branch.
Because these parameters are obtained in conjunc-
tion with the free-electron dielectric function,
which is hardly justified for transition metals, do
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FIG. l. co(q) vs q for paramagnetic nickel. Solid and dash —double-dot lines show the phonos frequencies with the
parameters g~, y",) as (3.2, 0.3) and (16.0, 0.3), respectively. Dash-dot and dash-cross lines represent the phonon
frequencies with the parameters 8~ =3.2 and g~=0. 3 with the interband part of the dielectric matrix excluded and in the
free-electron limit, respectively. Dashed lines show the phonon frequencies using Animalu's TMMP. For the trans-
verse branches the solid and dashed lines coincide. Solid and open circles show experimental points in the longitudinal
and transverse branches, respectively. a is lattice constant and (d» is the plasma frequency.

not yield a good fit with experimental values while
we use our dielectric function, which is definitely
an improvement over the free-electron dielectric
function. Therefore, we renormalize the param-
eters of Animalu's TMMP to get the best agree-
ment with the experimental values. The renor-
malized parameters Ao, A„R,and e,« in our
calculations are 1.4, 1.4, 2. 35, and 0. 0, respec-
tively, and the remaining parameters are the same
as tabulated by Animalu. The results for this cal-
culation are also shown in Fig. 1 by dashed lines.

B. Ferromagnetic nickel

In Paper I, we calculated the diagonal and non-
diagonal parts of the dielectric matrix in the non-
interacting-spin band model in the Hartree approxi-
mation for ferromagnetic ni.ckel. The total dielec-
tric function is obtained by summing up the contri-

r 66260Iq+GI

& exp(- 72. 106 66 Iq+G I+142. 607 09

B(q+G)= x Iq+G I') f» Iq+GI &0.2,
3.06'Iq+G I"»(- Iq+G I'

for Iq+GI 0.2 .

(26)

The function E(q) is the same as given in Eq. (22).
The exchange-correlation corrections are used in
the same manner as in the paramagnetic phase.

butions of all the intra- and interband transitions in
the up- and down-spin bands. The expressions for
the free-electron part and the intraband part are
retained from Paper I while we represent the total
interband part in separable form as given in Eq.
(7). The function B(q+6), obtained by the method
of least-squares fit is
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FIG. 2. ~(q) vs q for ferromagnetic nickel. Solid lines show the phonon. frequencies using Harrison's model poten-
tial for p =3.2 and g~=0. 3. Dashed lines represent the phonon frequencies using Animalu's TMMP with the same param-
eters as for the paramagnetic phase.

We calculated the phonon frequencies for ferro-
magnetic nickel along the three principal symmetry
directions for all the longitudinal and transverse
branches using the same parameters as for para-
magnetic nickel for the Harrison simple-metal
model potential. These results are shown by solid
lines in Fig. 2 along with experimental results of
Birgeneau et gl. "for the ferromagnetic phase. We
also tried to readjust the parameters P, and y, to
get the best fit for the ferromagnetic phase. How-
ever, no appreciable improvement was found in the
results and therefore these are not shown in Fig. 2.
Further forced fit with the experimental values was
avoided at this stage of calculation. We also used
the Ani. malu TMMP in conjunction with our dielectric
function for the ferromagnetic phase to calculate the
phonon frequencies. These results are also shown
by the dashed lines in the Fig. 2.

In this calculation of phonon frequencies of ferro-
magnetic nickel, the same model potential has been
used for the up- and down-spin electrons which
seems to be rather unrealistic. In the isotropic

noninteracting band model, the up- and down-spin
s bands coincide with each other while the down-spin
d subbands are shifted with respect to up-spin d
subbands by 0.05 Ry, which is approximately 20'%%up

of the bandwidth. This certainly demands the
separate bare ion potential for up- and down-spin
d electrons. This may be incorporated in the pres-
ent scheme but it demands heavy computational ef-
forts and it will again lead us to the parametrized
form of the potential. A rigorous justification can
be made only if the first-principles calculation of
the bare ion potential and the exchange-correlation
corrections are carried out. It has been pointed out
by Hayashi and Shimizu that the exchange splitting
for ferromagnetic nickel is small and does not con-
tribute appreciably for impurity screening. Also
in view of the computational difficulties and the
other approximations for d electrons discussed for
the paramagnetic phase, this simplification may not
be too serious for a calculation of phonon frequen-
cies of ferromagnetic nickel to lowest order.
Therefore, this detailed analysis remains purely
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1.0,

0.75

+ 0.50

0.25

FIQ. 3. .F'&(q+ G) vs
) q+ G ) . Solid and dash-
dot lines represent the
normalized energy wave-
number characteristics of
the paramagnetic and fer-
romagnetic phases, re-
spectively, for the same
parameters 8~ and y~.
Dash-dot lines show the
energy wave-number
characteristic of paramag-
netic nickel using Animalu's
model potential. ao is
Bohr's radius.

0.0
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academic.
The normalized energy wave-number character-

i.stic function is defined

(27)

where c(q) is the total diagonal part of the dielectric
function. F„(g)is calculated for both paramagnetic
and ferromagnetic nickel using the Harrison model
potential with the same parameters. F„(q) is also
calculated for paramagnetic nickel using Animalu's
potential. These results are shown in Fig. 3. The
F„(q)calculated for other cases of the ferromagnetic
phase are similar and not shown in the diagram for
neatness.

IV. DISCUSSION

In the case of paramagnetic nickel the transverse
branches are in better agreement with the experi-
mental values except near the zone boundary in the
[111]direction and for intermediate values of q in
the [110]direction, when the interband part is in-
cluded in the dielectric function and Harrison's
model potential is used. The calculated phonon
frequencies for the longitudinal branches are

larger than the experimental results for large val-
ues of q. Softening of the longitudi. nal modes near
the zone boundary is also found. However in our
calculations such a softeni. ng i.s not found in the trans-
verse branches. The experimental phonon frequen-
cies for fcc transition metals do not show such
softening while it is found for bcc transition metals.

If the interband part of the dielectric matrix is
switched off, the phonon frequencies in the longitudi-
nal branches are enhanced about 20% near the zone
boundary. The softening of the longitudinal modes
also disappears. The phonon frequencies of trans-
verse branches remain unaffected. In the free-
electron limit, the phonon frequencies of the longi-
tudinal branches are further enhanced, while the
frequencies in the transverse branches remain al-
most unaff ected.

In the phonon frequencies calculated using Ani-
malu's model potential, the softening of the longi-
tudinal modes near the zone boundary disappears.
The agreement between the theoretical and the ex-
perimental values improves at the maximum by 5%
in the longitudinal branches while the transverse
branches show a good agreement with the experi-
mental values. The results may further be improved
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by including core-conduction exchange and exchange-
correlation corrections for d electrons.

In the ferromagnetic phase the transverse branches
are in reasonably good agreement with the experi-
mental values. The longitudinal branches show a
good agreement in the low-q region while the calcu-
lated phonon frequencies using the Harrison model
potential are large, as compared with the experi-
mental values, near the zone boundary. But the
calculated phonon frequencies using the TMMP are
in better agreement in all branches for all values
of q. Comparing with the paramagnetic phase the
phonon frequencies in the ferromagnetic phase are
enhanced by about 5%, which is consistent with the
neutron spectroscopic results of deWit and Brock-
house. Our calculations for the ferromagnetic
phase are rather preliminary. We use an over-
simplified picture of a very complicated system of
ferromagnetic nickel. The exchange and correla-
tion potentials, which are very important in the fer-
romagnetic phase should be included consistently in
the evaluation of the dielectric function as well as
in the bare ion potential. However, actual calcula-
tions of phonon frequencies using such a scheme
will be a prohibitively difficult task.

The energy wave-number characteristic function

shows the usual behavior for both the paramagnetic
and ferromagnetic phases. This converges in the
limit of sum over G for 363 reciprocal-lattice vec-
tors. The F„(q)due to Animalu's potential shows
oscillatory nature because this model potential con-
sists of sine and cosine terms. The qualitative be-
havior of all the curves is the same.

In conclusion, we examined here a model for lat-
tice dynamics of transition metals similar to that
of the screened-breathing-shell model for insula-
tors using the factorization Ansgtz due to Sinha
eI; gl. Our calculati. on of phonon frequencies for
ferromagnetic nickel can be regarded only as the
first step towards the solution of a characteristically
difficult problem.
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