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Isotropic Knight shift of cadmium

15 DE CEMBER 1975

A. Gupta
Saba Institute of Nuclear Physics, Calcutta-700009, India

S. Kumar
Birla Institute of Technology 4 Science, Pilani-333031, India

M. G. Ramchandani
Chemistry Division, Bhabha Atomic Research Centre Bombay-400085, India

(Received 11 June 1974; revised manuscript recieved 8 January 1975)

The isotropic knight shift of cadmium has been calculated using the band structure of cadmium calculated by

Ramchandani. The calculated value of 0.305% agrees well with experimental values from 0.300% to 0.350%.
The agreement between the experimental and calculated values of the isotropic Knight shift is considered to

be good owing to the choice of a realistic potential which is based on Liberman s self-consistent calculation of
atomic charge densities.

I. INTRODUCTION

The Knight shift of cadmium has been measured
by a number of experiments. 4 The band struc-
ture'6 as well as Fermi surface of Cd have been
well studied. This motivates one to calculate theo-
retically the Knight shift using the results of band-
structure calculation and then to compare the same
with the experimental value. The reported experi-
mental values of the Knight shift of cadmium vary
from 0. 35/p to 0. 30fp at 4. 2 K.

Starting with de Haas-van Alphen (dHvA) data
Stark and Falicov~ have constructed a nonlocal
pseudopotential to calculate the band structure of
cadmium. Ramchandani calculated the band struc-
ture of cadmium by the nonrelativistic augmented-
plane-wave (APW) method using a potential based
on Liberman's7 self-consistent Slater-Dirac
charge densities. For the exchange part, Slater's
free-electron approximation was used. Calcula-
tions of the Knight shift of Cd have been performed
by Kasowski and Falicov and Kasowski using the
band structure of Stark and Falicov. ' Jena et al. '
have calculated the Knight shift of cadmium using
the conduction-electron wave functions in the or-
thogonalized-plane-wave (OPW) form where the
coefficients for plane-wave sets were derived from
the nonlocal pseudopotential of Stark and Falicov.
The present attempt was to see how well the Knight
shift, obtained by using a band structure calculated
from first principles agrees with the experimental
value.

In Sec. II the formulation of the theory is given,
and Sec. III deals with the results and discussions.

II. THEORY

The isotropic Knight shift is considered to re-
sult only from the hyperfine contact interaction of
the nuclear spin with the orbital angular momen-
tum of the conduction electrons, and is expressed

K„,=&H/H=gm)t~(~@p(0') ~~)s

4'-„,(r) =Q C~ 4-„(r), (3)

where

k„=K„+ka,

ko being an allowed k vector in the first Brillouin
zone (BZ), i.e. , a reduced vector, and K„ is the
reciprocal-lattice vector. The coefficients Q-„'s

&n

where X~ is the Pauli spin susceptibility and

(l@p(0) I )s is a measure of the electronic density
of conduction electrons at the nuclear site aver-
aged over all the allowed k points of the Fermi
surface. Core polarization can also contribute to

K„, through the contact term. However, we have

neglected the core polarization and orbital effects
in the present calculation.

Starting from the APW band-structure results,
Gupta and Kumar" calculated the isotropic Knight
shift of lanthanum. The same procedure has been
applied in the present case for calculating the iso-
tropic Knight shift of cadmium.

For the evaluation of the spin susceptibility X„
we have used the expression

X~ = u&N(E&)

for a noninteracting electron gas, where N(Ez) is
the density of states at the Fermi surface and p.~
is the Bohr magneton. N(Ez) is obtained from the
band-structure calculations for cadmium. ~ In cal-
culating K,-„we also require the conduction-elec-
tron ws.ve function kf(r) at the nucleus. We shall
now discuss briefly the method which has been
used for calculating these conduction-electron
wave functions. First, we express 4'-„(r) as a lin-

go

ear combination of APW functions in the following
form:
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are obtained by solving the corresponding set of
secular equations

gc-„(x-E)-„„-,=o
n

for all k„.values. The Hamiltonian K in the above
equation is based on the muffin-tin potential. As
regards the 4„'s, they are single AP% functions
and can be expressed as

where 5, = 0, 5~ = 1 for the r egion outside APW
spheres, and 5, = 1, 5~ = 0 for the region inside an
APW sphere. In Eq. (5) g; is the radius of the
ith APW sphere, r, is the position vector of the
ith atom, and p =

I pl =I r —r; I . B,,(E, p) in the
above equation is the radial solution of the Schro-
dinger equation

~+[E-v(p)]- —', pff, (z, p) =0,(
9 I(I+ i)

Bp p

where V(p) is the potential inside the APW sphere
and is of spherically symmetric nature. The po-
tential has been constructed following the proce-
dure of Mattheiss, which has been discussed in de-
tail by I oucks. The central Coulomb potential
VQ has been determined from the charge densities
of I iberman by solution of Poisson's equation,

~'v, (~) = —a~p, (~),

with po(r) the electronic density given by the ex-
pl esslon

where the summation is only over the occupied
orbitals. These electronic densities are taken
from the relativistic calculation of Liberman.
The potential at an outside point is assumed to be
of the form

v(~) = —2z/r .

to obtain the normalized coefficients C-„.Once
we know these coefficients, the conduction-elec-
tron density at the nucleus

R E o
I+ (o)l'=QQc";„c;„,j,(s„a)j,(a„,v)(

can be easily evaluated.

III. RESULTS AND DISCUSSION

The calculations were done on a CDC 3600 and
BESM 6 computers. The conduction-electron den-
sity at the nucleus has been calculated and aver-
aged over for the equivalent of 90 allowed k points
which have energies 0.005 Ry on either side of
the Fermi energy. Table I gives the experimental
and calculated values of the isotropic Knight shift
for cadm lum.

In the previous calculations ' one of the factors
to which the discrepancy between theoretical and
experimental values has been attributed is the
electron-electron interaction. This interaction
enhances the spin susceptibility X~, the enhance-
ment being primarily a function of the electron
density. This enhancement factor is empirically
found to be 1.55 and 1.894 by Kasowski' and Jena
et al. ,

' respectively, by fitting the calculated
X,-„value at T = 0 'K with the experimental data;
the experimental Knight-shift curves for E,.„at
room temperature were extrapolated to O'K,
which leads to the experimental value of 0.35%.
Jena et al'. considered the effect of core polariza-
tion in their calculation of X,.„from s, p, and d
parts of the conduction-electron wave functions,
and observed that the core-polarization effect is
dominated by the s part of the conduction-electron
wave function and it is positive. This gives a con-
tribution which is 10~/(; of the direct spin contribu-
tion to the Knight shift. Mahanti and Das ' have
pointed out that the exchange core polarization,
the exchange enhancement of the susceptibility due
to electron-electron interactions, and the relativ-
istic corrections to the spin density at the nucleus
are quite important factors and should be taken

TABLE I. Isotropic Knight shift of cadmium.

Using such a potential the energy-band calcula-
tion for cadmium was performed by Ramchandani.
From these calculations we obtain the energy
eigenvalues at various k points and also the value
of the Fermi energy E~. Making use of this in-
formation we have solved Eq. (4) at all the allowed
k points of the first BZ distributed over the Fermi
surface, and applied the normalization condition
for e-„,(r), i.e. ,

~
e-„,(r) ~'=Q C"-„„C-„„,&e-„~e„-,&

= I,
n, n'

Experimental values at 4. 2 K:
Schone ~

Borsa and Barnes"
Sharma and Williams

Theoretical. «

Kasowski ~

Jena et al.
Present calculations

See Ref. l.
'See Ref. 2.
~See Ref. 3.

~See Ref. 9.
See Ref. 10.

0.300%
0.350%
0.338%

0.230%
0. 1848%
0.305%
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into account to get accurate theoretical values of
the Knight shift for alkali metals.

In the present calculation we have solved the
Schrodinger equation, using the potential obtained
from the relativistic self-consistent atomic charge
densities of I,iberman. The exchange contribution
to the muffin-tin potential is treated using Slater's
exchange approximation. This introduces correla-
tion effects only partially in the present calcula-
tion. Using the density of states from band calcu-
lations' [see Eq. (2)], we obtain the spin suscep-
tibility value

Xp = 0.79&&10 cgs volume units,

whereas Kasowski and Falicov obtained for Xp the
value 0. 54&10 cgs volume units at T =0'K and
0.60&10 6 cgs volume units at room temperature.
This value of yp is also used by Jena et gE. ' For
the direct spin density at the nucleus averaged
over the Fermi surface we obtain 459. 8, whereas
Jena et al. obtained 369.9.

We would also like to mention here that the cal-
culation of the density at the Fermi energy plays
a very important role as this enters into the cal-
culation of the isotropic Knight shift through the
Pauli susceptibility Xp. We have obtained the
density of states to be 2. 167 states/atom Ry. Our
calculation slightly overestimates the density of
states at the Fermi energy since it yields for the
specific-heat constant y the value 0. 746 mJ/
mole Ka compared to the experimental value
0.688 mJ/mole 'K2 reported by Phillips, '4 where-
as usual the experimental value is expected to

be somewhat higher owing to electron-phonon
interaction. Assuming that the phonon enhance-
ment" of y is —20~/p, our bare density of states
has been overestimated by -30%.

The present calculation is a nonrelativistic one,
in which we have used the potential obtained on
the basis of charge densities calculated relativ-
istically (those of Liberman). This should pre-
sumably give a better value for the spin density
at the nucleus compared to the one obtained by
using a potential based on a nonrelativistic charge
density. Moreover the Xp calculated from the
density of states using the results of band calcula-
tions is also larger than that obtained by Kasowski
and Falicov using the pseudopotential method.
Therefore, we feel that the inclusion of the relativ-
istic effect in the construction of the muffin-tin
potential [Eq. (7)] improves the values of
( I g-„(0) I )s~ and hence gives a value of K,.„which
is in good agreement with various experimental
results. ' However, if we take into account a
10% core-polarization correction' and reasonable
estimates of the exchange enhancement of the Pauli
susceptibility, then the agreement between theory
and experiment is poor. A better value of the bare
density of states will again restore the agreement
between theory and experiment. It appears that
the overestimation of the density of states is due
to the inadequacy of the Slater approximation for
the exchange potential. Though the Slater approx-
imation is good enough for noble metals, ' it over-
estimates the exchange part for other metals,
since the electrons in them are not so free as in
noble metals.
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