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A quantum-mechanical Hamiltonian of a nonrelativistic charge interacting with long-wavelength nonradiative

surface polaritons in a semi-infinite solid is constructed. The theory is applied to determine the velocity and

retardation corrections to the image potential, and the problem is solved exactly in the no-recoil

(semiclassical) approximation, which is justified for particles of large momenta. The influence of retardation in

inelastic energy spectra of electrons in low-energy-electron diffraction and reflected-high-energy-electron

diffraction is considered in detail, and it is shown to be negligible for grazing-incidence electrons, though it
generally changes the spectrum of outgoing electrons.

I. INTRODUCTION

Surface collective oscillations are a common
feature of all finite bodies. They play a very im-
portant role in the building up of various macro-
scopic properties of solids, such as the image po-
tential, ' adhesion, surface energy of metals, '
etc. Charged-particle spectroscopy is a particu-
larly useful tool for investigating the properties
of these oscillations. A large amount of theoret-
ical work has been concerned with energy-loss
spectra of particles transmitted or reflected from
variously shaped solids. The early theories were
developed in the framework of classical electro-
dynarnics. Ritchie used Maxwell's equations in
the quasistatic limit to compute the theoretical
loss function of fast electrons transmitted through
a metallic slab. Later, Hattori and Yamada' and
Fujiwara and Ohtaka computed the same quantity
for a dielectric slab. Kroger, Lucas and
Kartheuser, ' and Chase and Kliewer" used a com-
plete set of Maxwell's equations, thus including
retardation effects. Chase and Kliemer" showed
that retardation corrections to the outgoing-elec-
tron-energy spectrum can be neglected for elec-
trons transmitted through a, thin dielectric slab.
The same conclusion may not be true for thicker
slabs. When retardation effects are taken into
account, there is a possibility of radiative losses
through Cherenkov radiation ' and transition radi-
ation, '3 which contribute to the overall electron-
energy loss.

The first quantum-mechanical theory of energy-
loss spectra was developed by Lucas, Kartheuser,
and Badro. '3 They used optical polarization eigen-
modes for a dielectric slab, calculated in the quasi-
static approximation by Fuchs and Kliewer, and
quantized the polarization field in the slab. The
probe, a fast electron, was treated classically,
and the problem was then solved exactly in first
and second order. Probabilities of multiple-phonon
(both bulk and surface) excitation were computed.
The same approach was used by Sunjic and Lucas"

for a metallic slab. They considered energy losses
of electrons transmitted through the slab and re-
flected from the surface of a metal and, later,
they studied energy losses in other experimental
situations'~ (field-ion emission, ion scattering,
etc. ). In all these theories retardation effects
were neglected. As a by-product of these calcula-
tions the conclusions emerged that the classical
image potential for the charge outside a metal sur-
face has its origin in the virtual excitation of sur-
face plasmons, in agreement with the results of
similar independent studies. ' Following this ap-
proach the velocity corrections to the image po-
tential and also recoil corrections coming from the
quantum nature of the external charge were found. i7

Ritchie used the same approach to calculate re-
tardation corrections in the case of a static exter-
nal charge. ' These are due to the excitations in
the k& k~ = &sic region of the wave vector and be-
come important at larger distances z& k~ . Ritchie
also showed that at such distances the potential
felt by a charge goes as 1/z~ rather than 1/z, the
latter corresponding to the result of classical
electrodynamics.

It must be added that this kind of approach limits
the validity of the results obtained to distances
which are not too close to the surface where other
quantum corrections become important; in other
words, the long-wavelength or continuum approxi-
mation breaks down at small distances. A lot of
mork has recently been done on the problem of
screening of the charge near the surface. There
exist a number of papers in which approaches dif-
ferent from this were used. For further literature
we refer the reader to the papers by Harris and
Jones, Mahan, ~ and Heinrichs. 3

In this work we investigate the quantum-mechan-
ical formulation of the interaction of charged par-
ticles with surface excitations, taking into account
retardation effects. This formulation enables one
to treat quantum mechanically various effects in-
volving long-wavelength surface polaritons in di-
electrics and metals. W'e confine ourselves to the
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ease where the particle remains outside the solid
and therefore couples only to surface excitations.
In See. II we quantize the long-wavelength surface-
polariton field in a semi-infinite dielectric solid
using the point-ion model. The corresponding re-
sults for the metallic case are easily obtained by
taking the limit when the TO frequency goes to
zero and the LO phonon frequency becomes the
plasma frequency of metallic electrons (&o»-0,

id&). In Sec. III the interaction with external
charged particles is derived. In Sec. IV the prob-
lem is solved in principle, using the nonperturba-
tional approach in a general case, and applied to
find an approximate solution for the ease of a fast
particle. The dynamical version of the image
charge potential together with retardation correc-
tions is derived in Sec. V. Finally, in See. VI
we use our theory to compute energy losses of a
particle reflected specularly from the solid, cor-
responding to the LEED (low-energy-electron
diffraction) or RHEED (reflected-high-energy-
electron diffraction) type of experiments. A de-
tailed comparison with similar quasistatic theo-
ries~~ is also made.

II. SURFACE-POLARITON HAMILTONIAN

where the tensor A is

CO& —(d

4m',
A =~ 0 co

M~

0

Here &u~ = (&dr+ ~d~)' is the LO-phonon frequency
and v is the polariton eigenfrequency to be deter-
mined. The kernel M(s —s') is Hermitian, and it
can be written in the form

~x' x'
M(k, &u s —z') = 22 o., e

,

, (I)
4)

Q g0

respectively, co~ is the TO-phonon frequency, and
u& is the ionic plasma frequency. Maxwell's
equations solved with the usual boundary conditions
for the electric and displacement fields at the sur-
face, together with (1) and (4), give an integral
equation for P

0

AP(k, z) = ds'M(2 —2')P(k, g'),
aOO

In order to introduce the notation, we shall
briefly review the derivation of surface-polariton
eigenmodes of an ionic crystal in the retarded
case, following the procedure of Kliewer and
Fuchs. ~3 We consider an ionic solid with an ideal
flat surface, occupying the z &0 half-space. Be-
cause of the translational invariance in the (x, y)
plane we may look for the solutions of every phys-
ical quantity f(r, f) in the form

F(F t) F(k +) eiR'0 is&t (1)

where r = (p, z) and k is a two-dimensional wave
vector parallel to the surface. It is also conve-
nient to introduce the coordinate system defined by
the unit vectors

k=k/k, ~, n= x~y,

so that every vector field F(k, z) can be written in
the form

F(k, z) =E(k, 2)k+E (k, z)z+E "(k, z)n .

where X' X' is the tensor product of vectors

y' = i(o.2/Ii)k —sgn(z —z')s

and o.0 is defined as

(I 2 &2/ 2)1/2

We shall restrict our considerations to the non-
radiative region id(kc (Fig. 1), where 122 can be
regarded as a real quantity, and the fields are ex-
ponentially damped outside the solid. The eigen-
value problem (5) splits naturally into two, one
eigenvalue equation for each type of polarization.
We are looking for the solutions inside the solid
which are exponentially damped, and with eigen-
frequencies which differ from ~~ and or~, there-

D. - RAO.

The first two components represent the P-polar-
ized field, while the third component represents
the S-polarized field. Maxwell's equations are
now written in the Coulomb gauge, —VP and SP/St
being the charge and current density, respectively.
In the point-ion model, the polarization vector
satisfies the equation of motion:

(4)

where Q and A are the scalar and vector potential,

0 kr-Wc
(aj

0 kp

FIG. 1. Different regions of the polariton frequency
spectrum for the case of a semi-infinite polar crystal
(a) and a metal (b). Radiative and nonradiative regions
are separated by the o. p

=0 (co=Ac) line. V?e shall be in-
terested in the nonradiative surface-polariton'branch +~.
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fore corresponding to surface waves. By differ-
entiating Eq. (5} twice it is easy to show that the
polarization vector P(k, s) for @&0varies as e ',
where

[I 2 &(&)&3/ RP/8

& being the dielectric function. In our point-ion
model (4) we have

. c 2k -~).)A(k, z) =N„»i — ~ik —sgnz ~:z e
+a .++~0 k Q

—(fA, —sgnz ~) e

where

for z)0
for z(0.

(19)

(20)

~((2)) = ((2)' - (OZ, )/((0' - (0r) .
Inserting the solution for P(k, g) back into (5),

one obtains the dispersion relations determined
by the conditions for 5 to be a true solution. For
$-polarized waves we find

Now we can perform the quantization. The total
energy of the system is

H, = d'r —~A'+ ((/' &/A)' —(~(I))'
~.8w c )

1 = —Q/(xo, (12)
l

+ ~ (P'+ (d', P')+ I Vy
GO@

(21)

which obviously cannot be satisfied, and we can
only have a trivial solution P"(k, z) = 0.

For P-polarized modes we obtain the dispersion
relation

Because of the symmetry properties

y{k, z) =y+(-k, z), P(k, ~) =P+(-k, z),

X(k, z) = —A*( k, ~)
(22)

or, in a more familiar form34

E((d) = —Q/Qp (13)
and the reality conditions for the fields, we expand
them in the following way:

which determines the surface-polariton eigenfre-
quency (d = (d~. The polarization eigenvector h3,s
the form

(t)(r, t) = g p(k, z) e'"'D„(ay+a g),

(23)
P(k, z) =N, (f(~/a)i+a) e-, (14) P(r, f) =QP{k,~}e*"'D,(a„-+~;),

where N~ is some constant. We choose the normal-
ization condition

0
dz P*(k, z) 5(k, ~) = 1,

«OO

A(r, t) =g A(k, z) e' ' D„(az a„-) . — (24)

which gives

N„= &[a/(n+ n,)]"' . (16)

0

P (k, z) = —27/ dz' e ~' ' '
y ~ 5(k, z')

«OO

I

and the vector potential

(16)

Knowing the polarization eigenvector, we can
compute the corresponding scalar potential

1
H/e =Q @(d/(0) 0) + 2) (26)

Here a and g are the usual annihilation and crea-
tion operators for surface-polariton modes, re-
spectively, obeying boson commutation relations.
The constants D must be determined in such a way
that the Hamiltonian (21), after inserting the quan-
tized form of the fields (23, 24), takes the standard
form

0

A()e, e) = —2e2 de'(e ' "'22 5()e,e)~
(dg ~OQ

This is achieved if we take

——e """'X'X' P(k ~'}~, (17)

where

A

y =ik —sgn(z -z')z .

y(k, z) =N, (av/I ) e (16)

Performing the integration in (16) and (17), we
obtain

(26)
where A is the unit area of the solid surface. In
all these expressions we have assumed that the
quantities no, n, and u„are single-valued func-
tions of k, given by (9), (10) and (13), respectively.

The main results of this section, Eqs. (23)-(26),
are in agreement with the recent result of Nkoma,
Loudon, and Tilley, ~' which has been obtained by
using the correspondence principle.
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A. Extension to a metallic surface

6H(id) = 1 —QJ&/(d (27)

The dispersion relation (13) for surface polaritons
now takes the explicit form

(y)8 (y)4 /I} IR

(2s)

where k~ =+~/c. Also, from (9), (10), and (28) we
obtain

(y)
llS '}llB

n=~ l+4 — +1

Although this derivation of surface-polariton
eigenmodes and the Hamiltonian (25) was per-
formed for a simple model of a semi-infinite ionic
crystal, the procedure is valid in a more general
case, because it is obvious that the results depend
only on the dielectric constant e(id) of the semi-
infinite medium. Therefore, by making a specific
choice of e(e) we can describe other types of long-
wavelength surface oscillations, e. g. , surface
polaritons at a metallic surface corresponding to
coupled plasmon-photon modes.

The metallic case can be obtained from the pre-
ceding considerations if we realize that the frequen-
cy of shear modes in the electron plasma vanishes,
and formally substitute in all expressions

432 ~ 0~ COI ~ COp,

where ur& is now the plasma frequency of metallic
electrons. This gives the corresponding dielectric
function

H =H, +Hp+ Hi, t,
H, = p~/2m+ V„„d, (32)

H„i = g [a"F(k, p, z) e'"'+ a- I" (k, p, z) e '"'],

and the coupling functions I"s are given by

I'(k, p, z) = eD~[it&(k, z) —(1/mc)p ~ A(k, z)] . (33)

Using (18), (19) and (26), we can find the explicit
form of the coupling functions

c(g 1 c -I I
'c» -11 -I

I)me„Q+ 0

+gscnz ""'
[

e '"—e "'~)kp, t 2k
m&u„(c&.(n+ i&.,)

(34)
where

C„=(2He/k)N~D&, . (35)

It is easy to verify that for c ~ the Hamiltonian
(32) reduces to the standard Hamiltonian in the
nonretarded case.

IV. NONPERTURBATIVE SOLUTION OF THE

PARTICLE-FIELD PROBLEM

The Hamiltonian (32) is applicable to a number
of problems where charged particles interact with
the surface-polariton field. It cannot be solved
generally, and appropriate approximate methods
should be sought.

We start from the Hamiltonian (32). In the inter-
action representation the wave function of the sys-
tem develops in time according to

I q(t)) = U(t, t,)
~
q(t, )& ,

where

III. INTERACTION OF CHARGED PARTICLES

WITH SURFACE POLARITONS
and

, v(t, t,) = v(t)v—(t,t,)

The Hamiltonian of a nonrelativistic particle
with mass rn and charge e in an external field
1/ gad interacting with the field of surface polari-
tons, is

(1/2m)[p —(e/c)A(r, t)]2+ erat&(r, t) + V„,«(r), (30)

where it& and A are given by (18) and (19), r =(p, z)
and p = (p„, P,) are the position and momentum op-
erators of the charge, respectively. If we neglect
the quadratic term in A, which gives rise to the
polariton-polariton interaction, the Hamiltonian
(30) becomes

p /2m —(e/mc)p A(r, t) + ei&&(r, t)+ V„&«(r) . (31)

Now we insert the iluantized expressions (23) and

(24) for the fields of surface polaritons and obtain
the total Hamiltonian of the system

V(t) = e~i He+HI& t If iiHc+HP& i-
int (36)

dr e'"'S(r), (37)

(ss)

W(r) = e'""V(t, t,) e-'"". (s9)

The usual Dyson solution for the evolution oper-
ator U(t, to) in terms of a power series in V is not
convenient in our case, since we want to obtain a
nonperturbative result, and analyze solutions
which reduce to the results of models' which are
exactly soluble. However, in many cases, e.g. ,

From the knowledge of U(t, to) we can find the
spectrum of surface polaritons excited by an exter-
nal charge between times to and t,
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in the scattering of fast electrons" or heavy ions, '
on in core-hole relaxation processes, 3~ we can
make the so-called semiclassical approximation,
neglecting the quantum-mechanical character of
charged particles. In this way it is possible to
find an exact solution for U and W, and the solu-
tion for the correlation function (38) in the form"

~(&) =exp P(e '""—1) II.-(f fo) I'I
)

where

(40)

(f f ) Fg(g e (r)) i@)y1t'k'P'8(1')

V' g'p

At the same time the wave function describing the
surface polariton system becomes

I
g(f)) = II I g;(f)) .

k

Here each I g-„(t)) represents a coherent state of
the k-polariton field, with the amplitude Ig(t, to)

l

II-f f
III(f)&=e "I " Q ("„I)i'3

(41)

(42)

(43)

where l n„) contains n„excited surface polaritons.

V. RETARDATION CORRECTIONS TO THE DYNAMICAL

IMAGE POTENTIAL

Let us now apply the results of the preceding
sections to obtain the effective potential acting on
a charged particle in the vicinity of a metallic sur-
face. This potential is due to the interaction of
the charge with surface polaritons. We consider
a particle moving from infinity (z, =~ at t = —~)
perpendicularly towards the surface, with the nor-
mal velocity v, = —v. At time t (taking the origin
of time when the particle reaches the surface) the
polariton field will be coherently displaced from
its ground state, which leads to an energy shift
corresponding to the image potential of classical
electrodynamics

0~ -30e
W(z, )= —

2 dkl ( / )3. (47)

This is the quasistatic result obtained previous-
1V, 28, 29

(ii) e, » k~: Here the main contribution comes
from the small-k region. The evaluation of the
leading terms in (46), letting k, » (e, , k~), gives

e 3P 1 1 18P~ + 4P'l
W(e, 2 kp k, ( )~ 4+ 1 p

I+''' ~(48)

where P=v/c. For P=0 we obtain Ritchie's re-
sult' for the static charge, which shows the char-
acteristic z, deviation from the classical result.
The other terms in (48) represent dynamical cor-
rections to his theory because of the finite particle
velocity, and for most cases they are small and
can be neglected. Fig. 2 shows numerical plots

3 z(k,')

-1.0-

-2.0-

4k'x' 5+x +2y +2xy (y+~ )g
( )o'0(o'+ o'0) (1+x )(1+y')

where x =kv/&o„y = nov/&u„and d, is defined in
(26).

This result represents a generalization of the
dynamical image potential which includes retarda-
tion corrections. It is instructive to evaluate (46)
in two limiting cases.

(i) k, '&g, «k~'. Here the main contribution to
the integral in (46) comes from the large values
of 0, where retardation effects are unimportant,
and (d

w(f) = &q(f) IIII y(f» .
From (32) and (43) we find

w(f) = g(e~„lfgf, — ) I'

(44)

-3.0-

+ 2Re [I'(k, z, (f)Ig(t, —~) e ' "&']$ . (46)
-4.0-

Inserting (34) and (42), we find the effective po-
tential for the particle at a distance z, = —vt& 0
from the surface

( )
e «'kdk 3 7x —1
2 p Q+Qp 1 —g

2k 3x
n, (o. + n, ) 1+y'

FIG. 2. Retarded (R) and nonretarded (NR) image po-
tential (in units of @e k&) for the case of a static charge.
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FIG. 3. Dependence of k&'=cju& on the dimensionless
electron-density parameter x~ in the region of metallic
densities, calculated in the free-electron model.

of (46) for the retarded and nonretarded case, re-
spectively. The two curves start to split appre-
ciably at rather small distances z, —~A~', which
are severs&. tens of angstronls for most metals,
as can be seen from Fig. 3. At such distances
other (quantum) effects, which have not been taken
into account in our theory (exchange, particle-
hole excitations), are still negligible, although
they gradually become important as we further ap-
proach the surface (z & k, '). Velocity corrections
were also computed, but they were found to be
small for electron energies up to 1 keV, and they
could hardly be distinguished from the static curve
on the same scale.

VI. SURFACE-POLARITON EXCITATION IN

RHEED AND LEED

The approximate treatment of the particle-solid
interaction, described in Sec. IV, has been em-
ployed in several theories of energy losses of fast
particles transmitted or reflected from the crys-
tal. '3'~ '~6 Qn the other hand, as pointed out by
Economou and Ngai, ' there have been no attempts,
except a few purely classical approaches, "to
investigate what kind of modifications retardation
effects might introduce in the inelastic spectra
observed. These effects can be naturally taken
into account in the framework of the quantum-me-
chanical approach developed in this paper.

As an example we shall compute the energy loss
of charged particles specularly reflected from the
surface of the metal. This theory is applicable to
the analysis of RHEEQ and high-energy I EED ex-
perlmeQtS~ wh8'x'8 QUr assQIIlptlon that the imping-
ing particle& is so energetic that its recoil in the
polariton-emission process can be neglected is
very well satisfied.

The appropriate electron path for the case of
specular reQeetion is

p, (f) = v„t, s,(t) = v, l
t l, (49)

q(f) =g lr„-(+, — ) l'e-'"~' .

Po—- e ' is the normalization factor such that
JP(ar) d&o = 1, and it gives the strength of the no-
loss line in the spectrum. Inserting (34) and (49)
into (41), we find

8 ga kc g~l f1&) yt P3
q(f) =- — dk, „d',E(k, v„v„),g 0 0 va (e+ o.o)

( )
' x[y-y'(y —cosy)] '

x'+ ( y —cos&f&)'

where

(51)

x = Qovg/kv, i) y = (d&/kvii, p = 1 —k /Qo

and y vanishes in the quasistatic limit. The quan-
tity E(k, v„v„) depends strongly on the geometry
of the scattering experiment, and in fact, it deter-
mines the whole spectrum. Performing the inte-
gration, we obtainn(y —'iyx) ~

E(ky vgy v~[) ~ Re I g 3 ~ y313gx ~l —y +x +2zxy~

x x x+zy + 1 —y +x +2zxy y+ zyx t

y —zyx)

(»)
A. Grazing incidence

In RHEED experiments electrons are incident
onto the surf@,ce at a grazing angle, so that v, «v~~.
In this limit we obtain for the leading term

E(k, v„v„)= —,'m(y'/x)(l —y') "',
where

y = Q)g/kv, (
& 1

(53)

(54)

must be satisfied. From (54) we see that electrons
incident at grazing angles will predominantly ex-

where the origin of time was taken at the moment
of reflection.

From the general results (Sec. III) we can easily
find the probability P(&o) that the particle loses
an amount of energy Lo in the scattering process.
It is given by the probability that the particle ex-
cites the solid, which is initially in its ground
state with energy Eo, into a state I g(t)) which at
t- contains any number of excited surface polar-
itons with the total energy Av above E0

P(~) =»mZ l(c(f) lf&l'&((Eg-&0)«- ~) .

Obviously, this must be equal to the Fourier trans-
form of the correlation function S(t) and is of the
form (37)

P(~) df e&~t e&g&t) Q&0&-31
27t'
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2 "k ~)2 "1/2
q(t) ta 1 c II

~

1 'k (08t (55)

In the case k,v„» co, we recover the result obtained
by Lucas and 5unjic

q(t) =Xe '"&', X =(ve'/4hv, )((o~~/(o', ) . (56)

The spectrum given by (50) and (56) consists of
a series of 5-like peaks at energies which are the
multiples of hv„with the strength J'„of the nth
peak given by the preexponential factor in (56)

z„=e- (x"/n!) .
One could easily take into account the surface-

polariton damping phenomenologieally, introducing
a small imaginary part in the frequency e, in (56),
and this would yield more realistic Lorentzian
loss peaks in P(&u).

The conclusion of this short analysis is, there-
fore, that retardation effects can, to a very good
approximation, be neglected in the theory of ener-
gy loss of grazing-incidence reflected electrons,
so that the nonretarded theory of I ucas and Sunjid
remains quantitatively valid.

B. Norrml incidmace

The other limiting case —electrons at nearly
normal incidence (which is applicable to LEED ex-
periments) —shows a slightly different picture.
Taking the limit v, /v„&& 1 in (52) (keeping x/y
= nov, /&o~ constant), we find

E(k, v„v„)= v(1 —y')(x/y)' [1+(x/y)'] ', (57)

which does not depend on v, and therefore the cut-
off condition (54) is not effective here. Inserting

cite surface polaritons whenever their (parallel)
velocity is larger than the polariton phase velocity,
v„& &u~/k. In the region v„& a&~/k we find

E(k, v„v„)-x',
and its contribution can be completely neglected in
comparison with (53). In the case of metals we
see from (28) that the condition y&1 can be satis-
fied for k ~ ko, where

~.= t, [(I —P;,)/(2P, ', - P'„)]'" .
ko is clearly smaller than the eut-off wave vector
k, - &o&/vz whenever v„exceeds the Fermi velocity
v&. However, in the region 4~go, ~~ is v@xy cIose
to its nonretarded va.Iue e„nameIy,

(d& —(0~(1 —qP„) ~

Therefore, one can conclude that for grazing-in-
cidence electrons, as in RHKED, the ma, jn contri-
bution to q(t) will come from the region in the k
space where retardation effects become unimpor-
tant. Then one can use the qua, sistatic approxima-
tion, which gives

(57) into (51), we obtain

g2 ( Q g 4Qlyt k3
q(t) = 6 —j! da

n,v, /~,
p~/ I + (.ov, /-k}'/ (56)

Converting (58) into an integral over &o and using
(50), we obtain

~c « -1/3

q(t) —q(0) = 6 p—z d&'(e '" ' —1)

q(0) = .'v(e'/hv, —)[I+3P,'+ O(P,') ] . (60)

The first term represents the q/uasistatic result
and others are corrections due to retardation.

Separate contributions of different-order pro-
cesses are obtained by expanding the exponential
in (50)

P (/d)/PQ = 5 ((d) + P] (/d) + P2(CO) + ~ ~ ~,
where P„gives the probability of emission of n
surface polaritons. For the first-order process
we obtain

2

P, (~) = 6 —P,'—(-1-«)-'"
@c

3

(1 —«)(1+ « P,')'—
for co~ ur, ,

(61)

while the contributions of higher-order processes
are expressed as convolutions of P, (ur). We can
easily see that

;«(«+ 1)+ —,'/d'(d«/d&q')

(1 «)-(i.+ « P,'-)"„«(«+1)+is'~(1 —«)'/d~„'
(»}

where Pg =vg/e and (dc = /d@ ~

If we use the dielectric function (11) (i. e. , point-
ion model) or (27}, the expression in the square
brackets becomes equal to 1.

The spectrum given by (50) and (59) generally
consists of the 5 line at zero frequency and the
positive-frequency side band. Its actual shape is
determined by the behavior of the second factor
in the integrand in (59}for small frequencies
&u'-0. 3' In our case, (e.g. , for metals) this func-
tion approaches a constant value when cd' goes to
zero. Therefore, the no-loss line has the finite
strength, while the side band starts from a non-
zero value for v approaching zero. ' This is quite
different from the result in the quasistatic limit, 22

where we have 5 peaks spaced at multiples of sur-
face plasmon frequency ~,. Obviously, the differ-
ence comes from the retardation which causes the
dispersion of the surface plasmon frequency and,
therefore, all frequencies starting from zero to
v, contribute in the spectrum.

The strength of the no-loss line is given by
e ~' ', where
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p(~)(&, )

10-

0.695

I

0.700

a bc

I

0.705

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I ~
t~
vY

ectrum of specularly re-
l d-. -,-.".d,Theoretical loss spectr

bat normal inci ence,
-2

flected electrons a
it zr is (a.) v 10x 10 c,E(jj. (61).

|,'b) 2x10 c, and (c) ~2x1 c, co
50 100, and 50 eV.of approximately 25,

Pt(0) =8(e /kc)(P, /td~) .
in a typical LEED experiment, to

1a lies, the e ec rwhich this theory app
sa 100 eV. For isof the order of, say,

n b (61) becomesx10 ~ and the spectrum given yp, = 2x10 an
d the limiting surface-pyp1 caked aroun e i

polariton frequency &u, (Fig. 4 . n

low velocities we can use

p 77 5 ((d —(o~)1
(-1 —&) 'L +&—(1 —P ) P, Ide/d&ul&o,

(62)

into (59), one exactly obtainsAfter inserting (62) into, , s
lt of Lucas and Sunjic orthe quasistatic result o uc

k, =~.
in RHEED a d1n both cases~ l. e ~ ~ ln R

t t dtormal LEED experimen s,nearly norma
f th outgoing elec-corrections to the ps ectrum o e

very good ap-small that they can, to a vertron are so small t a
F r eneral incidencei '
t thone should use,,52 to compu e e

toff conditionr artly because of the cu o

a use retardation corrections go(54) and partly because retar a io

)3 can hardly expect any ppn a reciableas (v c , one can
change o ef th quasistatic resul .

VII. CONCLUSIONS

a er we have derived the Hamiltonian
the surface-polari onformulation of the

field of the movingto the electromagnetic fiel o ecoupling o
thod can easily be ex-

ri tion of the surface-polariton

makes possi le
f electrons trans-eor of energy losses o e ec r

b n develop d
' th'only classic al theories have been eve

field.
t d nonperturbative ap-We have a piso resen e a

le-f ield interaction,the roblem of partic e- ieproach to e p
-body perturbationidin the use of many- o y

1 Mhich is particularly inconve '

nva
'

p bl 'nvolving surfaces.ariant prob ems ilationally noninva
'

p b
1 ze the influ-or was then applied to ana yzeThis theory was

d ical screening oftion on the dynamica
'bl drfaces where it apprecia y r

h' hnin even at distances w ic athe screening, eve
e ~ in p ysisor-g ~

s. The calculation of energy
th te eriments has shownreflection expe

c) and can usuallyre of the order e c ancorrections ar
t clear whetherd. However, it is no c e

e.g. , rans. , t smission experiments, which wou

we lect of spatial dispersion,
rther studies. 33

While we xpwe e ect the neglec o
se of the local die ec ricd' 1 tric constant, toi.e. , the use o

the long-wave-ver ood approximation in e
here retardation corrections arelength region w
ma still speculate a ou

th f kit and their inclusion in e ra
th t an exact ana-e must stress a aof our model. We

m is im-'
n of the eigenvalue problem ilytical solution o e

Id either resorthis case and we shou ei
numerical met o s,to the complicated n

e of our theoretical mo e is
e a roximate metho s.

f th o ofare outside o ese extensions
t work, especially as we are conc

ntal situations suc ascattering in experjmenta
or RHEED.
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