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A theory of the coupling of photons to the exciton states of a monomolecular layer is presented. It is shown

that the collective excitations (polaritons) of the layer are of mixed exciton-photon character. For transitions
polarized perpendicular to the exciton wave vector there are two polariton branches, one is superradiant with

radiative lifetimes (Kta) =10 times shorter than for the free molecule, and the other does not radiate at, all.
This subradiant branch is defined for all frequencies w below the molecular transition frequency uo and
for w && uo corresponds to an electromagnetic wave trapped on the monolayer. The properties of polaritons
on monolayers near the plane interface of two media are considered and the polariton dispersion relation
examined for some special cases.

I. INTRODUCTION

A planar two™dimensional sheet of molecules has
optical properties that resemble neither those of
the constituent molecules nor those of a bulk crys-
tal obtained by stacking a large number of layers
one on top of the other. Unique properties charac-
teristic of very thin layers arise because all mole-
cules are surface molecules, experiencing lateral
interactions but no interactions in directions per-
pendicular to the layer. The reduction in dimen-
sions causes the appearance of several new phe-
nomena, in particular the trapping of electromag-
netic waves about the surface and the occurrence
of excited states with large radiative widths (su-
perradiant states).

Monomolecular layers can be assembled in a
number of ways depending on the nature of the mol-
ecule and the substrate upon which it is deposited.
Fatty acid layers can be formed and handled using
dipping-tank techniques. ' Monolayers of numer-
ous smaller molecules can be deposited routinely
on ultraclean metal surfaces. ~ Expitaxial growth
of one material on another allows the formation of
crystalline layers of microscopic thinness. Mono-
layers also occur naturally as the subunits in bio-
logical membranes and lipid bilayers. 3

In this paper we consider the optical properties
of a monomolecular layer first in isolation and
then near the surface of an optically denser medi-
um. The molecules are assumed to be arrayed as
in a two-dimensional crystal with identical orien™
tations and uniform spacings. This model is ad-
mittedly something of an abstraction, for many of
the monolayers referred to in the preceding para-
graph probably have short-range but no long-range
order. Exceptions are certain planar aromatic
hydrocarbons on inert Pt (ill) surfaces, where
low-energy-electron-diffraction (LEED) patterns

show that the monolayer is a two-dimensional crys-
tal. 2 In any case the contribution to the local field
at any site from long-range interactions between
molecules is much more sensitive to relative ori-
entation than to the separation, so that for mole-
cules with roughly equal in-plane 'polarizability
components the model should hoM. In some mono-
layers the anisotropy of molecular interactions
may serve to lock in long-range order, as, for
example, in Kuhn's brickwork model of mixed fatty
acid monolayers, so for these systems the model
is also realistic.

In the monolayer systems referred to above it is
implicit that the molecules of the monolayer and
supporting substrate are chemically distinct. This
is obviously a sufficient but not a necessary differ-
ence, for if the molecules are physically differen-
tiable, then a monolayer with distinct properties
will exist. At every crystal surface the molecules
of the first plane differ from deeper lying mole-
cules by the absence of van der %aals and electron
exchange interactions from one side. In certain
experiments the surface plane may behave as a
monolayer provided the interactions between the
surface and deeper lying planes serve to isolate the
phenomenon at the surface. There is growing ex-
perimental evidence that this effect occurs for the
(001) planes of crystalline linear polyacenes (an-
thracene and tetracene) and the surface plane be-
haves as a completely ordered monolayer of mac-
roscopic area. 4~

Microscopic theories of the optical properties
of monolayers have concentrated mainly on pro-
viding a basis for understanding ellipsometric
measurements. Agranovich and Dubovskii ""
have derived a polariton relation for a two-dimen-
sional crystal in which the dipole transitions are
perpendicular to the plane. They found that for real
wave vectors ~ the polariton had two branches, one
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heavily damped and the other undamped. Some as-
pects of coherence during the radiative decay of
excitons in monolayers and thin multilayers have
been described by I ee et aE. ""'The theory pre-
sented here is a sequel to an earlier paper, ' and
considers all three possible orientations of the
transition dipole, the nature of polariton and exciton
bands in two dimensions, resonances in the scat-
tering amplitudes for incident light beams, and the
effect on the polariton branches of a substrate sur-
face in close proximity to the monolayer. For the
isolated monolayer two types of radiative modes
are examined: First, modes with complex frequen-
cy and real wave vector v, and second, the more
useful constant-angle virtual modes (CAVM) for
which the complex frequency and complex wave
vector have the same phase. For the nonradiative
region, tc& e/c where the frequencies are real the
two types of modes are identical.

This paper is organized as follows: In Sec. II
we present some general remarks on the nature of
the problem and the types of solution expected.
In Sec. III the optical properties and the polariton
dispersion relation for an isolated monolayer are
derived. In Sec. IV the theory for a layer a dis-
tance h from the surface of a half-space of an op-
tically denser medium is outlined. Finally in Sec.
V a brief discussion and some comments concern-
ing polaritons in the surface planes of aromatic
hydrocarbons are presented.

II. FORMULATION OF THE PROBLEM

P-. =..- Z d.„. (2.4)

For point molecules in a medium of dielectric con-
stant e we must replace &u/c by e ' &u/c and R by
(eR) ' in Eq. (2. 2).

In Eq. (2. 1) the structure of the driving field de-
pends on whether or not there is an incident light
beam and whether or not there is a substrate sur-
face near the monolayer. In the absence of a sur-
face and incident field the solutions of the equations
of motion represent the normal modes of the mono-
layer. If the normal-mode frequency satisfying

d«l 15- +4~n.(~). C..(~)I =o (2. 5)

is real, the state is stationary and not subject to
radiative decay. On the other hand, modes with
complex frequencies represent virtual states of
the system that have finite lifetimes owing to radi-
active decay. We shall show that an isolated mono-
layer has both sorts of mode and that some are
definitely polariton in character owing to strong
coupling of exciton and photon states.

To obtain the Coulombic exciton states of the
monolayer one lets c- ~ in Eq. (2. 5). The exci-
ton levels have frequencies that satisfy

I

det
f
16„.+4mn (&u) ~ V; f

=0, (2. 6)

where V„. is the static point dipole-dipole interac-
tion defined by

(4m/v, )V». =R (1 —SRR),
with R=(r, —r, )/R.

We use the classical oscillator theory of excitons
and polaritons in molecular aggregates" thereby
neglecting all nonlinear processes. The response
of a molecule at site r, to an exciting field with
bme dependence e '"' is governed by a set of os-
cillating dipoles d,„e '"', where u denotes a transi-
tion from the ground level to an excited state u.
After cancellation of the factor e '"' the equations
of motion for an aggregate of molecules in vacuum
become

g [ 15„,+ 4m @,(~) ~ 4 „,(~)] ~ P,.

= n, (&u) ~ E'(r,), (2. 1)

where n, (~) is the polarizability, C„,(&u) is a di-
mensionless retarded dipole-dipole interaction de-
fined by

(4m/v, )T», (&u) = —[VV+(&u/c)21]R 'e' a~', (2. 2)

with

R= fr, -r,, f,
v, is a unit-cell volume, which can be chosen in
any convenient way, and P, is a vector defined by

III. ISOI.ATED MONOLAYER

In this section we begin by examining the t;ypes
of exciton band and polariton states of a two-di-
mensional crystal of identical molecules using the
dipole approximation for intermolecular interac-
tions. For convenience it is assumed that the unit
cell is a square with edge length a.

The sites of the lattice are

4mn(~) = [&o~f,/(~,' —~')]dd, (3.2)

where ~0 is the excitation frequency, d is a unit

r„=nax+ may,

where x and y are unit vectors parallel to the edges
of the primitive unit cell and n and m are integers.
Periodic boundary conditions are assumed. The
plane of the lattice is defined by x=0, so that the
unit vector z is perpendicular to the plane of the
monolayer.

A. Coulombic exciton states of a monolayer

For molecules with only a single excited state
a~d a nondegenerate ground state the polarizabil-
ity is
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lustrate the dispersion of the two-dimensional ex-
citon band we have calculated the diagonal compo-
nents of V(7c) for wave vectors ~ parallel to the x
axis and transition dipoles d oriented along x, y,
and z. The formulas of Benson and Mills" have
been used in these calculations and the results are
displayed in Fig. 1. Note that V»(tc) has almost no
dispersion because of cancellations among the

Pa

long-range interactions that occur when d lies in
the plane and is perpendicular to K. For the other
two components the long-range interactions do not
cancel and their complementarylike behavior is
determined by the sum rule'4

V,„(Tc)+ V»(a)+ V„(~)=0 . (3.7)

The initial linear dependence on a clearly visible
in Fig. 1 for the x and z sums comes from the
long-range contribution

0 02 04 06 08 10
Wave Vector {m a)

+ (v, /4m)(2o/a )K,

with the upper and lower signs for V„„and V„, re-
spectively.

The results imply that 8-polarized Coulombic
excitons (E vector perpendicular to the plane of in-
cidence) have little or no dispersion, whereas P-
polarized Coulombic excitons (E-vector parallel to

the plane of incidence) may exhibit strong depen-
dence on the projection of the photon wave vector
onto the plane of the monolayer.

B. Po1ariton states of a monolayer

FIG. 1. K dependence of the two-dimensional dipole
sums V», V», and V«of the square lattice for K paral-
lel to the x axis.

vector parallel to the transition dipole, fo is the
oscillator strength

To simplify the problem of coupling excitons to
photons a polarizability tensor like that of Sec.
GIA is used. However, to include the radiation
field in a consistent way, Eq. (3.2) must be
amended to include a term describing the radiative
damping of the transition in the free molecule.
Therefore we set

fo =2~0&ohio/@e (3.3)

p, 0 is the transition dipole moment, and ~~ is the
"plasma" frequency defined by

2
~ufo

4mn(&u) = » . , dd,
W0 —e —im yo

(3.8)

SS
(3.6)

(dp = 47Fe /tÃqvq .
The Coulombic exciton with wave vector K be-

longing to a two-dimensional Brillouin zone has a
frequency [from Eqs. (2. 6) and (3.2)) given by

GPsx(K) = (do+ 2ooo fod V(K) (3.6)

where

yo
——(2e /3m, c )fo . (3.9)

Nonradiative damping terms may also be included
in the denominator of n(~) if it is desired to simu-
late the effects of other relaxation processes.

After substitution of Eq. (3.8) into Eq. (2. 1) we
find for the polariton (coupled exciton-photon)
states of wave vector & the following dispersion
equation:

uP = &uo —iuoyo+ 2&u~ fod ~ 4 (Tc, &u) d, (3.10)
is a phase-modulated dipole sum for the two-di-
mensional lattice.

Several methods are known for rapidly comput-
ing dipole sums in a planewise fashion. 4' To il-

where

4(Pc, u) = Z 4„.(&u) e
S~S

(3.11)
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t (k rk (kt ) ~ (3.12)

ls

is a phase-modulated sum of retarded dipole in-
teractions for the two-dimensional lattice.

We consider the cases where the transition di-
A A

pole direction d points along x, y, or z, while I(.
'

=~x has a fixed direction. The problem is now to
calculate the diagonal components of the tensor
4(», ~). To find these components a trick is used.
First we write down the Hertz vector of the array
of dipoles as a sum of Hertz vectors for each di-
pole. The Hertz vectors are then represented in
the form of a double integral, and the lattice sum
converted to the equivalent reciprocal sum. Dif-
ferentiation gives the electric field at any point not
coincident with the lattice points. Then the limit
r- r, (sth lattice site) is taken and the self-fields
of site s subtracted. In the resulting expression
it is possible to identify the long-range radiative,
long-range static, and short-range static dipole
interactions.

A A

Dipoles perpendieulur to the ptune (d = z)

For dipoles perpendicular to the plane of the
monolayer d = z and d ~ Tc= 0. In a medium of di-
electric constant c, the z component of the Hertz
vector for an array of dipoles

&t g r-rl k(

pa - yG

(S.22)

and the polariton dispersion, Eq. (3.10), can be
written

(()2 = (()2 —i(sty, —(e2f2/m, d)E,'(0), (S.23)

where E,(0) is the exciting field at site r, =0 ob-
tained from Eq. (S. 22) by taking the limit r 0 af-
ter subtracting the self-field of the site s =0. The
exciting field

d 'E',(0) = —v, (») —i—',k2

~ (21)»2/a2g)(»2 k2)-1/2 (S.24)

consists of a real short-range dipole field v„a
radiative term from the imaginary part of the self-
field of site s=G, and a long-range dipole field
from the G =0 term of Eq. (S.22) that is pure imag-
inary (radiative) for k&» T.he field vk(») has no

6 =0 term in an expansion over the reciprocal lat-
tice and is independent of a» to order (a»} for wave
vectors satisfying az«1. This behavior is in sharp
contrast to that of V„„(»)and V„(»), which depend
linearly on a» (see Fig. 1) for a»«1. Since v, (»)
is basically the Coulomb sum with the long-range
term subtracted, we have v, (»') =(4m/v, ) V„(0).

If we define an exciton frequency &u,(») in analogy
with Eq. (3. 5) by

t (k rk+kRk 4) t')
S 8

S
(3.13)

(o2(») = (u22+ (82fo/m, )v, (»),
then the polariton dispersion equation is

(S.25)

where k = e'/2&v/c. The x and y components are
zero. Next we use the double integral representa-
tionle

F,((d, ») =0,
where

(3.26a)

eiJrR l ~ " e~(fx+n31)e-rl gt

2m- - y
(S.14)

(y2 k2)1/2

$2 $2+ 1I2

lim y= —ik,
g» Q

(3.15)

(S.16)

(3.17)

to transform the lattice sum to one over the recip-
rocal lattice, giving

With

-i ig r-rid)

G

(3.18)

g =&+6,

( g
2 k2)1/2

(3. 19)

(3.20)

k.(r)=, +k')k, (r)
88

(S.21)

Note that y depends explicitly on the reciprocal vec-
tors G. The z component of the electric field at r is

2 2'M f()»Ek(~)») = ~k(») —4' —
q a2 (P k2)1/2 ~

&gaea
(3.26b)

Since only the short-range part of the interaction
is included in ~,(»), the exciton is analogous to the
mechanical exciton of Agranoviteh and Ginzburg.

Note that if k&», then we replace (» —k )' by
—i(k2 —»')'/2 to retain consistency with require-
ment (3.17). We also require Rey&0 in order that
the electric fields calculated from the Hertz vec-
tor (3.18) are to be bounded. This means that the
physical solutions of Eq. (3.26a) must be such that
Re(» —k')' '&0. Furthermore, since we are in-
terested in the radiant decay of prepared states,
for which Im+ &0, and the properties of subradi-
ant states, for which Im~=G, the solutions of Eq.
(3.26a) of physical interest lie either in the lower
half of the complex e plane or on the real ~ axis.
The use of the double-integral representation (S.14)
for R 1e' " implies that the function E,(e, ») [Eq.
(S.26b)] is defined only for k =P+ io (o &0), so that
if solutions of Eq. (3.26a} are desired for k =P —ia
(v& 0), the function must first be defined there by
analytic continuation.
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FIG. 2. Dispersion of the real-wave-vector polariton
states of an infinite monolayer with dipoles perpendicu-
lar to the plane {d II z, A II x). There are two branches
and the dashed lines show the width of the superradiant
branch. The parameters for the calculation are f() =1.0,
~0=3.0x10 cm, v, =a =100 A3, co~(0)=4.3x10 cm
co„{0)=~„{0)=2.4&10 cm, and the reduced variables
defined by a&„= cu/co~(0) and v„=cv/&a~(0)

Modes with real v and complex ~ are considered
separately from those with complex & and complex
&u. The former type we refer to as "real-&" modes
and the latter type as constant-angle virtual modes
(CAVM) for reasons given later. In the nonradia-
tive region where v&e/c the real-x and constant-
angle modes are identical, so it is logical to first
discuss the properties of this nonradiative or sub-
radiant branch, as we prefer to call it.

It is a straightforward matter to show by con-
sidering the form of Eq. (S.26b) for x=0 and tu

= 0 that there exists a solution of Eq. (3.26a) with
linear dependence on x. The full branch has been
found by squaring Eq. (S.26a) and solving for the
root of the polynomial of the third degree in v~

that is real and satisfies the original unsquared
equation. This branch lies to the right of the light
line (d =cx in the nonradiative region. It is shown
in Fig. 2 near the point where it t;urns away from
the light line and begins to follow the exciton line
&u = &o,(a). The parameters used in these and all
subsequent calculations described in this paper are
fn=1. 0, +0=3.0x10' cm ', & =1.0, v, =as=100 As,

&u, (x = 0) =4. 2 x 10 cm ', and &u„(z = 0) = ~,(x = 0)
=2.4x10' cm '. In Fig. 2 reduced variables &„
= &u/&u, (0) and x„=ca/&u, (0) have been used so that
the equation of the light line is simply ~„=~„. The
value of the oscillator strength is not unreasonably

high (many dye molecules are known with transi-
tions of this intensity), and the intermolecular
spacing a =4. 64 A is a good compromise between
the thickness of aromatic molecules (=3.5 A) and
the intermolecular spacings in their solids.

The states of the subradiant branch do not radi-
ate because all photons with a component of mo-
mentum & parallel to the monolayer lie higher in
energy. From Eqs. (3.16) and (S. 21) a subradiant
state has an electric field that dies exponentially
with perpendicular dist;ance from the plane of the
monolayer. For tu« ~,(0) the linear dependence
on w implies that the polariton is primarily photon-
like and because the field is 1ocalized we describe
the photon as being trapped about the plane of the
monolayer. A more picturesque explanation is to
attribute the trapping to the radiation patterns of
the dipoles, which have lobes directed in the plane,
so that there should be constructive interference
in the direction x mediated by the phase factor
e'"'& of the dipoles. A long-range interaction be-
tween molecules results and a discrete state is
split from the bottom of the one-dimensional con-
tinuum of photon states with wave vectors that pro-
ject & onto the monolayer.

l,et us now consider if Eq. (3.26a) has any solu-
tions on the left-hand side of the light line, which
in quantum mechanics correspond to prepared
states that decay by photon emission. For transi-
tion dipoles d perpendicular to the monolayer
Agranovich and Dubovskii' '" concluded that there
was a radiative state with positive dispersion bend-
ing up away from the line &u = &u, (x) as the light line
was approached. This radiant branch should be ob-
tainable from Eqs. (3.26a) and (3.26b): however, we
have found that the analytic properties of y„=(h:2
—k2)'~~ do not permit physically acceptable solu-
tions. For the dispersion equation (S.26a) to have
a solution k =P + io (o &0), we require Hey„&0 for
bounded fields at large distances ~ and Imy„~&0 in
order for Imp~&0. For a decaying state we require
Imk &0. No choice of branch cuts was found for
which y„had the desired properties. For example,
if the branch cut is chosen along the real-k axis
from w to ~, then the sign of Rey„changes on pass-
ing to the second sheet from k = p+ io (0 & 0) because
the branch cut coincides with Rey„=0. This does
not necessarily mean that a real x exciton prepared
at time t=0 will not exhibit exponential-like decay
for some time regime. Rather it is a statement
concerning the deformation of the contour of the in-
tegral determining the time-dependent amplitude
of quantum theory. This contour cannot be deformed
into separate contributions from an isolated pole
and a hairpin traversing both Riemann sheets.

For real ~ we have ReE,(co, «}=0when &u= &a, so
that an exponential-like decay of a prepared state is
anticipated as long as ImE, ((u„a'} remains very
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small. This is indeed the case for most of the in-
terval. 0~«&v, /c for fmF, (~„«)-0as «'-0 and is
small for all «except at values close to ~,/c, where
it diverges. Therefore we expect the decay of a
real K state to be characterized by an energy ~
= &u,(0) and a width of magnitude ImF, (&u, «)/(2&@,).
This width is considerably larger than the radiative
width of the transition in the isolated molecule for
all except very small K values because of the pres-
ence of a factor (~,a/c) '=(&,/a)'=104. This can
be seen more readily by writing Eq. (3.2&b) as
follows:

F,((u, «) = &u,(«) —~ —i—. SENT Id po

c ((oa c)~

= K' —iK"

with ~ and K related by

«„=(&u„/c) sin8 .
Defining

'CAVM i'—=(~CAVM' CAVM)
2 / 2 2 1/8

leads to

'CAvM=(& / )cos8e

(3.29b)

(3.30)

(S. 31)

(S. 32)

Substitution of Eqs. (3.2&)-(3.32) into the polariton
dispersion (3.26), and equating the real and imag-
inary parts of each side gives the following simple
results:

(S.27)
and

[~'(8))' = ~!—[~"(8H' (3. 33)

CAVM m ~

= (d —2(d

-he
KCAVM = Km

(3.2&a)

(3.2&b)

(3.29a)

Here u&'yo, definedby Eq. (3.9), is the free-mole-
cule damping and it is the presence of the factor
&u'yo(~a/c) 2= uPyox104 that justifies the label su-
perradiant for this branch of the spectrum. In
Fig. 2 the superradiant branch is shown by the
horizontal solid line on the left of the light line
flanked by dashed lines indicating how the width in-
creases with K. As the branch approaches the light
line its width diverges, becoming comparable with
~, so that it is not possible to assume it decays
with an exponential-like behavior. Geometry deter-
mines the width at K = 0, for then all dipoles are in
phase and by analogy with the well-known results
for a single oscillator ' the field at great distances
from the plane along the s axis is zero.

In a scattering experiment the real-K radiative
states with finite widths give rise to electromag-
netic fields in which the direction of the wave vec-
tor differs from the direction of energy flow. In
the usual optical experiment the scattered light is
monitored at an angle 0 from the surface normal
and the dispersion curve is extracted by varying 8
and using the relation « =(&u/c) sin8 to determine
the in-plane component of the wave vector. This
requires that the direction of the wave vector and
the energy flow be the same for the modes whose
dispersion is being probed by such an experiment.
The modes that satisfy this requirement are called
constant-angle virtual modes (CA VM) by Kliewer
and Fuchs. For the CAVM, both frequency and
wave vector are complex and when expressed in
polar form the arguments of the complex frequency,
the in-plane component of the wave vector, and the
~ component of the wave vector are identical.

We now proceed to determine the CAVM disper-
sion relation. Define

&u" (8) =-,'~~fosin 8/cos8 . (3. 34)

Note that v"(8)&0, consistent with the definition
(3.2&b) and the requirement of temporal damping.
The variation of &' and co" with 8 is shown in Figs.
3 and 4, while the dispersion is displayed in Fig.
5. Note that the CAVM for this dipole orientation
exhibits critical damping when (9 is near grazing.
The parameters used in these curves are the same
as for the real-wave-vector modes. In Fig. 5 the
radiative shift, defined as the difference between
the exciton frequency and the central frequency of
the mode, is about 35 cm '. When ~m —8 = 5 x10 4

90' —0'(deg)

18.0 14.4 10.8 7.2 3.6
1.0002

0

1.0000—
dllx

„- 0.9998
II

~ 0.9996

- ' 0.99943

0.9992—

!
Q 999Q I I I I I I I I il

0.4Q 0.42 0.44 0.46 0.48 0.50
0 (rad)

FIG. 3. Variation of the real part of the frequency of
the constant angle mode ~CA~M with &. The parameters
are the same as in Fig. 2.
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~'„(«) = &u~o+(e~fo/m)v„(«) . (3.39)

The equation determining polariton frequency is
given by F„(((),«') = 0, where

F„(v, «) = &u„(a') —e

of Eq. (3.38) comes from the G =0 part of the
Hertz vector (3.36).

Next we introduce x-polarized excitons with fre-
quency

ch 40
+ (2me fo/cm, a )(« —k )U

An alternative equivalent form is

F„((d, «) = [(u~(«) —(u2]

{s.40)

2.0— 3'1T (0 +0 CK

((ua/c)' (u

1/2

(3.41)

I

0.0 0.1 0.2 0.3
8 (rad j

0.4 0.5

FIG. 4. Variation of the imaginary part of the fre.—
quency of the constant angle mode ~c+vM with 8. The
parameters are the same as in Fig. 2.

2. Dipoles parallel to the wave vector K (d () x)

For transition dipoles parallel to the x axis we
have 4=x and d ~ K=1.0. The Hertz vector for all
the dipoles of the monolayer has only an x compo-
nent. Omitting the time factor e '"',

or 0.09' up from grazing, we have (d"(8) = (d,(0),
which defines the end point or the point of critical
damping of the mode where the real and imaginary
parts become equal.

where yo is defined by Eq. (3.9) and &u'yo is the
damping term in the free-molecule polarizability
[see Eq. (3.8)]. Squaring both sides gives a qua-
dratic in co and the roots are therefore easy to ob-
tain. The presence of y„=(« —k ) in Eq. (3.40)
means, as in the previous d II z case, that the solu-
tion of the dispersion relation lying in the radiative
region is not physically acceptable. However, the
decay of a time-dependent amplitude of a prepared
real-& exciton state is expected to be exponential-
like for the reasons explained earlier. There is
only one branch with frequency Q(«) = &u„(«) for all
K. At K =0 the polariton frequency is given by

0 (0) = &u„(0) —(f2ve fo/am, a2)k, (3.42)

where we evaluate k at e' (d„(0)/c. In Fig. 6 we
have plotted the computed values of the real part

1.002

(s. 36) 1.000 dlIx

and after transforming to a sum over reciprocal-
lattice vectors

0.998

II„( )—2nd -1 ke ~-vl~l8
(Q

G

The x component of the electric field,

82s,(r) =(,+ s') s,(F),

(3.36)

(3.37)

—0.996
3

0 0.994

3
0) 0.992

is needed to determine the polariton dispersion
equation. The exciting field at site r, =0 is deter-
mined by the procedure described for the d II z
case; we have for d =x the result

d E„'(r =0) = —v„(«) —j3k

—(2m/aa3)(«~ —k~)'~~, (3.38)

0.990

0.988

0.986

0.986 0.988 0.990 0.992 0.994 0.996 0.998 1.000
Re(cf~:CA&M/~ j

where v, («') is the short-range part of the static di-
pole field and the last term on the right-hand side

FIG. 5. Variation of the real part of cuczvM with the
real part of vcavM.
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FIG. 6. K dependence of the polariton frequency for a
monolayer with d II x. Wave vector f(, is parallel to the
x axis. There is one branch and the dotted lines show
the width of the superradiant region. Same parameters
are used as in Fig. 2.

A A
3. Dipoles perpendicular to z and x (d =y)

When the transition dipoles lie in the plane of the
monolayer and are perpendicular to the wave vec-
tor ~ then d &=0 and d @=0. The y component
of the Hertz vector has the same form as the right-
hand side of Eq. (3.35), and can be transformed
into the same form as the right-hand side of Eq.
(3.36) by using the representation for A ' e' " in
EII. (3.14).

The y component of the electric field at some
arbitrary point outside the monolayer sites is giv-
en by

a2
R„(r)=(,+(r)tr„(r(. (S.46)

A direct calculation gives

r„.(e) =»"(8) (3.45)

.is well behaved for all values of 8 and in particular
does not become large as 8 tends to —,'m. The de-
pendence of ~' and ~" on 8 and on v' is shown in
Figs. 3-5. The radiative width has a maximum
value for 8=0, where y„„=130cm ~ for the param-
eters used in this calculation.

of Q(K) and also the values of HeQ(K)*lmQ(K). The
width of the state at &=0 is considerably larger
than the free-molecule width by a factor (&/a)
=104 (in the optical region). As the light line is ap-
proached, the linewidth decreases and becomes
zero, whereupon the state becomes a nonradiative
exciton state with wave vector too large to allow
photon emission into the vacuum with simultaneous
conservation of energy and momentum. There are
no trapped photon states for this orientation of the
transition dipoles.

Unlike the case for transitions polarized either
along K or y (see below) there is no separate sub-
radiant branch for x-polarized transitions. Qual-
itatively this can be understood by looking at the
radiation patterns of the dipoles which have lobes
directed in directions perpendicular to I(.'. There-
fore, there are no components parallel to the plane
of the monolayer and to &, which might be made to
add constructively through the variations in the
phase factor e'"'~.

We can define CAVM frequencies and wave vec-
tors as in Sec. III81. In terms of 8 the real and
imaginary parts of the complex frequency of the
virtual mode are

rv 2 2i -1 ehg r-y)g)
&Q

(II(,' —gy jp 8
0

(3.47)

where g, is the y component of the vector g = K+6.
Proceeding as for the last two orientations we find
that the exciting electric field at the origin site is

(f 'E,'(0) = —v, (K) —i-,'k'

+ (2za'/Ka')(K' —k')-'" . (3.48)

fr ~((dq K) = 0
~ (3.49a)

In E(I. (3.48) v, (K) is the short-range part of the
static dipole sum. However, for this particular
orientation there is no long-range part so that v„(K)
is also the full static dipole sum. The last term on
the right-hand side of E(l. (3.48) comes from the
0 =0 term of the reciprocal-lattice sum in Eq.
(3.47). Only the y-polarized excitation can be ex-
cited by s-polarized light, that is, light with an E
field perpendicular to the plane of incidence (the
xz plane). In a three-dimensional crystal s-polar-
ized (transverse) excitons also do not have a long-
range (macroscopic} dipole field.

The polariton dispersion relation is found, using
E(l. (3.48}, to be

[~'(~)1' = [~.(0)l' —[&"(8}1'

v"(8) = —,
'

&u~~foa cos 8 .
Note that the radiative width of the state

(3.43)

(S.44)

where

Ir (CO K) = (d (K) —(d

—(2me2fo/&a m, )k2(K —0') U~ .
(S.49b)

An alternative way of writing this relation is
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[&uz()c) —up]
(d

1/3 ~3y
=3m

((ua/c)z
' (3.50)

For real K, these relations yield a two-branch
spectrum somewhat similar to that found for d 11 z
(see Fig. 7), the main difference being the damping
of the superradiant branch for small values of K.

In Fig. 7 the radiative width of the radiative branch
is shown by plotting ReQ()i) + ImQ()~). The calcula-
tion is similar to the d 11 z ease because on squaring
Eq. (3.49) a polynomial of the third degree in ~z is
obtained. As in the two previous polarizations the
analytic properties y„= ()~z —k')"z cannot be recon-
ciled with physical restrictions in the radiative re-
gion. However, we can, just as in the d 11 z eases,
think of the decay of a prepared real-K state as be-
ing exponential-like for small K values with a width
proportional to the imaginary part of E,((o, )i) eval-
uated at co = ~,. The label superradiant is appro-
priate because the right-hand side of Eq. (S.50) is
approximately 104 times larger than the free-mole-
cule damping width.

At K=O the superradiant state is given by

Q'(0) = &uz(0) — (z2 ))ef, /ae' ))))k, (3.51)

which is identical in form with Eq. (3.42) because
at K=0 there is no phase distinction between the
wave vector and the direction of a d vector in the
plane.

The y-polarized transitions also have a subradi-
ant branch with dispersion similar to the s-polar-

095
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Reduced Wave Vector (c~/wy I

FIG. 7. ~ dependence of the polariton frequency for a
A A

monomolecular layer with d 11 y. Wave vector & is paral-
lel to the x axis. There are two branches and the dotted
lines show the width of the superradiant branch. Same
parameters are used as in Fig. 2.

ized case. The radiation patterns have lobes with
components in the direction of K so that construc-
tive interference is possible just as for z polariza-
tion.

A CAVM calculation along the lines of that out-
lined earlier in Sec. IIIB1 gives

[u&'(8)] = [&i)„(0)] —[ii)"(8)]

where

~"(8)= —,'&ozzfza{cos8) ' .

{3.52)

(3. 53)

E(r) =Ez(r)+Q F(r —r„(o) ~ d, , (3.55)

where F is the retarded dipole-dipole dyadic. For
an incident field

ipT r iz ii (3. 56)

and assuming the dipoles are modulated according-
ly,

d =de'" '~
S (3. 57)

the following expression is obtained by using Eq.
(3.54) to eliminate d, from Eq. (3. 55):

E (») E» i (iT r+zgs)

A

(8'fz/))i)(d ~ E,)g —-
+ Qz, , z F(r —r» ~ ~ de

Qg(K& 40) —QP

(3.58)
where Qz()i, &u) is defined in such a way that the
three polariton dispersion equations (3.26), (3.41),
and (3.49) can be written

Qzz()i, u&) —uF =0 (3.59)

for d=x, y, and z.
We note that the second term on the right-hand

side of Eq. (3.58), which is the amplitude for the

Here, as in the s-polarized dipole case, the radi-
ative width blows up near the light line. The turn-
ing point of the hairpin in Fig. 5 comes at an angle
of 3. 15' up from grazing. The radiative shift at
this point is about 30 cm ~. When the angle drops
to 0.2' from grazing, the radiative shift is approx-
imately 1.2 x 104 cxn ' or one-half of the exciton fre-
quency. The end point occurs at an angle 0.16' up
from grazing for fz = 1.0 and at 0.016' for fz = 0.1.

C. Scattering of light by a monolayer

We consider the scattering of a linearly polar-
ized plane monochromatic wave of frequency ~ by
a monolayer in which the transition dipoles are po-
larized along d=x, y, or z. For a single excited
state the equations of motion are

((uzz —i&uzyz —(uz)d, = (ezf,/m) [d E'(r, )]d, , (3. 54)

where E'(r, ) is the exciting field at r, . The total
electric field at an arbitrary field point not coin-
cident with the lattice is
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cd = GK/Ie" sin 0)

pression for the reflection power,

sly'„„(8)cos8
I( & ) ([(& (0)]2 +2)2 +2[ (8)]2 ( ' )

Here y„,(8) is twice the imaginary part of the
CA VM frequency and

yt„(8) = rg„(8) + y„„(8), (3.63)

FIG. 8. Schematic diagram of the intersection of the
light line of the host medium surrounding the monoj. ayer
with the superradiant branch.

scattered light, has a denominator that vanishes if
Eq. (S.59) is satisfied for real ~ and v also satis-
fying

q(&u/c) -K +h~ (3.60)

This occurs only for the trivial case d=z and re=0,
for which d ~ ED =0, so that there is no scattering.

In all other cases the denominator can become
small but does not vanish because the dispersion
curve for the incident photon [from Eq. (3.60)] cuts
all the polariton curves on the left side of the light
line in Figs. 2, 6, and 7, where all the states have
finite widths. Thus the scattering amplitude has a
resonance at the crossing point of Eq. (3.60) and a
superradiant branch. This is shown schematically
in Fig. 8, where 8 is the angle of incidence so that
a = $ sin8, h, = $ cos8, ~ = cue '", and g is the mag-
nitude of the incident-photon wave vector.

The scattering spectra have a particularly sim-
ple representation in terms of the real and imagi-
nary parts of the CAVM frequencies. In Sec. IIIC1
we again separately consider the three dipole ori-
entations treating only the reflection power spec-
tra in detail.

1. Scattering of p-polarized radiation

a. Dipoles perpendicular to the plane (d ll z).
The reflection power is defined as the z component
of the Poynting vector 8, normalized to unit inci-
dent intensity. For P-polarized light

S,~ Re(E,H,*)~ (~/ch, )
I
E (3.61)

For this orientation the x component of the scat-
tered field comes from taking the cross derivative
of the Hertz vector (3.18). This leads to an ex-

where y„ is the width on the nonradiative channels
of decay. When 8 =0 and —,'m the reflection power
is zero. In the former case the incident field is
polarized perpendicular to the transition dipoles,
which cannot then be driven by the incident field,
while in the latter case the excited state has an in-
finite width so that the scattering amplitude for any
one frequency is zero. For intermediate angles of
incidence the band shape is Lorentzian with a peak
at the exciton frequency v, (0) and a peak reflec-
tivity of

R,(&u„8) = [y, ,(8)/y, ,(8)] cos8 . (3.64)

where
(3.65)

Re((u', „v„)= (u,'- 2[(o"(8)]' = (u,'- —,'[y, ,(8)]' (3.66)

Im(KCAVM) =2% (8)M (8)

(3.67)

The frequency of the peak is given by the square
root of Eq. (3.66). At the turning point in Fig. 5,
the peak has shifted approximately 7 cm, while

Z„, is approximately 1000 cm at that point. The
root of Eq. (3.66) is equivalent to the geometric
mean (d, +2' +", so that the bandwidth can get
quite large while the peak shifts remain essentially
undetec table.

b. Dipoles parallel to the a&ave vector Pc (d Il z).
Using Eq. (3.61) for 3', and Eqs. (3.36) and (3.3't)
for the electric field, the reflection power is found
to be

uF[y„.„(8)] cos 8
(v~ —uP) + uP[y„„(8))2

' (S.68)

The radiative width is always small so no disper-
sion in the peak frequency will be seen. The re-
flectivity is at a maximum at normal incidence and
zero near grazing, where the lattice dipoles are
perpendicular to the incident field.

For larger 8 the total decay rate y, , can become
a significant fraction of ~„shifting the peak to the
red, while broadening it asymmetrically. This
can be seen more clearly by rearranging the de-
nominator of Eq. (3.62):

(u'[y„.,(8)]'cos 8

[Re(KCAVM) —M ] + [Im(RCAVM)]
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The exciting field at r, is obtained through the use
of Eq. (3.21) and the limit r- r, while subtracting
out the self-field of the sth site. By analogy with
Eq. (3.24) we write the result in the form

Ea(/() = 1+I"a(/() 8 (4. 14)

(dg(K) 'to (dag(K h).
Finally, we examine the additional damping intro-

duced through the factor

d (Ea,(h) = —va, (((, h) —i—',haa

+ (2m~a/aa~, )y,-'(I+ I'a e '""), (4. 9)
by the substrate. In the limit x«(d/c,

I' (K) = —(n, —n, )/(n +n, }, (4. 15)
where both ya and I'a are evaluated for / =0, and
the short-range static dipole sum va, (a, h) includes
a contribution from tL~e image dipoles.

The polariton dispersion relation is

a a a a (/a 2 8 n a

where

[1 p ( )
aa(IP 8a(0 /c )

] (4. 10)

ea
(da', (», h) = (d,'+ ' v, (v)

2 I2« fa Q a (( )~ (») -»(a(a&

In this last equation the second and third terms
make up the total short-range interaction va, (/(, h)
in Eq. (4. 9) and the prime signifies the omission
of the G=O term,

The dispersion relation (4. 10) is quite general
in that the properties of medium 1 have not been
specified except for the requirement that the mag-
netic permeability is unity. In particular Eq.
(4. 10) describes the coupling between polaritons of
the monolayer and surface modes such as the sur-
face-plasmon oscillations of a metal. This latter
problem is of some interest in connection with the
decay of coherent excitons at a metal surface.
However, we shall not pursue the problem of ex-
citon-surface-plasmon coupbng any further in this
paper.

Next let us consider the contribution from the
substrate in w2, . For transparent insulating media
we have G» /( and G» e'(/ (d/c for all 6 W 0 in the
optical-frequency region, so that I'a(g) simplifies
to

I'a(g) = (~& —~a)/(~&+ ~a), (4. 12)

and the last term of Eq. (4. 11) becomes, apart
from the factor 8 fa(m, aa) ',

2m ~'
(4. 13)

Now the factor (4. 12) is just that predicted by image
theory in the electrostatic limit23 and the sum is
just the short-range part (6 =0 term omitted} of the
interaction between a dipole at r = (h, 0) and a two-
dimensional lattice of dipoles in the plane z = —h. 24

We therefore conclude that the substrate field only
shifts the frequency of the mechanical exciton from

where n; = e(/ (i =1, 2) is the refractive index and
Eq. (4. 15) is just tbe ref leetivity for normal angles
of incidence. Therefore,

Fa(x}= 1+1(!((d)e' (4. 16)

oscillates periodically with the perpendicular sep-
aration of monolayer from the surface with no cut-
off at large distances. This effect is quite differ-
ent to that observed for a single molecule (or an
incoherent exciton on a monolayer), for which the
substrate contribution to the lifetime dies rapidly
as h increases. If n, »n2, the surface is highly
reflecting, ft = 1, and for small h such that 2hna(d/c
«1 we have Ea(/() = 2. This is tbe image limit in
which the transition dipoles and their electromag-
netic images oscillate in phase, and the polariton
dispersion curve differs from Fig. 2 mainly in the
superra'diant branch, which now has twice the width.

If ((» (d/e, then I"a((() is given by Eq. (4. 12) and
so

Ea(((}= 1+(e, —ea)/(~, + ea) e '"" .
The substrate effect decays exponentially with dis-
tance.

In the intermediate region there is a range of
frequencies such that /( &@a(d /c and /( &e~(d /c
For this range y& is pure imaginary and y2 is real.
In this case radiative decay into the substrate is
allowed, while emission into the host medium 2 is
forbidden. This is typical of the attenuated-(ATR)
and tbe frustrated-total-reflection (FTR) experi-
ments where phase match of an evanescent wave of
medium 1 to the nonradiant states of a second ma-
terial is used to probe the properties of the latter.
In Fig. 10 the crossing of the light line M=&K6g
of medium 1 with the subradiant branch of the po-
lariton is shown schematically. In principle the
whole of the branch to the left of the point of inter-
section is mappable by using angles of incidence 8
& 8, for medium l.

V. MSCUSSION AND SUMMARY

The detection of superradiant and subradiant
branches of the polariton spectrum has already
been discussed at several places in this paper.
Summarizing briefly we note that, in principle, the
radiant branch can be detected by resonant light
scattering either by a resonance fluorescence or a
resonance Raman process with light incident from
medium 2. The subradiant levels are observable in
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FIG. 10. Schematic diagram of the intersection of the
light line of the substrate medium 1 with the subradiant
branch of the polariton spectrum.

an internal-reflection experiment with light incident
from medium 1 with an angle of incidence 8 greater
than the critical angle 8,.

The angular dependence of the radiative width of
the CAVM for this system is identical in form to
results derived for correspondingly polarized plas-
mon modes in thin metal foils' ' ' and phonon modes
in thin ionic crystals. ' 8 In the former case, two
surface-plasmon modes interact and become non-
degenerate when the foil thickness decreases to
less than the penetration depth of the surface mode.
The lower-energy antisymmetric mode exhibits the
same oscillating dipolar layer geometry as the s-
polarized dipoles here. The coherent radiative de-
cay of excitons in thin films considered by Lee et
a~ zt(b) might also be profitably treated using con-
stant-angle modes.

For monolayers of organic molecules the as-
sembling technique developed so elegantly by Kuhn
and his collaborators'" has many advantages, the
chief one being the ability to fix the distance of the
absorbing monolayer at integral multiples of the
arachidate chain length (20 A) from the substrate.
Unfortunately there is still not enough evidence con-
cerning the crystallinity, i.e. , the two-dimensional

ordering, within the plane. However, effects of
disorder can be minimized by using dyes with tran-
sitions perpendicular to the plane. One such dye,
quinquithienyl, ' has a very strong first singlet
transition (fo = 1.0) and monolayers containing a
high concentration of this Inolecule might exhibit
polariton effects of the type described in Secs. III
and IV. Another good candidate is the dye trans-
bixin methylester, ' which forms monolayers with
a distorted hexagonal-close-packing structure. A

strong transition occurs at 2.6 eV in the free mol-
ecule polarized along the long axis and therefore
perpendicular to the plane in the monolayer. Strong
interactions occur on monolayer formation because
the transition is observed to shift to 4. 9 eV in the
ultraviolet.

FinaBy we conclude with some comments on an
entirely different type of monomolecular system,
one which certainly has long-range order of the
type invoked in the model. For the first singlet
transition of some linear polyacene crystals like
anthracene and tetracene, the exciton transfer in-
teraction between the (001) planes is believed to be
very weak in comparison with the in-plane interac-
tion. ~ 6 In these systems the gas-to-crystal shifts,
arising from excited-state van der %aals interac-
tions, are different for surface and bulkplanes, and
these shifts determine the relative order of the lev-
els and whether the exciton is localized near the
surface or delocalized in the bulk region. The sur-
face plane can become decoupled from the rest of
the crystal and one excited state corresponds to the
exciton localized on this plane and nowhere else in
the crystal. 4~ Thus the surface plane reacts to an
incident-light field like a monolayer sitting on a
substrate of different physical properties. Surface
systems of this type have polariton states that are
modified in a more complicated way than when the
substrate is transparent with a constant dielectric
function, for c& has ~-dependent real and imagi-
nary parts. The theory presented in this paper is
a first step in trying to understand the physics of
these unusual systems.
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